Skip to main content
Erschienen in: Archive of Applied Mechanics 12/2018

17.08.2018 | Original

Modeling of anisotropic remodeling of trabecular bone coupled to fracture

verfasst von: Ibrahim Goda, Jean-François Ganghoffer

Erschienen in: Archive of Applied Mechanics | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a living tissue, bone is subjected to internal evolutions of its trabecular architecture under normal everyday mechanical loadings leading to damage. The repeating bone remodeling cycle aims at repairing the damaged zones in order to maintain bone structural integrity; this activity of sensing the peak stress at locations where damage or microcracks have occurred, removing old bone and apposing new bone is achieved thanks to a complicated machinery at the cellular level involving specialized cells (osteocytes, osteoclasts, and osteoblasts). This work aims at developing an integrated remodeling-to-fracture model to simulate the bone remodeling process, considering trabecular bone anisotropy. The effective anisotropic continuum mechanical properties of the trabecular bone are derived from an initially discrete planar hexagonal structure representative of femur bone microstructure, relying on the asymptotic homogenization technique. This leads to scaling laws of the effective elastic properties of bone versus effective density at an intermediate mesoscopic scale. An evolution law for the local bone apparent density is formulated in the framework of the thermodynamics of irreversible processes, whereby the driving force for density evolutions is identified as the local strain energy density weighted by the locally accumulated microdamage. We adopt a classical nonlinear damage model for high cycle fatigue under purely elastic strains, where the assumed homogeneous damage is related to the number of cycles bone experiences. Based on this model, we simulate bone remodeling for the chosen initial microstructure, showing the influence of the external mechanical stimuli on the evolution of the density of bone and the incidence of this evolution on trabecular bone effective mechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Aoubiza, B., Crolet, J.M., Meunier, A.: On the mechanical characterization of compact bone structure using the homogenization theory. J. Biomech. 29(12), 1539–1547 (1996)CrossRef Aoubiza, B., Crolet, J.M., Meunier, A.: On the mechanical characterization of compact bone structure using the homogenization theory. J. Biomech. 29(12), 1539–1547 (1996)CrossRef
3.
Zurück zum Zitat Arnoux, P.J., Bonnoit, J., Chabrand, P., Jean, M., Pithioux, M.: Numerical damage models using a structural approach: application in bones and ligaments. Eur. Phys. J. Appl. Phys. 17, 65–73 (2002)CrossRef Arnoux, P.J., Bonnoit, J., Chabrand, P., Jean, M., Pithioux, M.: Numerical damage models using a structural approach: application in bones and ligaments. Eur. Phys. J. Appl. Phys. 17, 65–73 (2002)CrossRef
4.
Zurück zum Zitat Beauprée, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J. Orthop. Res. 8, 662–670 (1990)CrossRef Beauprée, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J. Orthop. Res. 8, 662–670 (1990)CrossRef
5.
Zurück zum Zitat Carter, D.R., Fyhrie, D.P., Whalen, R.T.: Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J. Biomech. XI 20, 785–794 (1987)CrossRef Carter, D.R., Fyhrie, D.P., Whalen, R.T.: Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J. Biomech. XI 20, 785–794 (1987)CrossRef
6.
Zurück zum Zitat Chen, G., Pettet, G., Pearcy, M., McElwain, D.L.S.: Comparison of two numerical approaches for bone remodeling. Med. Eng. Phys. 29, 134–139 (2007)CrossRef Chen, G., Pettet, G., Pearcy, M., McElwain, D.L.S.: Comparison of two numerical approaches for bone remodeling. Med. Eng. Phys. 29, 134–139 (2007)CrossRef
7.
Zurück zum Zitat Cowin, S.C., Van Buskirk, W.C.: Surface bone remodeling induced by a medullary pin. J. Biomech. 12(4), 269–276 (1979)CrossRef Cowin, S.C., Van Buskirk, W.C.: Surface bone remodeling induced by a medullary pin. J. Biomech. 12(4), 269–276 (1979)CrossRef
8.
Zurück zum Zitat Doblaré, M., Garcıa, J.M.: Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J. Biomech. 34, 1157–1170 (2001)CrossRef Doblaré, M., Garcıa, J.M.: Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J. Biomech. 34, 1157–1170 (2001)CrossRef
9.
