Skip to main content
Erschienen in: Journal of Computational Electronics 3/2017

29.04.2017

Modeling and simulation of carbon nanotube-based dual-gated enzyme field effect transistor for acetylcholine detection

verfasst von: Purnima Kumari Sharma, Hiranya Ranjan Thakur, Jiten Chandra Dutta

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A model for carbon nanotube-based dual-gated enzyme field effect transistor is presented for detection of acetylcholine (ACh). Modeling is done using the enzymatic reactions of the enzyme acetylcholine esterase (AChE) on ACh substrate, diffusion phenomena of the main substrate (i.e., ACh) in phosphate buffer saline (PBS), acidic reactions of the product acetic acid (\(\hbox {CH}_{3}\hbox {COOH}\)) in the PBS solution, the pH detection properties of ISFET and the current transport model of dual-gated CNTFET. The diffusion phenomenon of the substrate in electrolyte is modeled by Fick’s law of diffusion. The use of polyethylene imine doped CNT as channel has increased the sensitivity of the device at normal temperature and pH. As the mobility of CNT is very high and a high-\(\upkappa \) dielectric \(\hbox {HfO}_{2}\) is used as top gate insulator, a small change in potential at the enzyme–insulator interface results is large current variation. The potential variation with change in pH is depicted by the model given by Bousse. This potential change varies the threshold voltage of the device, thereby varying the drain current. The simulated results of the model was compared with the characteristics of the fabricated device and found to be in good agreement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hasselmo, M.E., Bower, J.M.: Acetylcholine and memory. Trends Neurosci. 16(6), 218–222 (1993)CrossRef Hasselmo, M.E., Bower, J.M.: Acetylcholine and memory. Trends Neurosci. 16(6), 218–222 (1993)CrossRef
2.
Zurück zum Zitat Perry, E., Walker, M., Grace, J., Perry, R.: Acetylcholine in mind: a neurotransmitter correlates of consciousness. Trends Neurosci. 22(1), 273–280 (1999)CrossRef Perry, E., Walker, M., Grace, J., Perry, R.: Acetylcholine in mind: a neurotransmitter correlates of consciousness. Trends Neurosci. 22(1), 273–280 (1999)CrossRef
3.
Zurück zum Zitat Graves, L., Pack, A., Abel, T.: Sleep and memory: a molecular perspective. Trends Neurosci. 24(4), 237–243 (2001)CrossRef Graves, L., Pack, A., Abel, T.: Sleep and memory: a molecular perspective. Trends Neurosci. 24(4), 237–243 (2001)CrossRef
4.
Zurück zum Zitat Dutta, J.C.: Ion sensitive field effect transistor for applications in bioelectronic sensors: a research review. In: Proceeding of IEEE 2nd National Conference on Computational Intelligence Signal Processing (CISP). pp. 185–191, doi:10.1109/NCCISP.2012.6189704 (2012) Dutta, J.C.: Ion sensitive field effect transistor for applications in bioelectronic sensors: a research review. In: Proceeding of IEEE 2nd National Conference on Computational Intelligence Signal Processing (CISP). pp. 185–191, doi:10.​1109/​NCCISP.​2012.​6189704 (2012)
5.
Zurück zum Zitat Munoz, J., Jimenez, C., Bratov, A., Bartroli, J., Alegret, G., Dominguez, C.: Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing. Biosens. Bioelectron. 12(7), 577–585 (1997)CrossRef Munoz, J., Jimenez, C., Bratov, A., Bartroli, J., Alegret, G., Dominguez, C.: Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing. Biosens. Bioelectron. 12(7), 577–585 (1997)CrossRef
6.
Zurück zum Zitat Ishige, Y., Shimoda, M., Kamahari, M.: Extended-gate FET-based enzyme sensor with ferrocenylalkanethiol modified gold sensing electrode. Biosens. Bioelectron. 24, 1096–1102 (2009)CrossRef Ishige, Y., Shimoda, M., Kamahari, M.: Extended-gate FET-based enzyme sensor with ferrocenylalkanethiol modified gold sensing electrode. Biosens. Bioelectron. 24, 1096–1102 (2009)CrossRef
