Skip to main content
Erschienen in: Journal of Electroceramics 1-4/2017

09.06.2017

Modeling resistive switching materials and devices across scales

Erschienen in: Journal of Electroceramics | Ausgabe 1-4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Resistance switching devices based on electrochemical processes have attractive significant attention in the field of nanoelectronics due to the possibility of switching in nanosecond timescales, miniaturization to tens of nanometer and multi-bit storage. Their deceptively simple structures (metal-insulator-metal stack) hide a set of complex, coupled, processes that govern their operation, from electrochemical reactions at interfaces, diffusion and aggregation of ionic species, to electron and hole trapping and Joule heating. A combination of experiments and modeling efforts are contributing to a fundamental understanding of these devices, and progress towards a predictive understanding of their operation is opening the possibility for the rational optimization. In this paper we review recent progress in modeling resistive switching devices at multiple scales; we briefly describe simulation tools appropriate at each scale and the key insight that has been derived from them. Starting with ab initio electronic structure simulations that provide an understanding of the mechanisms of operation of valence change devices pointing to the importance of the aggregation of oxygen vacancies in resistance switching and how dopants affect performance. At slightly larger scales we describe reactive molecular dynamics simulations of the operation of electrochemical metallization cells. Here the dynamical simulations provide an atomic picture of the mechanisms behind the electrochemical formation and stabilization of conductive metallic filaments that provide a low-resistance path for electronic conduction. Kinetic Monte Carlo simulations are one step higher in the multiscale ladder and enable larger scale simulations and longer times, enabling, for example, the study of variability in switching speed and resistance. Finally, we discuss physics-based simulations that accurately capture subtleties of device behavior and that can be incorporated in circuit simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833 (2007)CrossRef R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833 (2007)CrossRef
2.
Zurück zum Zitat S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297 (2010)CrossRef S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297 (2010)CrossRef
3.
Zurück zum Zitat M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature. 521(7550), 61 (2015)CrossRef M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature. 521(7550), 61 (2015)CrossRef
4.
Zurück zum Zitat R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25-26), 2632 (2009)CrossRef R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25-26), 2632 (2009)CrossRef
5.
Zurück zum Zitat A. Padilla, G.W. Burr, R.S. Shenoy, K.V. Raman, D.S. Bethune, R.M. Shelby, C.T. Rettner, J. Mohammad, K. Virwani, P. Narayanan, et al., On the origin of steep–nonlinearity in mixed-ionic-electronic-conduction-based access devices. IEEE Trans. Electron Devices. 62(3), 963 (2015)CrossRef A. Padilla, G.W. Burr, R.S. Shenoy, K.V. Raman, D.S. Bethune, R.M. Shelby, C.T. Rettner, J. Mohammad, K. Virwani, P. Narayanan, et al., On the origin of steep–nonlinearity in mixed-ionic-electronic-conduction-based access devices. IEEE Trans. Electron Devices. 62(3), 963 (2015)CrossRef
6.
Zurück zum Zitat Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9(4), 1636 (2009)CrossRef Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9(4), 1636 (2009)CrossRef
7.
Zurück zum Zitat V. Zhirnov, R. Meade, R.K. Cavin, G. Sandhu, Scaling limits of resistive memories. Nanotechnology. 22(25), 254027 (2011)CrossRef V. Zhirnov, R. Meade, R.K. Cavin, G. Sandhu, Scaling limits of resistive memories. Nanotechnology. 22(25), 254027 (2011)CrossRef
8.
Zurück zum Zitat H.S.P. Wong, S. Salahuddin, Memory leads the way to better computing. Nat. Nanotechnol. 10(3), 191 (2015)CrossRef H.S.P. Wong, S. Salahuddin, Memory leads the way to better computing. Nat. Nanotechnol. 10(3), 191 (2015)CrossRef
9.
Zurück zum Zitat J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13 (2013)CrossRef J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13 (2013)CrossRef
10.
Zurück zum Zitat I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories – fundamentals, applications, prospects. Nanotechnology. 22(25), 254003 (2011)CrossRef I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories – fundamentals, applications, prospects. Nanotechnology. 22(25), 254003 (2011)CrossRef
11.
Zurück zum Zitat K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5(4), 312 (2006)CrossRef K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5(4), 312 (2006)CrossRef
12.
Zurück zum Zitat J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology. 20(21), 215201 (2009)CrossRef J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology. 20(21), 215201 (2009)CrossRef
13.
Zurück zum Zitat B. Magyari-Köpe, M. Tendulkar, S.G. Park, H.D. Lee, Y. Nishi, Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3. Nanotechnology. 22(25), 254029 (2011)CrossRef B. Magyari-Köpe, M. Tendulkar, S.G. Park, H.D. Lee, Y. Nishi, Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3. Nanotechnology. 22(25), 254029 (2011)CrossRef
14.