Zurück zum Zitat Fang, Z.: Image-Guided Modeling, Fabrication and Micro-mechanical Analysis of Bone and Heterogeneous Structure. Ph.D. Thesis, Drexel University (2005) Fang, Z.: Image-Guided Modeling, Fabrication and Micro-mechanical Analysis of Bone and Heterogeneous Structure. Ph.D. Thesis, Drexel University (2005)
10.
Zurück zum Zitat Fritsch, A., Dormieux, L., Hellmich, C.: Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties. C. R. Méc. 334, 151–157 (2006)CrossRef Fritsch, A., Dormieux, L., Hellmich, C.: Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties. C. R. Méc. 334, 151–157 (2006)CrossRef
11.
Zurück zum Zitat Ganghoffer, J.F.: Mechanical modeling of growth considering domain variation—part II: volumetric and surface growth involving Eshelby tensors. J. Mech. Phys. Solids 58(9), 1434–1459 (2010a)CrossRef Ganghoffer, J.F.: Mechanical modeling of growth considering domain variation—part II: volumetric and surface growth involving Eshelby tensors. J. Mech. Phys. Solids 58(9), 1434–1459 (2010a)CrossRef
12.
Zurück zum Zitat Ganghoffer, J.F.: On Eshelby tensors in the context of the thermodynamics of open systems: application to volumetric growth. Int. J. Eng. Sci. 48(12), 2081–2098 (2010b)MathSciNetCrossRef Ganghoffer, J.F.: On Eshelby tensors in the context of the thermodynamics of open systems: application to volumetric growth. Int. J. Eng. Sci. 48(12), 2081–2098 (2010b)MathSciNetCrossRef
13.
Zurück zum Zitat Ganghoffer, J.F.: A contribution to the mechanics and thermodynamics of surface growth. Application to bone external remodeling. Int. J. Eng. Sci. 50, 166–191 (2012)MathSciNetCrossRef Ganghoffer, J.F.: A contribution to the mechanics and thermodynamics of surface growth. Application to bone external remodeling. Int. J. Eng. Sci. 50, 166–191 (2012)MathSciNetCrossRef
14.
Zurück zum Zitat Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38, 377–399 (2005)CrossRef Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38, 377–399 (2005)CrossRef
15.
Zurück zum Zitat Goda, I., Assidi, M., Ganghoffer, J.F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61, 2537–2565 (2013)CrossRef Goda, I., Assidi, M., Ganghoffer, J.F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61, 2537–2565 (2013)CrossRef
16.
Zurück zum Zitat Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)CrossRef Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)CrossRef
17.
Zurück zum Zitat Hambli, R.: Numerical procedure for multiscale bone adaptation prediction based on neural networks and finite element simulation. Finite Elem. Anal. Des. 47, 835–842 (2011)CrossRef Hambli, R.: Numerical procedure for multiscale bone adaptation prediction based on neural networks and finite element simulation. Finite Elem. Anal. Des. 47, 835–842 (2011)CrossRef
18.
Zurück zum Zitat Hazelwood, S.J., Martin, R.B., Rashid, M.M., Rodrigo, J.J.: A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload. J. Biomech. 34, 299–308 (2001)CrossRef Hazelwood, S.J., Martin, R.B., Rashid, M.M., Rodrigo, J.J.: A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload. J. Biomech. 34, 299–308 (2001)CrossRef
20.
Zurück zum Zitat Hellmich, C., Barthélémy, J.F., Dormieux, L.: Mineral-collagen interactions in elasticity of bone ultrastructure-a continuum micromechanics approach. Eur. J. Mech. A Solid. 23(5), 783–810 (2004)CrossRef Hellmich, C., Barthélémy, J.F., Dormieux, L.: Mineral-collagen interactions in elasticity of bone ultrastructure-a continuum micromechanics approach. Eur. J. Mech. A Solid. 23(5), 783–810 (2004)CrossRef
21.
Zurück zum Zitat Hellmich, C., Kober, C., Erdmann, B.: Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann. Biomed. Eng. 36(1), 108–122 (2008)CrossRef Hellmich, C., Kober, C., Erdmann, B.: Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann. Biomed. Eng. 36(1), 108–122 (2008)CrossRef
22.