7.
Zurück zum Zitat Ahmad, R., Tripathy, N., Hahn, Y.B.: High-performance cholesterol sensor based on the solution-gated field effect transistor fabricated with ZnO nanorods. Biosens. Bioelectron. 45, 281–286 (2013)CrossRef Ahmad, R., Tripathy, N., Hahn, Y.B.: High-performance cholesterol sensor based on the solution-gated field effect transistor fabricated with ZnO nanorods. Biosens. Bioelectron. 45, 281–286 (2013)CrossRef
8.
Zurück zum Zitat Bergveld, P.: Thirty years of ISFETOLOGY, what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B 88, 1–20 (2003)CrossRef Bergveld, P.: Thirty years of ISFETOLOGY, what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B 88, 1–20 (2003)CrossRef
9.
Zurück zum Zitat Bergveld, P.: Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 17(1), 70–71 (1970)CrossRef Bergveld, P.: Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 17(1), 70–71 (1970)CrossRef
10.
Zurück zum Zitat Sahoo, R., Mishra, R.R.: Simulations of carbon nanotube field effect transistors. Int. J. Electron. Eng. Res. 1(2), 117–125 (2009) Sahoo, R., Mishra, R.R.: Simulations of carbon nanotube field effect transistors. Int. J. Electron. Eng. Res. 1(2), 117–125 (2009)
11.
Zurück zum Zitat Javey, A.: High-\(\kappa \) dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002)CrossRef Javey, A.: High-\(\kappa \) dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002)CrossRef
12.
Zurück zum Zitat Barik, M.A., Dutta, J.C.: Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection. Appl. Phys. Lett. 105(5), 053509-1–053509-5 (2014)CrossRef Barik, M.A., Dutta, J.C.: Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection. Appl. Phys. Lett. 105(5), 053509-1–053509-5 (2014)CrossRef
13.
Zurück zum Zitat Chin, S.K., Seath, D., Lam, K.T.: Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Trans. Electron Devices 57, 3144–3152 (2010)CrossRef Chin, S.K., Seath, D., Lam, K.T.: Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Trans. Electron Devices 57, 3144–3152 (2010)CrossRef
14.
Zurück zum Zitat Barik, M.A., Sarma, M.K., Sarkar, C.R., Dutta, J.C.: Highly sensitive potassium-doped polypyrrole/carbon nanotube-based enzyme field effect transistor (ENFET) for cholesterol detection. Appl. Biochem. Biotechnol. 174(3), 1104–1114 (2014)CrossRef Barik, M.A., Sarma, M.K., Sarkar, C.R., Dutta, J.C.: Highly sensitive potassium-doped polypyrrole/carbon nanotube-based enzyme field effect transistor (ENFET) for cholesterol detection. Appl. Biochem. Biotechnol. 174(3), 1104–1114 (2014)CrossRef
15.
Zurück zum Zitat Barik, M.A., Deka, R., Dutta, J.C.: Carbon nanotube-based dual-gated junctionless field-effect transistor for acetylcholine detection. IEEE Sens. J. 16(2), 280–286 (2016)CrossRef Barik, M.A., Deka, R., Dutta, J.C.: Carbon nanotube-based dual-gated junctionless field-effect transistor for acetylcholine detection. IEEE Sens. J. 16(2), 280–286 (2016)CrossRef
16.
Zurück zum Zitat Karajanagi, S.S., et al.: Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20, 11594–11599 (2004)CrossRef Karajanagi, S.S., et al.: Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20, 11594–11599 (2004)CrossRef
17.
Zurück zum Zitat Colinge, J.P.: Nanowire transistors without junctions. Nature Nanotechnol. 5, 225–229 (2010)CrossRef Colinge, J.P.: Nanowire transistors without junctions. Nature Nanotechnol. 5, 225–229 (2010)CrossRef
18.
Zurück zum Zitat Spijkman, M., Smits, E.C.P., Cillessen, J.F.M., Biscarini, F., Blom, P.W.M., Leeuw, D.M.: Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors. Appl. Phys. Lett. 98(4), 043502-1–043502-3 (2011)CrossRef Spijkman, M., Smits, E.C.P., Cillessen, J.F.M., Biscarini, F., Blom, P.W.M., Leeuw, D.M.: Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors. Appl. Phys. Lett. 98(4), 043502-1–043502-3 (2011)CrossRef