Zurück zum Zitat A. Wedig, M. Luebben, D.Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, et al., Nanoscale cation motion in taox, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11(1), 67 (2016)CrossRef A. Wedig, M. Luebben, D.Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, et al., Nanoscale cation motion in taox, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11(1), 67 (2016)CrossRef
15.
Zurück zum Zitat S.G. Park, B. Magyari-Köpe, Y. Nishi, Impact of oxygen vacancy ordering on the formation of a conductive filament in for resistive switching memory. IEEE Electron Device Lett. 32(2), 197 (2011)CrossRef S.G. Park, B. Magyari-Köpe, Y. Nishi, Impact of oxygen vacancy ordering on the formation of a conductive filament in for resistive switching memory. IEEE Electron Device Lett. 32(2), 197 (2011)CrossRef
16.
Zurück zum Zitat K. Kamiya, M.Y. Yang, B. Magyari-Köpe, M. Niwa, Y. Nishi, K. Shiraishi, in Physics in designing desirable reRAM stack structure – atomistic recipes based on oxygen chemical potential control and charge injection/removal. in IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2012), p. 2012 K. Kamiya, M.Y. Yang, B. Magyari-Köpe, M. Niwa, Y. Nishi, K. Shiraishi, in Physics in designing desirable reRAM stack structure – atomistic recipes based on oxygen chemical potential control and charge injection/removal. in IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2012), p. 2012
17.
Zurück zum Zitat K.H. Xue, B. Traore, P. Blaise, L.R.C. Fonseca, E. Vianello, G. Molas, B. De Salvo, G. Ghibaudo, B. Magyari-Köpe, Y. Nishi, A combined ab initio and experimental study on the nature of conductive filaments in resistive random access memory. IEEE Trans. Electron Devices. 61(5), 1394 (2014)CrossRef K.H. Xue, B. Traore, P. Blaise, L.R.C. Fonseca, E. Vianello, G. Molas, B. De Salvo, G. Ghibaudo, B. Magyari-Köpe, Y. Nishi, A combined ab initio and experimental study on the nature of conductive filaments in resistive random access memory. IEEE Trans. Electron Devices. 61(5), 1394 (2014)CrossRef
18.
Zurück zum Zitat C. Schindler, G. Staikov, R. Waser, Electrode kinetics of Cu-SiO2-based resistive switching cells Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94(7), 2109 (2009)CrossRef C. Schindler, G. Staikov, R. Waser, Electrode kinetics of Cu-SiO2-based resistive switching cells Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94(7), 2109 (2009)CrossRef
19.
Zurück zum Zitat S. Tappertzhofen, H. Mündelein, I. Valov, R. Waser, Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. Nanoscale. 4(10), 3040 (2012)CrossRef S. Tappertzhofen, H. Mündelein, I. Valov, R. Waser, Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. Nanoscale. 4(10), 3040 (2012)CrossRef
20.
Zurück zum Zitat C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices. 54(10), 2762 (2007)CrossRef C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices. 54(10), 2762 (2007)CrossRef
21.
Zurück zum Zitat Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)CrossRef Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)CrossRef
22.
Zurück zum Zitat I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11(6), 530 (2012)CrossRef I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11(6), 530 (2012)CrossRef
23.
Zurück zum Zitat W.A. Hubbard, A. Kerelsky, G. Jasmin, E.R. White, J. Lodico, M. Mecklenburg, B.C. Regan, Nanofilament formation and regeneration during Cu/Al2 O 3 resistive memory switching. Nano Lett. 15(6), 3983 (2015)CrossRef W.A. Hubbard, A. Kerelsky, G. Jasmin, E.R. White, J. Lodico, M. Mecklenburg, B.C. Regan, Nanofilament formation and regeneration during Cu/Al2 O 3 resistive memory switching. Nano Lett. 15(6), 3983 (2015)CrossRef
24.
Zurück zum Zitat P.A.M. Dirac, in Quantum mechanics of many-electron systems. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 123 (The Royal Society, 1929), p. 714 P.A.M. Dirac, in Quantum mechanics of many-electron systems. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 123 (The Royal Society, 1929), p. 714
25.
Zurück zum Zitat J.J. de Pablo, W.A. Curtin, Multiscale modeling in advanced materials research: Challenges, novel methods, and emerging applications. MRS Bull. 32(11), 905 (2007) J.J. de Pablo, W.A. Curtin, Multiscale modeling in advanced materials research: Challenges, novel methods, and emerging applications. MRS Bull. 32(11), 905 (2007)
26.
Zurück zum Zitat K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, et al, Reproducibility in density functional theory calculations of solids. Science. 351(6280), 3000 (2016)CrossRef K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, et al, Reproducibility in density functional theory calculations of solids. Science. 351(6280), 3000 (2016)CrossRef
27.