Zurück zum Zitat Hellmich, C., Ulm, F.J.: Micromechanical model for ultrastructural stiffness of mineralized tissues. J. Eng. Mech. 128(8), 898–908 (2002)CrossRef Hellmich, C., Ulm, F.J.: Micromechanical model for ultrastructural stiffness of mineralized tissues. J. Eng. Mech. 128(8), 898–908 (2002)CrossRef
23.
Zurück zum Zitat Hernandez, C.J., Beaupre, G.S., Carter, D.R.: A model of mechanobiologic and metabolic influences on bone adaptation. J. Rehabil. Res. Dev. 37(2), 235–244 (2000) Hernandez, C.J., Beaupre, G.S., Carter, D.R.: A model of mechanobiologic and metabolic influences on bone adaptation. J. Rehabil. Res. Dev. 37(2), 235–244 (2000)
24.
Zurück zum Zitat Ju, J.: Damage mechanics of composite materials: constitutive modeling and computational algorithms. Technical report, DTIC document (1991) Ju, J.: Damage mechanics of composite materials: constitutive modeling and computational algorithms. Technical report, DTIC document (1991)
25.
Zurück zum Zitat Kowalczyk, P.: Simulation of orthotropic microstructure remodelling of cancellous bone. J. Biomech. 43, 563–569 (2010)CrossRef Kowalczyk, P.: Simulation of orthotropic microstructure remodelling of cancellous bone. J. Biomech. 43, 563–569 (2010)CrossRef
26.
Zurück zum Zitat Lee, T.C., Noelke, L., McMahon, G.T., Mulville, J.P., Taylor, D.: Functional adaptation in bone. In: Pedersen, P., Bendsoe, M.P. (eds.) Synthesis in Bio Solid Mechanics, pp. 1–10. Kluwer, Dordrecht (1999) Lee, T.C., Noelke, L., McMahon, G.T., Mulville, J.P., Taylor, D.: Functional adaptation in bone. In: Pedersen, P., Bendsoe, M.P. (eds.) Synthesis in Bio Solid Mechanics, pp. 1–10. Kluwer, Dordrecht (1999)
27.
Zurück zum Zitat Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Des. 80, 233–245 (1984)CrossRef Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Des. 80, 233–245 (1984)CrossRef
28.
Zurück zum Zitat Lemaitre, J., Chaboche, J.L.: Aspect phenomenologique de la rupture par endommagement. J. de Mech. Appl. 2, 317–365 (1978) Lemaitre, J., Chaboche, J.L.: Aspect phenomenologique de la rupture par endommagement. J. de Mech. Appl. 2, 317–365 (1978)
29.
Zurück zum Zitat Li, J., Li, H., Shi, L., Fok, A.S., Ucer, C., Devlin, H., Horner, K., Silikas, N.: A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent. Mater. 23, 1073–1078 (2007)CrossRef Li, J., Li, H., Shi, L., Fok, A.S., Ucer, C., Devlin, H., Horner, K., Silikas, N.: A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent. Mater. 23, 1073–1078 (2007)CrossRef
30.
Zurück zum Zitat Martin, R.B.: A theory of fatigue damage accumulation and repair in cortical bone. J. Orthop. Res. 10, 818–825 (1992)CrossRef Martin, R.B.: A theory of fatigue damage accumulation and repair in cortical bone. J. Orthop. Res. 10, 818–825 (1992)CrossRef
31.
Zurück zum Zitat McNamara, L.M., Prendergast, P.J.: Bone remodelling algorithms incorporating both strain and microdamage stimuli. J. Biomech. 40, 1381–1391 (2007)CrossRef McNamara, L.M., Prendergast, P.J.: Bone remodelling algorithms incorporating both strain and microdamage stimuli. J. Biomech. 40, 1381–1391 (2007)CrossRef
32.
Zurück zum Zitat Mori, S., Burr, D.B.: Increased intracortical remodeling following fatigue damage. Bone 14, 103–109 (1993)CrossRef Mori, S., Burr, D.B.: Increased intracortical remodeling following fatigue damage. Bone 14, 103–109 (1993)CrossRef
33.
