Skip to main content
Erschienen in: Lasers in Manufacturing and Materials Processing 4/2019

08.08.2019

Modeling and Optimization of Process Parameters for Laser Powder Bed Fusion of AlSi10Mg Alloy

verfasst von: Mihir Samantaray, Dhirendra Nath Thatoi, Seshadev Sahoo

Erschienen in: Lasers in Manufacturing and Materials Processing | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct Metal Laser Sintering (DMLS) is a laser powder bed fusion process, grabs the attention of industries to make metal components directly from the metal powders. However, the quality of the build component depends on the sintering depth as well as sintering mechanism which are directly influenced by process parameters. Proper selection of process parameters to build the component is the key to the success of the DMLS process at commercial level. A common solution to make a quality component is to fuse the powder layers with maximum layered thickness, which can be achieved with appropriate selection of process parameters. In the present research, finite element simulations have been carried out to measure the sintering depth at different process parameters such as laser power, scan speed, porosity percentage, laser spot size, and powder bed thickness. Based on the predicted temperature field and sintering depth, an optimization model was developed by using response surface methodology with an aim to optimize the process parameters that improve the printing quality. The accuracy of the model was confirmed by using analysis of variance. From the optimization model, it is found that maximum sintering depth of 3 mm achieved with a laser power of 162 W, a scan speed of 156 mm/s, the percentage of porosity of 20%, a laser spot size of 0.2 mm, and the powder layer thickness of 1 mm respectively. This optimized model will help to design and control the process parameters for building quality components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)CrossRef Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)CrossRef
2.
Zurück zum Zitat Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes, and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes, and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef
3.
Zurück zum Zitat Nandy, J., Sarangi, H., Sahoo, S.: Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase field modeling. Adv. Manuf. 6(1), 107–117 (2018)CrossRef Nandy, J., Sarangi, H., Sahoo, S.: Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase field modeling. Adv. Manuf. 6(1), 107–117 (2018)CrossRef
4.
Zurück zum Zitat Grünberger, T., Domröse, R.: Direct metal laser sintering. Laser Technol. J. 12(1), 45–48 (2015)CrossRef Grünberger, T., Domröse, R.: Direct metal laser sintering. Laser Technol. J. 12(1), 45–48 (2015)CrossRef
5.
Zurück zum Zitat Shi, Q., Gu, D., Xia, M., Cao, S., Rong, T.: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)CrossRef Shi, Q., Gu, D., Xia, M., Cao, S., Rong, T.: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)CrossRef
6.
Zurück zum Zitat Li, Y., Gu, D.: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 63, 856–867 (2014)CrossRef Li, Y., Gu, D.: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 63, 856–867 (2014)CrossRef
7.
Zurück zum Zitat Zhao, X., Iyer, A., Promoppatum, P., Yao, S.C.: Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit. Manuf. 14, 126–136 (2017)CrossRef Zhao, X., Iyer, A., Promoppatum, P., Yao, S.C.: Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit. Manuf. 14, 126–136 (2017)CrossRef
8.
Zurück zum Zitat Sahoo, S., Chou, K.: Phase field modeling of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process. Addit. Manuf. 9, 14–24 (2016)CrossRef Sahoo, S., Chou, K.: Phase field modeling of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process. Addit. Manuf. 9, 14–24 (2016)CrossRef
9.
Zurück zum Zitat Kundakcioglu, E., Lazoglu, I., Rawal, S.: Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures. Int. J. Adv. Manuf. Technol. 85(1-4), 493–501 (2016)CrossRef Kundakcioglu, E., Lazoglu, I., Rawal, S.: Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures. Int. J. Adv. Manuf. Technol. 85(1-4), 493–501 (2016)CrossRef
10.
Zurück zum Zitat Lee, W.H., Zhang, Y., Zhang, J.: Discrete element modeling of powder flow and laser heating in direct metal laser sintering process. Powder Technol. 315, 300–308 (2017)CrossRef Lee, W.H., Zhang, Y., Zhang, J.: Discrete element modeling of powder flow and laser heating in direct metal laser sintering process. Powder Technol. 315, 300–308 (2017)CrossRef
11.
Zurück zum Zitat Dong, L., Correia, J.P.M., Barth, N., Ahzi, S.: Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering. Addit. Manuf. 13, 37–48 (2017)CrossRef Dong, L., Correia, J.P.M., Barth, N., Ahzi, S.: Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering. Addit. Manuf. 13, 37–48 (2017)CrossRef
12.
Zurück zum Zitat Ojha, A., Samantaray, M., Thatoi, D.N., Sahoo, S.: Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in direct metal laser sintering process. IOP Conf. Ser. Mater. Sci. Eng. 338, 1–6 (2018)CrossRef Ojha, A., Samantaray, M., Thatoi, D.N., Sahoo, S.: Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in direct metal laser sintering process. IOP Conf. Ser. Mater. Sci. Eng. 338, 1–6 (2018)CrossRef