Zurück zum Zitat A. Shekhar, K. Nomura, R.K. Kalia, A. Nakano, P. Vashishta, Nanobubble collapse on a silica surface in water: Billion-atom reactive molecular dynamics simulations. Phys. Rev. Lett. 111(18), 184503 (2013)CrossRef A. Shekhar, K. Nomura, R.K. Kalia, A. Nakano, P. Vashishta, Nanobubble collapse on a silica surface in water: Billion-atom reactive molecular dynamics simulations. Phys. Rev. Lett. 111(18), 184503 (2013)CrossRef
28.
Zurück zum Zitat A. M. Cuitiño, L. Stainier, G. Wang, A. Strachan, T Ċaġin, W.A. Goddard, M. Ortiz, A multiscale approach for modeling crystalline solids. J. Computer-Aided Mater. Des. 8(2-3), 127 (2001)CrossRef A. M. Cuitiño, L. Stainier, G. Wang, A. Strachan, T Ċaġin, W.A. Goddard, M. Ortiz, A multiscale approach for modeling crystalline solids. J. Computer-Aided Mater. Des. 8(2-3), 127 (2001)CrossRef
29.
Zurück zum Zitat M. Koslowski, A. Strachan, Uncertainty propagation in a multiscale model of nanocrystalline plasticity. Reliab. Eng. Syst. Saf. 96(9), 1161 (2011)CrossRef M. Koslowski, A. Strachan, Uncertainty propagation in a multiscale model of nanocrystalline plasticity. Reliab. Eng. Syst. Saf. 96(9), 1161 (2011)CrossRef
30.
Zurück zum Zitat M. Ortiz, A.M. Cuitino, J. Knap, M. Koslowski, Mixed atomistic–continuum models of material behavior The art of transcending atomistics and informing continua. MRS Bull. 26(03), 216 (2001)CrossRef M. Ortiz, A.M. Cuitino, J. Knap, M. Koslowski, Mixed atomistic–continuum models of material behavior The art of transcending atomistics and informing continua. MRS Bull. 26(03), 216 (2001)CrossRef
31.
Zurück zum Zitat W.A. Curtin, R.E. Miller, Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11(3), R33 (2003)CrossRef W.A. Curtin, R.E. Miller, Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11(3), R33 (2003)CrossRef
32.
Zurück zum Zitat J. Guo, S. Datta, M. Lundstrom, M.P. Anantam, Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2(2) (2004) J. Guo, S. Datta, M. Lundstrom, M.P. Anantam, Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2(2) (2004)
33.
Zurück zum Zitat R.P. Vedula, S. Palit, M.A. Alam, A. Strachan, Role of atomic variability in dielectric charging: A first-principles-based multiscale modeling study. Phys. Rev. B. 88(20), 205204 (2013)CrossRef R.P. Vedula, S. Palit, M.A. Alam, A. Strachan, Role of atomic variability in dielectric charging: A first-principles-based multiscale modeling study. Phys. Rev. B. 88(20), 205204 (2013)CrossRef
34.
Zurück zum Zitat R.A. Austin, N.R. Barton, J.E. Reaugh, L.E. Fried, Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal. J. Appl. Phys. 117(18), 185902 (2015)CrossRef R.A. Austin, N.R. Barton, J.E. Reaugh, L.E. Fried, Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal. J. Appl. Phys. 117(18), 185902 (2015)CrossRef
35.
Zurück zum Zitat L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Evidences of oxygen-mediated resistive-switching mechanism in TiN ∖ HfO2∖ Pt cells. Appl. Phys. Lett. 97(24), 243509 (2010)CrossRef L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Evidences of oxygen-mediated resistive-switching mechanism in TiN ∖ HfO2∖ Pt cells. Appl. Phys. Lett. 97(24), 243509 (2010)CrossRef
36.
Zurück zum Zitat K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K.P. Biju, J. Kong, K. Lee, et al, Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology. 22(25), 254023 (2011)CrossRef K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K.P. Biju, J. Kong, K. Lee, et al, Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology. 22(25), 254023 (2011)CrossRef
37.
Zurück zum Zitat J. Song, D. Lee, J. Woo, Y. Koo, E. Cha, S. Lee, J. Park, K. Moon, S.H. Misha, A. Prakash, et al., Effects of reset current overshoot and resistance state on reliability of RRAM. IEEE Electron Device Lett. 35(6), 636 (2014)CrossRef J. Song, D. Lee, J. Woo, Y. Koo, E. Cha, S. Lee, J. Park, K. Moon, S.H. Misha, A. Prakash, et al., Effects of reset current overshoot and resistance state on reliability of RRAM. IEEE Electron Device Lett. 35(6), 636 (2014)CrossRef
38.
Zurück zum Zitat O. Kavehei, E. Linn, L. Nielen, S. Tappertzhofen, E. Skafidas, I. Valov, R. Waser, An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing. Nanoscale. 5(11), 5119 (2013)CrossRef O. Kavehei, E. Linn, L. Nielen, S. Tappertzhofen, E. Skafidas, I. Valov, R. Waser, An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing. Nanoscale. 5(11), 5119 (2013)CrossRef
39.