19.
Zurück zum Zitat Ali, M.A., et al.: A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. Nanoscale 5(7), 2883–2891 (2013)CrossRef Ali, M.A., et al.: A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. Nanoscale 5(7), 2883–2891 (2013)CrossRef
20.
Zurück zum Zitat Singh, J., Kalita, P., Singh, M.K., Malhotra, B.D.: Nanostructured nickel oxide–chitosan film for application to cholesterol sensor. Appl. Phys. Lett. 98(12), 123702-1–123702-2 (2011) Singh, J., Kalita, P., Singh, M.K., Malhotra, B.D.: Nanostructured nickel oxide–chitosan film for application to cholesterol sensor. Appl. Phys. Lett. 98(12), 123702-1–123702-2 (2011)
21.
Zurück zum Zitat Barik, M.A., et al.: Polyaniline-carboxymethyl cellulose nanocomposite for cholesterol detection. J. Nanosci. Nanotechnol. 10(10), 6479–6488 (2010)CrossRef Barik, M.A., et al.: Polyaniline-carboxymethyl cellulose nanocomposite for cholesterol detection. J. Nanosci. Nanotechnol. 10(10), 6479–6488 (2010)CrossRef
22.
Zurück zum Zitat Kiani, M.J., et al.: Analytical modelling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett. 8(1), 173-1-9 (2013)CrossRef Kiani, M.J., et al.: Analytical modelling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett. 8(1), 173-1-9 (2013)CrossRef
23.
Zurück zum Zitat Janicki, M., et al.: Ion sensitive field effect transistor modelling for multidomain simulation purposes. Microelectron. J. 35(10), 831–840 (2004)CrossRef Janicki, M., et al.: Ion sensitive field effect transistor modelling for multidomain simulation purposes. Microelectron. J. 35(10), 831–840 (2004)CrossRef
24.
Zurück zum Zitat Kazmierski, T., et al.: Numerically efficient modelling of CNT transistors with ballistic and non ballistic effects for circuit simulation. IEEE Trans. Nanotechnol. 9(1), 99–107 (2010)CrossRef Kazmierski, T., et al.: Numerically efficient modelling of CNT transistors with ballistic and non ballistic effects for circuit simulation. IEEE Trans. Nanotechnol. 9(1), 99–107 (2010)CrossRef
25.
Zurück zum Zitat Ma, Y. et al.: Compact modelling and simulation of extended-gate. In: Proceedings of IEEE 12th International Conference on Solid-State and Integrated Circuit Technology (ICSICT). pp. 31–33 (2014) Ma, Y. et al.: Compact modelling and simulation of extended-gate. In: Proceedings of IEEE 12th International Conference on Solid-State and Integrated Circuit Technology (ICSICT). pp. 31–33 (2014)
26.
Zurück zum Zitat Martinoia, S., Massobrio, G.: Behavioral macromodel of the ISFET in SPICE. Sens. Actuators B Chem. 62(3), 182–189 (2000)CrossRef Martinoia, S., Massobrio, G.: Behavioral macromodel of the ISFET in SPICE. Sens. Actuators B Chem. 62(3), 182–189 (2000)CrossRef
27.
Zurück zum Zitat Kazmierski, T., Zhou, D., Al-Hashimi, B.: HSPICE implementation of a numerically efficient model of CNT transistor. Specif. Des. Lang. 5, 1–5 (2010) Kazmierski, T., Zhou, D., Al-Hashimi, B.: HSPICE implementation of a numerically efficient model of CNT transistor. Specif. Des. Lang. 5, 1–5 (2010)
28.
Zurück zum Zitat Temple-Boyer, P., Gal, J.L., Pourciel-Gouzy, M.L., Sant, W., Martinez, A.: Modeling of EnFETs for the creatinine detection. Sens. Actuators B 118, 47–52 (2006)CrossRef Temple-Boyer, P., Gal, J.L., Pourciel-Gouzy, M.L., Sant, W., Martinez, A.: Modeling of EnFETs for the creatinine detection. Sens. Actuators B 118, 47–52 (2006)CrossRef
29.
Zurück zum Zitat Temple-Boyer, P., Banyahia, A., Sant, W., Pourciel-Gouzy, M.L., Launay, J., Martinez, A.: Modeling of urea-EnFETs for haemodialysis applications. Sens. Actuators B 131, 525–532 (2008)CrossRef Temple-Boyer, P., Banyahia, A., Sant, W., Pourciel-Gouzy, M.L., Launay, J., Martinez, A.: Modeling of urea-EnFETs for haemodialysis applications. Sens. Actuators B 131, 525–532 (2008)CrossRef
