Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2016

25.07.2016

Modeling of Flow Stress of High Titanium Content 6061 Aluminum Alloy Under Hot Compression

verfasst von: Wei Chen, Yingping Guan, Zhenhua Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hot compression tests were performed on high titanium content 6061 aluminum alloy (AA 6061-Ti) using a Gleeble-3500 thermomechanical testing system at temperatures from 350 to 510 °C with a constant strain rate in the range of 0.001-10 s−1. Three types of flow stress models were established from the experimental stress-strain curves, the correlation coefficient (R), mean absolute relative error (MARE), and root mean square deviation (RMSD) between the predicted data and the experimental data were also calculated. The results show that the Fields–Backofen model, which includes a softening factor, was the simplest mathematical expression with a level of precision appropriate for the numerical simulations. However, the Arrhenius and artificial neural network (ANN) models were also consistent with the experimental results but they are more limited in their application in terms of their accuracy and the mathematical expression of the models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. Rohr, H. Nahme, K. Thoma, and C.E. Anderson, Jr., Material Characterisation and Constitutive Modelling of a Tungsten-Sintered Alloy for a Wide Range of Strain Rates, Int. J. Impact Eng., 2008, 35, p 811–819CrossRef I. Rohr, H. Nahme, K. Thoma, and C.E. Anderson, Jr., Material Characterisation and Constitutive Modelling of a Tungsten-Sintered Alloy for a Wide Range of Strain Rates, Int. J. Impact Eng., 2008, 35, p 811–819CrossRef
2.
Zurück zum Zitat A.M. Lennon and K.T. Ramesh, The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures, Int. J. Plast., 2004, 20, p 269–290CrossRef A.M. Lennon and K.T. Ramesh, The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures, Int. J. Plast., 2004, 20, p 269–290CrossRef
3.
Zurück zum Zitat C.M. Sellars and W.J. Mcgtegart, On the Mechanism of Hot Deformation, Acta. Metall., 1966, 14, p 1136–1138CrossRef C.M. Sellars and W.J. Mcgtegart, On the Mechanism of Hot Deformation, Acta. Metall., 1966, 14, p 1136–1138CrossRef
4.
Zurück zum Zitat D.S. Fields and W.A. Backofen, Determination of Strain Hardening Characteristics by Torsion Testing, Proceedings-ASTM., 1957, 57, p 1259–1272 D.S. Fields and W.A. Backofen, Determination of Strain Hardening Characteristics by Torsion Testing, Proceedings-ASTM., 1957, 57, p 1259–1272
5.
Zurück zum Zitat Y.N. Kwon, Y.S. Lee, and J.H. Lee, Deformation Behavior of Al-Mg-Si Alloy at the Elevated Temperature, J. Mater. Process. Technol., 2007, 188, p 533–536CrossRef Y.N. Kwon, Y.S. Lee, and J.H. Lee, Deformation Behavior of Al-Mg-Si Alloy at the Elevated Temperature, J. Mater. Process. Technol., 2007, 188, p 533–536CrossRef
6.
Zurück zum Zitat D.G. Mccarteny, Grain Refining of Aluminum and Its Alloys Using Inoculants, Int. Mater. Rev., 1989, 34, p 247–260CrossRef D.G. Mccarteny, Grain Refining of Aluminum and Its Alloys Using Inoculants, Int. Mater. Rev., 1989, 34, p 247–260CrossRef
7.
Zurück zum Zitat Z.J. Wang, L.H. Qi, J.M. Zhou, J.T. Guan, and J. Liu, A Constitutive Model for Predicting Flow Stress of A118B4033w/AZ91D Composite During Hot Compression and Its Validation, Comput. Mater. Sci., 2011, 50, p 2422–2426CrossRef Z.J. Wang, L.H. Qi, J.M. Zhou, J.T. Guan, and J. Liu, A Constitutive Model for Predicting Flow Stress of A118B4033w/AZ91D Composite During Hot Compression and Its Validation, Comput. Mater. Sci., 2011, 50, p 2422–2426CrossRef
8.
Zurück zum Zitat J.H. Wang, D.Q. Yi, and B. Wang, Microstructure and Properties of 2618-Ti Heat Resistant Aluminum Alloy, Trans. Nonferrous. Met. Soc. China., 2003, 13, p 590–594 J.H. Wang, D.Q. Yi, and B. Wang, Microstructure and Properties of 2618-Ti Heat Resistant Aluminum Alloy, Trans. Nonferrous. Met. Soc. China., 2003, 13, p 590–594
9.