Zurück zum Zitat S. Yu, H.S.P. Wong, in Characterization and modeling of the conduction and switching mechanisms of HfOx based RRAM. in MRS Proceedings, Vol. 1631 (Cambridge Univ Press, Cambridge, 2014) S. Yu, H.S.P. Wong, in Characterization and modeling of the conduction and switching mechanisms of HfOx based RRAM. in MRS Proceedings, Vol. 1631 (Cambridge Univ Press, Cambridge, 2014)
40.
Zurück zum Zitat L. Zhang, A. Redolfi, C. Adelmann, S. Clima, I.P. Radu, Y.Y. Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, B. Govoreanu, Ultrathin metal/amorphous-silicon/metal diode for bipolar RRAM selector applications. IEEE Electron Device Lett. 35(2), 199 (2014)CrossRef L. Zhang, A. Redolfi, C. Adelmann, S. Clima, I.P. Radu, Y.Y. Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, B. Govoreanu, Ultrathin metal/amorphous-silicon/metal diode for bipolar RRAM selector applications. IEEE Electron Device Lett. 35(2), 199 (2014)CrossRef
41.
Zurück zum Zitat B. Magyari-Köpe, Y. Nishi, Resistive memories. Intelligent Integrated Systems: Devices, Technologies, and Architectures, ed. by S. Deleonibus, Pan Stanford Series on Intelligent Nanosystems, vol. 1, p. 325 (2014) B. Magyari-Köpe, Y. Nishi, Resistive memories. Intelligent Integrated Systems: Devices, Technologies, and Architectures, ed. by S. Deleonibus, Pan Stanford Series on Intelligent Nanosystems, vol. 1, p. 325 (2014)
42.
Zurück zum Zitat S.G. Park, B. Magyari-Köpe, Y. Nishi, Electronic correlation effects in reduced rutile TiO2 within the LDA+U method. Phys. Rev. B. 82(11), 115109 (2010)CrossRef S.G. Park, B. Magyari-Köpe, Y. Nishi, Electronic correlation effects in reduced rutile TiO2 within the LDA+U method. Phys. Rev. B. 82(11), 115109 (2010)CrossRef
43.
Zurück zum Zitat S.G. Park, B. Magyari-Köpe, Y. Nishi, in Theoretical study of the resistance switching mechanism in rutile TiO2−x for ReRAM: the role of oxygen vacancies and hydrogen impurities. in 2011 IEEE Symposium on VLSI Technology-Digest of Technical Papers, (2011) S.G. Park, B. Magyari-Köpe, Y. Nishi, in Theoretical study of the resistance switching mechanism in rutile TiO2−x for ReRAM: the role of oxygen vacancies and hydrogen impurities. in 2011 IEEE Symposium on VLSI Technology-Digest of Technical Papers, (2011)
44.
Zurück zum Zitat L. Zhao, S.G. Park, B. Magyari-Köpe, Y. Nishi, Dopant selection rules for desired electronic structure and vacancy formation characteristics of TiO2 resistive memory. Appl. Phys. Lett. 102(8), 083506 (2013)CrossRef L. Zhao, S.G. Park, B. Magyari-Köpe, Y. Nishi, Dopant selection rules for desired electronic structure and vacancy formation characteristics of TiO2 resistive memory. Appl. Phys. Lett. 102(8), 083506 (2013)CrossRef
45.
Zurück zum Zitat L. Zhao, S.G. Park, B. Magyari-Köpe, Y. Nishi, First principles modeling of charged oxygen vacancy filaments in reduced TiO2–implications to the operation of non-volatile memory devices. Math. Comput. Model. 58(1), 275 (2013)CrossRef L. Zhao, S.G. Park, B. Magyari-Köpe, Y. Nishi, First principles modeling of charged oxygen vacancy filaments in reduced TiO2–implications to the operation of non-volatile memory devices. Math. Comput. Model. 58(1), 275 (2013)CrossRef
46.
Zurück zum Zitat K. Kamiya, M.Y. Yang, S.G. Park, B. Magyari-Köpe, Y. Nishi, M. Niwa, K. Shiraishi, ON-OFF switching mechanism of resistive–random–access–memories based on the formation and disruption of oxygen vacancy conducting channels. Appl. Phys. Lett. 100(7), 073502 (2012)CrossRef K. Kamiya, M.Y. Yang, S.G. Park, B. Magyari-Köpe, Y. Nishi, M. Niwa, K. Shiraishi, ON-OFF switching mechanism of resistive–random–access–memories based on the formation and disruption of oxygen vacancy conducting channels. Appl. Phys. Lett. 100(7), 073502 (2012)CrossRef
47.
Zurück zum Zitat K. Kamiya, M.Y. Yang, T. Nagata, S.G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, K. Shiraishi, Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories. Phys. Rev. B. 87(15), 155201 (2013)CrossRef K. Kamiya, M.Y. Yang, T. Nagata, S.G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, K. Shiraishi, Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories. Phys. Rev. B. 87(15), 155201 (2013)CrossRef
48.