30.
Zurück zum Zitat Sharma, P.K., Dutta, J.C., Barik, M.A., Sarma, M.K.: Numerical modeling of potassium doped polypyrrole/carbon nanotube graphenec-based cholesterol enzyme field effect transistor. Wiley Int. J. Numer. Model. (2017). doi:10.1002/jnm.2223 Sharma, P.K., Dutta, J.C., Barik, M.A., Sarma, M.K.: Numerical modeling of potassium doped polypyrrole/carbon nanotube graphenec-based cholesterol enzyme field effect transistor. Wiley Int. J. Numer. Model. (2017). doi:10.​1002/​jnm.​2223
31.
Zurück zum Zitat Grattarola, M., Massobrio, G.: Bioelectronics Handbook: MOSFETs, Biosensors, and Neurons. McGraw-Hill, New York (1998) Grattarola, M., Massobrio, G.: Bioelectronics Handbook: MOSFETs, Biosensors, and Neurons. McGraw-Hill, New York (1998)
32.
Zurück zum Zitat Sundaram, P.V., Tweedale, A., Laidler, K.J.: Kinetic laws for solid-supported enzymes. Can. J. Chem. 48(10), 1498–1504 (1970)CrossRef Sundaram, P.V., Tweedale, A., Laidler, K.J.: Kinetic laws for solid-supported enzymes. Can. J. Chem. 48(10), 1498–1504 (1970)CrossRef
33.
Zurück zum Zitat Bousse, L., Rooij, N.F., Bergveld, P.: Operation of chemically sensitive field effect sensors as a function of the insulator–electrolyte interface. IEEE Trans. Electron Devices ED 30, 1263–1270 (1983)CrossRef Bousse, L., Rooij, N.F., Bergveld, P.: Operation of chemically sensitive field effect sensors as a function of the insulator–electrolyte interface. IEEE Trans. Electron Devices ED 30, 1263–1270 (1983)CrossRef
34.
Zurück zum Zitat Yates, D.E., Levine, S., Healy, T.W.: Site binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 70, 1807–1819 (1974)CrossRef Yates, D.E., Levine, S., Healy, T.W.: Site binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 70, 1807–1819 (1974)CrossRef
35.
Zurück zum Zitat Spijkman, B.M., Brondijk, J.J., Geuns, T.C.T., Smits, E.C.P., Cramer, T., Zerbetto, F., Stoliar, P., Biscarini, F., Blom, P.W.M., De Leeuw, D.M.: Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution. Wiley Adv. Funct. Mater. 20, 898–905 (2010)CrossRef Spijkman, B.M., Brondijk, J.J., Geuns, T.C.T., Smits, E.C.P., Cramer, T., Zerbetto, F., Stoliar, P., Biscarini, F., Blom, P.W.M., De Leeuw, D.M.: Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution. Wiley Adv. Funct. Mater. 20, 898–905 (2010)CrossRef
36.
Zurück zum Zitat Malik, N.R.: Electronic Circuits: Analysis, Simulation, and Design. Prentice Hall, Upper Saddle River, NJ (1995) Malik, N.R.: Electronic Circuits: Analysis, Simulation, and Design. Prentice Hall, Upper Saddle River, NJ (1995)
37.
Zurück zum Zitat Sharma, P.K., Dutta, J.C.: Electrochemical modeling of carbon nanotube based dual gated junctionless enzyme field effect transistor. In: Proceedings of the International IEEE Region 10 Conference (TENCON). pp. 2765–2770 (2016) Sharma, P.K., Dutta, J.C.: Electrochemical modeling of carbon nanotube based dual gated junctionless enzyme field effect transistor. In: Proceedings of the International IEEE Region 10 Conference (TENCON). pp. 2765–2770 (2016)
38.
Zurück zum Zitat Davis, J.A., James, R.O., Leckie, J.O.: Surface ionization and complexation at the oxide/water interface. J. Colloid Interface Sci. 63, 480–499 (1978)CrossRef Davis, J.A., James, R.O., Leckie, J.O.: Surface ionization and complexation at the oxide/water interface. J. Colloid Interface Sci. 63, 480–499 (1978)CrossRef
Metadaten
Titel
Modeling and simulation of carbon nanotube-based dual-gated enzyme field effect transistor for acetylcholine detection
verfasst von
Purnima Kumari Sharma
Hiranya Ranjan Thakur
Jiten Chandra Dutta
Publikationsdatum
29.04.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-0992-9

Weitere Artikel der Ausgabe 3/2017

Journal of Computational Electronics 3/2017 Zur Ausgabe

Neuer Inhalt