Zurück zum Zitat H.E. Hu, X.Y. Wang, and L. Deng, Comparative Study of Hot-Processing Maps for 6061 Aluminum Alloy Constructed from Power Constitutive Equation and Hyperbolic Sine Constitutive Equation, Mater. Sci. Technol., 2014, 30, p 1321–1327CrossRef H.E. Hu, X.Y. Wang, and L. Deng, Comparative Study of Hot-Processing Maps for 6061 Aluminum Alloy Constructed from Power Constitutive Equation and Hyperbolic Sine Constitutive Equation, Mater. Sci. Technol., 2014, 30, p 1321–1327CrossRef
10.
Zurück zum Zitat H.R. Ezatpour, S.M. Haddad, S.A. Sajjadi, and Y.Z. Huang, Investigation of Work Softening Mechanisms and Texture in a Hot Deformed 6061 Aluminum Alloy at High Temperature, Mater. Sci. Eng. A, 2014, 606, p 240–247CrossRef H.R. Ezatpour, S.M. Haddad, S.A. Sajjadi, and Y.Z. Huang, Investigation of Work Softening Mechanisms and Texture in a Hot Deformed 6061 Aluminum Alloy at High Temperature, Mater. Sci. Eng. A, 2014, 606, p 240–247CrossRef
11.
Zurück zum Zitat J.J. Jonas, C.M. Sellars, and W.J. Mcgtegart, Strength and Structure Under Hot Working Conditions, Metall. Rev., 1969, 130, p 1–24 J.J. Jonas, C.M. Sellars, and W.J. Mcgtegart, Strength and Structure Under Hot Working Conditions, Metall. Rev., 1969, 130, p 1–24
12.
Zurück zum Zitat C. Zener and J.H. Hollomon, Effect of Strain Rate Upon the Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22CrossRef C. Zener and J.H. Hollomon, Effect of Strain Rate Upon the Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22CrossRef
13.
Zurück zum Zitat L.C. Tsao, Y.T. Huang, and K.H. Fan, Flow Stress Behavior of AZ61 Magnesium Alloy During Hot Compression Deformation, Mater. Des., 2014, 53, p 865–869CrossRef L.C. Tsao, Y.T. Huang, and K.H. Fan, Flow Stress Behavior of AZ61 Magnesium Alloy During Hot Compression Deformation, Mater. Des., 2014, 53, p 865–869CrossRef
14.
Zurück zum Zitat X.M. He, Z.Q. Yu, and X.M. Lai, A Method to Predict Flow Stress Considering Dynamic Recrystallization During Hot Deformation, Comput. Mater. Sci., 2008, 44, p 760–764CrossRef X.M. He, Z.Q. Yu, and X.M. Lai, A Method to Predict Flow Stress Considering Dynamic Recrystallization During Hot Deformation, Comput. Mater. Sci., 2008, 44, p 760–764CrossRef
15.
Zurück zum Zitat M. Zhou and M.P. Clode, Constitutive Equations for Modeling Flow Softening Due to Dynamic Recovery and Heat Generation During Plastic Deformation, Mech. Mater., 1998, 27, p 63–76CrossRef M. Zhou and M.P. Clode, Constitutive Equations for Modeling Flow Softening Due to Dynamic Recovery and Heat Generation During Plastic Deformation, Mech. Mater., 1998, 27, p 63–76CrossRef
16.
Zurück zum Zitat Y.Q. Yang, B.C. Li, and Z.M. Zhang, Flow Stress of Wrought Magnesium Alloys During Hot Compression Deformation at Medium and High Temperatures, Mater. Sci. Eng. A, 2009, 499, p 238–241CrossRef Y.Q. Yang, B.C. Li, and Z.M. Zhang, Flow Stress of Wrought Magnesium Alloys During Hot Compression Deformation at Medium and High Temperatures, Mater. Sci. Eng. A, 2009, 499, p 238–241CrossRef
17.
Zurück zum Zitat X.H. Zhang, Experimental and Numerical Study of Magnesium Alloy During Hot Working Process, Ph.D. dissertation, Shanghai Jiaotong University, 2003 X.H. Zhang, Experimental and Numerical Study of Magnesium Alloy During Hot Working Process, Ph.D. dissertation, Shanghai Jiaotong University, 2003
18.
Zurück zum Zitat Q.G. Zheng, T. Ying, and Z. Jie, Dynamic Softening Behaviour of AZ80 Magnesium Alloy During Upsetting at Different Temperatures and Strain Rates, Proc Inst. Mech. Eng. Part B: J. Eng. Manuf., 2010, 224, p 1707–1716CrossRef Q.G. Zheng, T. Ying, and Z. Jie, Dynamic Softening Behaviour of AZ80 Magnesium Alloy During Upsetting at Different Temperatures and Strain Rates, Proc Inst. Mech. Eng. Part B: J. Eng. Manuf., 2010, 224, p 1707–1716CrossRef
19.
Zurück zum Zitat G.Z. Quan, K.W. Liu, J. Zhou, and B. Chen, Dynamic Softening Behaviors of 7075 Aluminum Alloy, Trans. Nonferrous. Met. Soc. China., 2009, 19, p 537–541CrossRef G.Z. Quan, K.W. Liu, J. Zhou, and B. Chen, Dynamic Softening Behaviors of 7075 Aluminum Alloy, Trans. Nonferrous. Met. Soc. China., 2009, 19, p 537–541CrossRef
20.