Zurück zum Zitat D. Duncan, B. Magyari-Köpe, Y. Nishi, Hydrogen doping in HfO2 resistance change random access memory. Appl. Phys. Lett. 108(4), 043501 (2016)CrossRef D. Duncan, B. Magyari-Köpe, Y. Nishi, Hydrogen doping in HfO2 resistance change random access memory. Appl. Phys. Lett. 108(4), 043501 (2016)CrossRef
49.
Zurück zum Zitat D. Duncan, B. Magyari-Köpe, Y. Nishi, Filament-induced anisotropic oxygen vacancy diffusion and charge trapping effects in hafnium oxide RRAM. IEEE Electron Device Lett. 37(4), 400 (2016)CrossRef D. Duncan, B. Magyari-Köpe, Y. Nishi, Filament-induced anisotropic oxygen vacancy diffusion and charge trapping effects in hafnium oxide RRAM. IEEE Electron Device Lett. 37(4), 400 (2016)CrossRef
50.
Zurück zum Zitat S.R. Bradley, A.L. Shluger, G. Bersuker, Electron-injection-assisted generation of oxygen vacancies in monoclinic HfO2. Phys. Rev. Appl. 4(6), 064008 (2015)CrossRef S.R. Bradley, A.L. Shluger, G. Bersuker, Electron-injection-assisted generation of oxygen vacancies in monoclinic HfO2. Phys. Rev. Appl. 4(6), 064008 (2015)CrossRef
51.
Zurück zum Zitat S.R. Bradley, G. Bersuker, A.L. Shluger, Modelling of oxygen vacancy aggregates in monoclinic HfO2: Can they contribute to conductive filament formation? J. Phys. Condens. Matter. 27(41), 415401 (2015)CrossRef S.R. Bradley, G. Bersuker, A.L. Shluger, Modelling of oxygen vacancy aggregates in monoclinic HfO2: Can they contribute to conductive filament formation? J. Phys. Condens. Matter. 27(41), 415401 (2015)CrossRef
52.
Zurück zum Zitat P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)CrossRef P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)CrossRef
53.
Zurück zum Zitat W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (4A), A1133 (1965)CrossRef W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (4A), A1133 (1965)CrossRef
54.
Zurück zum Zitat S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+u study. Phys. Rev. B. 57(3), 1505 (1998)CrossRef S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+u study. Phys. Rev. B. 57(3), 1505 (1998)CrossRef
55.
Zurück zum Zitat T.T. Jiang, Q.Q. Sun, Y. Li, J.J. Guo, P. Zhou, S.J. Ding, D.W. Zhang, Towards the accurate electronic structure descriptions of typical high-constant dielectrics. J. Phys. D: Appl. Phys. 44(18), 185402 (2011)CrossRef T.T. Jiang, Q.Q. Sun, Y. Li, J.J. Guo, P. Zhou, S.J. Ding, D.W. Zhang, Towards the accurate electronic structure descriptions of typical high-constant dielectrics. J. Phys. D: Appl. Phys. 44(18), 185402 (2011)CrossRef
56.
Zurück zum Zitat M. Jain, J.R. Chelikowsky, S.G. Louie, Quasiparticle excitations and charge transition levels of oxygen vacancies in hafnia. Phys. Rev. Lett. 107(21), 216803 (2011)CrossRef M. Jain, J.R. Chelikowsky, S.G. Louie, Quasiparticle excitations and charge transition levels of oxygen vacancies in hafnia. Phys. Rev. Lett. 107(21), 216803 (2011)CrossRef
57.
Zurück zum Zitat S.J. Clark, L. Lin, J. Robertson, On the identification of the oxygen vacancy in HfO2. Microelectron. Eng. 88(7), 1464 (2011)CrossRef S.J. Clark, L. Lin, J. Robertson, On the identification of the oxygen vacancy in HfO2. Microelectron. Eng. 88(7), 1464 (2011)CrossRef
58.
Zurück zum Zitat K.H. Xue, L.R.C. Blaise, P. Fonseca, G. Molas, E. Vianello, B. Traore, B. De Salvo, G. Ghibaudo, Y. Nishi, Grain boundary composition and conduction in HfO2: An ab initio study. Appl. Phys. Lett. 102(20), 201908 (2013)CrossRef K.H. Xue, L.R.C. Blaise, P. Fonseca, G. Molas, E. Vianello, B. Traore, B. De Salvo, G. Ghibaudo, Y. Nishi, Grain boundary composition and conduction in HfO2: An ab initio study. Appl. Phys. Lett. 102(20), 201908 (2013)CrossRef
59.
Zurück zum Zitat G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54(16), 11169 (1996)CrossRef G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54(16), 11169 (1996)CrossRef
60.