Zurück zum Zitat Prendergast, J., Huiskes, R.: Mathematical modeling of microdamage in bone remodeling and adaptation In: A. Odgaard, H. Weinans (Eds.), Bone Structure and Remodeling, Recent Advances in Human Biology2, World ScientiGc, Singapore 213–223 (1995) Prendergast, J., Huiskes, R.: Mathematical modeling of microdamage in bone remodeling and adaptation In: A. Odgaard, H. Weinans (Eds.), Bone Structure and Remodeling, Recent Advances in Human Biology2, World ScientiGc, Singapore 213–223 (1995)
34.
Zurück zum Zitat Prendergast, P.J., Taylor, D.: Prediction of bone adaptation using damage accumulation. J. Biomech. 27, 1067–1076 (1994)CrossRef Prendergast, P.J., Taylor, D.: Prediction of bone adaptation using damage accumulation. J. Biomech. 27, 1067–1076 (1994)CrossRef
35.
Zurück zum Zitat Qin, Y.X., Rubin, C.T., McLeod, K.J.: Nonlinear dependence of loading intensityand cycle number in the maintenance of bone mass and morphology. J. Orthop. Res. 16, 482–489 (1998)CrossRef Qin, Y.X., Rubin, C.T., McLeod, K.J.: Nonlinear dependence of loading intensityand cycle number in the maintenance of bone mass and morphology. J. Orthop. Res. 16, 482–489 (1998)CrossRef
36.
Zurück zum Zitat Ramtani, S., Zidi, M.: Damaged-bone adaptation under steady homogeneous stress. J. Biomech. Eng. 124(3), 322–7 (2002)CrossRef Ramtani, S., Zidi, M.: Damaged-bone adaptation under steady homogeneous stress. J. Biomech. Eng. 124(3), 322–7 (2002)CrossRef
37.
Zurück zum Zitat Tobin, W.J.: The internal architecture of the femur and its clinical significance. J. Bone Joint Surg. A 37, 57–71 (1955)CrossRef Tobin, W.J.: The internal architecture of the femur and its clinical significance. J. Bone Joint Surg. A 37, 57–71 (1955)CrossRef
38.
Zurück zum Zitat Taylor, D., Hazenberg, J.G., Lee, T.C.: Living with cracks: damage and repair in human bone. Nat. Mater. 6(4), 263–268 (2007)CrossRef Taylor, D., Hazenberg, J.G., Lee, T.C.: Living with cracks: damage and repair in human bone. Nat. Mater. 6(4), 263–268 (2007)CrossRef
39.
Zurück zum Zitat Wang, C., Zhang, C., Han, J., Wu, H., Fan, Y.: Simulated evolution of the vertebral body based on basic multicellular unit activities. J. Bone Min. Metab. 29(4), 466–76 (2011)CrossRef Wang, C., Zhang, C., Han, J., Wu, H., Fan, Y.: Simulated evolution of the vertebral body based on basic multicellular unit activities. J. Bone Min. Metab. 29(4), 466–76 (2011)CrossRef
40.
Zurück zum Zitat Watzky, A., Naili, S.: Orthotropic bone remodeling: case of plane stresses. Mech. Res. Commun. 31, 617–625 (2004)CrossRef Watzky, A., Naili, S.: Orthotropic bone remodeling: case of plane stresses. Mech. Res. Commun. 31, 617–625 (2004)CrossRef
41.
Zurück zum Zitat Weinans, H., Huiskes, R., Grootenboer, H.J.: The behavior of adaptive bone remodeling simulation models. J. Biomech. 25, 1425–1441 (1992)CrossRef Weinans, H., Huiskes, R., Grootenboer, H.J.: The behavior of adaptive bone remodeling simulation models. J. Biomech. 25, 1425–1441 (1992)CrossRef
42.
Zurück zum Zitat Wolff, J.: Das Gesetz transformation der Knochen. Hirschwald Verlag, Berlin (1892) Wolff, J.: Das Gesetz transformation der Knochen. Hirschwald Verlag, Berlin (1892)
Metadaten
Titel
Modeling of anisotropic remodeling of trabecular bone coupled to fracture
verfasst von
Ibrahim Goda
Jean-François Ganghoffer
Publikationsdatum
17.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 12/2018
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1438-y

Weitere Artikel der Ausgabe 12/2018

Archive of Applied Mechanics 12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.