13.
Zurück zum Zitat Panda, B.K., Sahoo, S.: Numerical simulation of residual stress in laser based additive manufacturing process. IOP Conf. Ser. Mater. Sci. Eng. 338, 1–6 (2018)CrossRef Panda, B.K., Sahoo, S.: Numerical simulation of residual stress in laser based additive manufacturing process. IOP Conf. Ser. Mater. Sci. Eng. 338, 1–6 (2018)CrossRef
14.
Zurück zum Zitat Samantaray, M., Sahoo, S., Thatoi, D.N.: Computational modeling of heat transfer and sintering behavior during direct metal laser sintering of AlSi10Mg alloy powder. C.R. Mécanique. 346(11), 1043–1054 (2018)CrossRef Samantaray, M., Sahoo, S., Thatoi, D.N.: Computational modeling of heat transfer and sintering behavior during direct metal laser sintering of AlSi10Mg alloy powder. C.R. Mécanique. 346(11), 1043–1054 (2018)CrossRef
15.
Zurück zum Zitat Dong, G., Wijaya, G., Tang, Y., Zhao, Y.F.: Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Addit. Manuf. 19, 62–72 (2018)CrossRef Dong, G., Wijaya, G., Tang, Y., Zhao, Y.F.: Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Addit. Manuf. 19, 62–72 (2018)CrossRef
16.
Zurück zum Zitat Criales, L.E., Arısoy, Y.M., Lane, B., Moylan, S., Donmez, A., Özel, T.: Predictive modeling and optimization of multi-track processing for laser powder bed fusion of nickel alloy 625. Addit. Manuf. 13, 14–36 (2017)CrossRef Criales, L.E., Arısoy, Y.M., Lane, B., Moylan, S., Donmez, A., Özel, T.: Predictive modeling and optimization of multi-track processing for laser powder bed fusion of nickel alloy 625. Addit. Manuf. 13, 14–36 (2017)CrossRef
17.
Zurück zum Zitat Bai, Y., Yang, Y., Xiao, Z., Zhang, M., Wang, D.: Process optimization and mechanical property evolution of AlSiMg0.75 by selective laser melting. Mater. Des. 140, 257–266 (2018)CrossRef Bai, Y., Yang, Y., Xiao, Z., Zhang, M., Wang, D.: Process optimization and mechanical property evolution of AlSiMg0.75 by selective laser melting. Mater. Des. 140, 257–266 (2018)CrossRef
18.
Zurück zum Zitat Verma, A., Tyagi, S., Yang, K.: Modeling and optimization of direct metal laser sintering process. Int. J. Adv. Manuf. Technol. 77(5-8), 847–860 (2015)CrossRef Verma, A., Tyagi, S., Yang, K.: Modeling and optimization of direct metal laser sintering process. Int. J. Adv. Manuf. Technol. 77(5-8), 847–860 (2015)CrossRef
19.
Zurück zum Zitat Roberts, I.A., Wang, C.J.: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int. J. Mach. Tools Manuf. 49(12-13), 916–923 (2009)CrossRef Roberts, I.A., Wang, C.J.: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int. J. Mach. Tools Manuf. 49(12-13), 916–923 (2009)CrossRef
20.
Zurück zum Zitat Yuan, P., Gu, D.: Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J. Phys. D. Appl. Phys. 48, 1–16 (2015) Yuan, P., Gu, D.: Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J. Phys. D. Appl. Phys. 48, 1–16 (2015)
21.
Zurück zum Zitat Panda, B.K., Sahoo, S.: Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part. Res. Phys. 12, 1372–1381 (2019) Panda, B.K., Sahoo, S.: Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part. Res. Phys. 12, 1372–1381 (2019)
22.
Zurück zum Zitat Redhe, M., Forsberg, J., Jansson, T., Marklund, P.O., Nilsson, L.: Using the response surface methodology and the D-optimality criterion in crashworthiness related problems. Struct. Multidiscip. Optim. 24(3), 185–194 (2002)CrossRef Redhe, M., Forsberg, J., Jansson, T., Marklund, P.O., Nilsson, L.: Using the response surface methodology and the D-optimality criterion in crashworthiness related problems. Struct. Multidiscip. Optim. 24(3), 185–194 (2002)CrossRef
23.
Zurück zum Zitat Gunst, R.F.: Response surface methodology: process and product optimization using designed experiments. Technometrics. 38(3), 284–286 (1996)CrossRef Gunst, R.F.: Response surface methodology: process and product optimization using designed experiments. Technometrics. 38(3), 284–286 (1996)CrossRef
24.
Zurück zum Zitat Wu, J., Wang, L., An, X.: Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting. Optik. 137, 65–78 (2017)CrossRef Wu, J., Wang, L., An, X.: Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting. Optik. 137, 65–78 (2017)CrossRef
25.
Zurück zum Zitat Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1-4, 77–86 (2014)CrossRef Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1-4, 77–86 (2014)CrossRef
26.
Zurück zum Zitat Hussein, A., Hao, L., Yan, C., Everson, R.: Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater. Des. 52, 638–647 (2013)CrossRef Hussein, A., Hao, L., Yan, C., Everson, R.: Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater. Des. 52, 638–647 (2013)CrossRef
Metadaten
Titel
Modeling and Optimization of Process Parameters for Laser Powder Bed Fusion of AlSi10Mg Alloy
verfasst von
Mihir Samantaray
Dhirendra Nath Thatoi
Seshadev Sahoo
Publikationsdatum
08.08.2019
Verlag
Springer US
Erschienen in
Lasers in Manufacturing and Materials Processing / Ausgabe 4/2019
Print ISSN: 2196-7229
Elektronische ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-019-00099-7

Weitere Artikel der Ausgabe 4/2019

Lasers in Manufacturing and Materials Processing 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.