Zurück zum Zitat E.P. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50(24), 17953 (1994)CrossRef E.P. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50(24), 17953 (1994)CrossRef
61.
Zurück zum Zitat B. Xiao, S. Watanabe, Interface structure in Cu/Ta2 O 5/Pt resistance switch A first-principles study. ACS Appl. Mater. Interfaces. 7(1), 519 (2015)CrossRef B. Xiao, S. Watanabe, Interface structure in Cu/Ta2 O 5/Pt resistance switch A first-principles study. ACS Appl. Mater. Interfaces. 7(1), 519 (2015)CrossRef
62.
Zurück zum Zitat A. O’Hara, G. Bersuker, A.A. Demkov, Assessing hafnium on hafnia as an oxygen getter. J. Appl. Phys. 115(18), 183703 (2014)CrossRef A. O’Hara, G. Bersuker, A.A. Demkov, Assessing hafnium on hafnia as an oxygen getter. J. Appl. Phys. 115(18), 183703 (2014)CrossRef
63.
Zurück zum Zitat L. Zhao, S. Clima, B. Magyari-Köpe, M. Jurczak, Y. Nishi, Ab initio modeling of oxygen-vacancy formation in doped-HfOx RRAM: Effects of oxide phases, stoichiometry, and dopant concentrations. Appl. Phys. Lett. 107(1), 013504 (2015)CrossRef L. Zhao, S. Clima, B. Magyari-Köpe, M. Jurczak, Y. Nishi, Ab initio modeling of oxygen-vacancy formation in doped-HfOx RRAM: Effects of oxide phases, stoichiometry, and dopant concentrations. Appl. Phys. Lett. 107(1), 013504 (2015)CrossRef
64.
Zurück zum Zitat D. Ning, P. Hua, W. Wei, Effects of different dopants on switching behavior of HfO2-based resistive random access memory. Chin. Phys. B. 23(10), 107306 (2014)CrossRef D. Ning, P. Hua, W. Wei, Effects of different dopants on switching behavior of HfO2-based resistive random access memory. Chin. Phys. B. 23(10), 107306 (2014)CrossRef
65.
Zurück zum Zitat Y.S. Chen, B. Chen, B. Gao, L.F. Liu, X.Y. Liu, J.F. Kang, Well controlled multiple resistive switching states in the Al local doped HfO2 resistive random access memory device. J. Appl. Phys. 113(16), 164507 (2013)CrossRef Y.S. Chen, B. Chen, B. Gao, L.F. Liu, X.Y. Liu, J.F. Kang, Well controlled multiple resistive switching states in the Al local doped HfO2 resistive random access memory device. J. Appl. Phys. 113(16), 164507 (2013)CrossRef
66.
Zurück zum Zitat L. Goux, J.Y. Kim, B. Magyari-Köpe, Y. Nishi, A. Redolfi, M. Jurczak, H-treatment impact on conductive-filament formation and stability in Ta2 O 5-based resistive-switching memory cells. J. Appl. Phys. 117(12), 124501 (2015)CrossRef L. Goux, J.Y. Kim, B. Magyari-Köpe, Y. Nishi, A. Redolfi, M. Jurczak, H-treatment impact on conductive-filament formation and stability in Ta2 O 5-based resistive-switching memory cells. J. Appl. Phys. 117(12), 124501 (2015)CrossRef
67.
Zurück zum Zitat Z. Yuanyang, W. Jiayu, X. Jianbin, Y. Fei, L. Qi, D. Yuehua, Metal dopants in HfO2–based RRAM: first principle study. J. Semicond. 35(4), 042002 (2014)CrossRef Z. Yuanyang, W. Jiayu, X. Jianbin, Y. Fei, L. Qi, D. Yuehua, Metal dopants in HfO2–based RRAM: first principle study. J. Semicond. 35(4), 042002 (2014)CrossRef
68.
Zurück zum Zitat B. Gao, H.W. Zhang, S. Yu, B. Sun, L.F. Liu, X.Y. Liu, Y. Wang, R.Q. Han, J.F. Kang, B. Yu, et al, in Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology. in 2009 IEEE Symposium on VLSI Technology-Digest of Technical Papers, Vol. 30 (IEEE, 2009) B. Gao, H.W. Zhang, S. Yu, B. Sun, L.F. Liu, X.Y. Liu, Y. Wang, R.Q. Han, J.F. Kang, B. Yu, et al, in Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology. in 2009 IEEE Symposium on VLSI Technology-Digest of Technical Papers, Vol. 30 (IEEE, 2009)
69.
Zurück zum Zitat C.S. Peng, W.Y. Chang, Y.H. Lee, M.H. Lin, F. Chen, M.J. Tsai, Improvement of resistive switching stability of HfO2 films with Al doping by atomic layer deposition. Electrochem. Solid-State Lett. 15(4), H88 (2012)CrossRef C.S. Peng, W.Y. Chang, Y.H. Lee, M.H. Lin, F. Chen, M.J. Tsai, Improvement of resistive switching stability of HfO2 films with Al doping by atomic layer deposition. Electrochem. Solid-State Lett. 15(4), H88 (2012)CrossRef
70.