Zurück zum Zitat G.Z. Quan, Y. Tong, G. Luo, and J. Zhou, A Characterization for the Flow Behavior of 42Cr Mo Steel, Comput. Mater. Sci., 2010, 50, p 167–171CrossRef G.Z. Quan, Y. Tong, G. Luo, and J. Zhou, A Characterization for the Flow Behavior of 42Cr Mo Steel, Comput. Mater. Sci., 2010, 50, p 167–171CrossRef
21.
Zurück zum Zitat P.S. Robi and U.S. Dixit, Application of Neural Networks in Generating Processing Map for Hot Working, J. Mater. Proces. Technol., 2003, 142, p 289–294CrossRef P.S. Robi and U.S. Dixit, Application of Neural Networks in Generating Processing Map for Hot Working, J. Mater. Proces. Technol., 2003, 142, p 289–294CrossRef
22.
Zurück zum Zitat Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43, p 752–758CrossRef Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43, p 752–758CrossRef
23.
Zurück zum Zitat V. Senthilkumar, A. Balaji, and D. Arulkirubakaran, Application of Constitutive and Neural Network Models for Prediction of High Temperature Flow Behavior of Al/Mg Based Nanocomposite, Trans. Nonferrous. Met. Soc. China., 2013, 23, p 1737–1750CrossRef V. Senthilkumar, A. Balaji, and D. Arulkirubakaran, Application of Constitutive and Neural Network Models for Prediction of High Temperature Flow Behavior of Al/Mg Based Nanocomposite, Trans. Nonferrous. Met. Soc. China., 2013, 23, p 1737–1750CrossRef
24.
Zurück zum Zitat L.F. Guo, B.C. Li, and Z.M. Zhang, Onstitutive Relationship Model of TC21 Alloy Based on Artificial Neural Network, Trans. Nonferrous. Met. Soc. China., 2013, 23, p 1761–1765CrossRef L.F. Guo, B.C. Li, and Z.M. Zhang, Onstitutive Relationship Model of TC21 Alloy Based on Artificial Neural Network, Trans. Nonferrous. Met. Soc. China., 2013, 23, p 1761–1765CrossRef
25.
Zurück zum Zitat R. Kapoor, D. Pal, and J.K. Chakravartty, Use of Artificial Neural Networks to Predict the Deformation Behavior of Zr-2.5Nb-0.5Cu, J. Mater. Process. Technol., 2005, 169, p 199–205CrossRef R. Kapoor, D. Pal, and J.K. Chakravartty, Use of Artificial Neural Networks to Predict the Deformation Behavior of Zr-2.5Nb-0.5Cu, J. Mater. Process. Technol., 2005, 169, p 199–205CrossRef
26.
Zurück zum Zitat M.R.G. Ferdowsi, D. Nakhaie, P.H. Benhangi, and G.R. Ebrahimi, Modeling the High Temperature Flow Behavior and Dynamic Recrystallization Kinetics of a Medium Carbon Microalloyed Steel, J. Mater. Eng. Perform., 2014, 23, p 1077–1087CrossRef M.R.G. Ferdowsi, D. Nakhaie, P.H. Benhangi, and G.R. Ebrahimi, Modeling the High Temperature Flow Behavior and Dynamic Recrystallization Kinetics of a Medium Carbon Microalloyed Steel, J. Mater. Eng. Perform., 2014, 23, p 1077–1087CrossRef
27.
Zurück zum Zitat S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of Stainless Steel Type AISI 304L During Hot Torsion, Appl. Soft Comput., 2009, 9, p 237–244CrossRef S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of Stainless Steel Type AISI 304L During Hot Torsion, Appl. Soft Comput., 2009, 9, p 237–244CrossRef
28.
Zurück zum Zitat M.P. Phaniraj and A.K. Lahiri, The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steels, J. Mater. Proces. Technol., 2003, 141, p 219–227CrossRef M.P. Phaniraj and A.K. Lahiri, The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steels, J. Mater. Proces. Technol., 2003, 141, p 219–227CrossRef
29.
Zurück zum Zitat J.W. Zhao, H. Ding, W.J. Zhao, M.L. Huang, D.D. Wei, and Z.Y. Jiang, Modelling of the Hot Deformation Behaviour of a Titanium Alloy Using Constitutive Equations and Artificial Neural Network, Comput. Mater. Sci., 2014, 92, p 47–56CrossRef J.W. Zhao, H. Ding, W.J. Zhao, M.L. Huang, D.D. Wei, and Z.Y. Jiang, Modelling of the Hot Deformation Behaviour of a Titanium Alloy Using Constitutive Equations and Artificial Neural Network, Comput. Mater. Sci., 2014, 92, p 47–56CrossRef
Metadaten
Titel
Modeling of Flow Stress of High Titanium Content 6061 Aluminum Alloy Under Hot Compression
verfasst von
Wei Chen
Yingping Guan
Zhenhua Wang
Publikationsdatum
25.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2224-z

Weitere Artikel der Ausgabe 9/2016

Journal of Materials Engineering and Performance 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.