Zurück zum Zitat Z. Wang, W.G. Zhu, A.Y. Du, L. Wu, Z. Fang, X.A. Tran, W.J. Liu, K.L. Zhang, H.Y. Yu, Highly uniform, self-compliance, and forming-free ALD-based RRAM with Ge doping. IEEE Trans. Electron Devices. 59(4), 1203 (2012)CrossRef Z. Wang, W.G. Zhu, A.Y. Du, L. Wu, Z. Fang, X.A. Tran, W.J. Liu, K.L. Zhang, H.Y. Yu, Highly uniform, self-compliance, and forming-free ALD-based RRAM with Ge doping. IEEE Trans. Electron Devices. 59(4), 1203 (2012)CrossRef
71.
Zurück zum Zitat D. Panda, C.Y. Huang, T.Y. Tseng, Resistive switching characteristics of nickel silicide layer embedded HfO2 film. Appl. Phys. Lett. 100(11), 112901 (2012)CrossRef D. Panda, C.Y. Huang, T.Y. Tseng, Resistive switching characteristics of nickel silicide layer embedded HfO2 film. Appl. Phys. Lett. 100(11), 112901 (2012)CrossRef
72.
Zurück zum Zitat S. Kim, D. Lee, J. Park, S. Jung, W. Lee, J. Shin, J. Woo, G. Choi, H. Hwang, Defect engineering: reduction effect of hydrogen atom impurities in HfO2-based resistive-switching memory devices. Nanotechnology. 23(32), 325702 (2012)CrossRef S. Kim, D. Lee, J. Park, S. Jung, W. Lee, J. Shin, J. Woo, G. Choi, H. Hwang, Defect engineering: reduction effect of hydrogen atom impurities in HfO2-based resistive-switching memory devices. Nanotechnology. 23(32), 325702 (2012)CrossRef
73.
Zurück zum Zitat H. Xie, Q. Liu, Y. Li, H. Lv, M. Wang, X. Liu, H. Sun, X. Yang, S. Long, S. Liu, et al., Nitrogen-induced improvement of resistive switching uniformity in a HfO2-based RRAM device. Semicond. Sci. Technol. 27(12), 125008 (2012)CrossRef H. Xie, Q. Liu, Y. Li, H. Lv, M. Wang, X. Liu, H. Sun, X. Yang, S. Long, S. Liu, et al., Nitrogen-induced improvement of resistive switching uniformity in a HfO2-based RRAM device. Semicond. Sci. Technol. 27(12), 125008 (2012)CrossRef
74.
Zurück zum Zitat G. Palma, E. Vianello, O. Thomas, H. Oucheikh, S. Onkaraiah, A. Toffoli, C. Carabasse, G. Molas, B. De Salvo, in A novel HfO 2 -GeS 2 -Ag based conductive bridge RAM for reconfigurable logic applications. in Proceedings of the European Solid-State Device Research Conference (ESSDERC), (2013), p. 2013 G. Palma, E. Vianello, O. Thomas, H. Oucheikh, S. Onkaraiah, A. Toffoli, C. Carabasse, G. Molas, B. De Salvo, in A novel HfO 2 -GeS 2 -Ag based conductive bridge RAM for reconfigurable logic applications. in Proceedings of the European Solid-State Device Research Conference (ESSDERC), (2013), p. 2013
75.
Zurück zum Zitat K.L. Pey, N. Raghavan, X. Wu, M. Bosman, X.X. Zhang, K. Li, in Spatial correlation of conductive filaments for multiple switching cycles in CBRAM. in 2014 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2014), p. 1 K.L. Pey, N. Raghavan, X. Wu, M. Bosman, X.X. Zhang, K. Li, in Spatial correlation of conductive filaments for multiple switching cycles in CBRAM. in 2014 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2014), p. 1
76.
Zurück zum Zitat T.L. Tsai, H.Y. Chang, F.S. Jiang, T.Y. Tseng, Impact of post-oxide deposition annealing on resistive switching in HfO2–based oxide RRAM and conductive-bridge RAM devices. IEEE Electron Device Lett. 36(11), 1146 (2015)CrossRef T.L. Tsai, H.Y. Chang, F.S. Jiang, T.Y. Tseng, Impact of post-oxide deposition annealing on resistive switching in HfO2–based oxide RRAM and conductive-bridge RAM devices. IEEE Electron Device Lett. 36(11), 1146 (2015)CrossRef
77.
Zurück zum Zitat M.A. Wood, M.J. Cherukara, E.M. Kober, A. Strachan, Ultrafast chemistry under nonequilibrium conditions and the shock to deflagration transition at the nanoscale. J. Phys. Chem. C. 119(38), 22008 (2015)CrossRef M.A. Wood, M.J. Cherukara, E.M. Kober, A. Strachan, Ultrafast chemistry under nonequilibrium conditions and the shock to deflagration transition at the nanoscale. J. Phys. Chem. C. 119(38), 22008 (2015)CrossRef
78.
Zurück zum Zitat M.A. Wood, A. Strachan, Nonequilibrium reaction kinetics in molecular solids. J. Phys. Chem. C. 120(1), 542 (2015)CrossRef M.A. Wood, A. Strachan, Nonequilibrium reaction kinetics in molecular solids. J. Phys. Chem. C. 120(1), 542 (2015)CrossRef
79.
Zurück zum Zitat E.C. Neyts, A.C.T. van Duin, A. Bogaerts, Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: Effect of electric field. J. Am. Chem. Soc. 134(2), 1256 (2011) E.C. Neyts, A.C.T. van Duin, A. Bogaerts, Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: Effect of electric field. J. Am. Chem. Soc. 134(2), 1256 (2011)
80.
Zurück zum Zitat T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H. Aktulga, T. Verstraelen, A. Grama, A.C.T. van Duin, The reaxFF reactive force-field: Development, applications and future directions. Npj Computational Materials. 2, 15011 (2016) T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H. Aktulga, T. Verstraelen, A. Grama, A.C.T. van Duin, The reaxFF reactive force-field: Development, applications and future directions. Npj Computational Materials. 2, 15011 (2016)
81.
Zurück zum Zitat S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472 (2000)CrossRef S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472 (2000)CrossRef
82.
Zurück zum Zitat S.W. Rick, S.J. Stuart, B.J. Berne, Dynamical fluctuating charge force fields: Application to liquid water. J. Chem. Phys. 101(7), 6141 (1994)CrossRef S.W. Rick, S.J. Stuart, B.J. Berne, Dynamical fluctuating charge force fields: Application to liquid water. J. Chem. Phys. 101(7), 6141 (1994)CrossRef
83.
Zurück zum Zitat A.C.T. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, Reaxff: A reactive force field for hydrocarbons. J. Phys. Chem. A. 105(41), 9396 (2001) A.C.T. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, Reaxff: A reactive force field for hydrocarbons. J. Phys. Chem. A. 105(41), 9396 (2001)
84.
Zurück zum Zitat F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B. 31(8), 5262 (1985)CrossRef F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B. 31(8), 5262 (1985)CrossRef
85.
Zurück zum Zitat J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B. 39(8), 5566 (1989)CrossRef J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B. 39(8), 5566 (1989)CrossRef
86.
Zurück zum Zitat W.J. Mortier, S.K. Ghosh, S. Shankar, Electronegativity-equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108(15), 4315 (1986)CrossRef W.J. Mortier, S.K. Ghosh, S. Shankar, Electronegativity-equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108(15), 4315 (1986)CrossRef
87.
Zurück zum Zitat K.A. Rappe, W.A. Goddard III, Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95(8), 3358 (1991)CrossRef K.A. Rappe, W.A. Goddard III, Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95(8), 3358 (1991)CrossRef
88.
Zurück zum Zitat A.C. Antony, S.A. Akhade, T. Liang, M.J. Janik, J.K. Maranas, S.B. Sinnott, Simulating an applied voltage in molecular dynamics using charge optimized many body (COMB3) potentials. ECS Trans. 69(1), 103 (2015)CrossRef A.C. Antony, S.A. Akhade, T. Liang, M.J. Janik, J.K. Maranas, S.B. Sinnott, Simulating an applied voltage in molecular dynamics using charge optimized many body (COMB3) potentials. ECS Trans. 69(1), 103 (2015)CrossRef
89.
Zurück zum Zitat K.D. Nielson, A.C.T. van Duin, J. Oxgaard, W.Q. Deng, W.A. Goddard, Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A. 109(3), 493 (2005) K.D. Nielson, A.C.T. van Duin, J. Oxgaard, W.Q. Deng, W.A. Goddard, Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A. 109(3), 493 (2005)
90.
Zurück zum Zitat A.C.T. Van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, W.A. Goddard, ReaxFFSio reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A. 107(19), 3803 (2003) A.C.T. Van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, W.A. Goddard, ReaxFFSio reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A. 107(19), 3803 (2003)
91.
Zurück zum Zitat K. Chenoweth, A.C.T. Van Duin, W.A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A. 112(5), 1040 (2008) K. Chenoweth, A.C.T. Van Duin, W.A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A. 112(5), 1040 (2008)
92.
Zurück zum Zitat N. Onofrio, D. Guzman, A. Strachan, The dynamics of copper intercalated molybdenum ditelluride. J. Chem. Phys. 145(19), 194702 (2016)CrossRef N. Onofrio, D. Guzman, A. Strachan, The dynamics of copper intercalated molybdenum ditelluride. J. Chem. Phys. 145(19), 194702 (2016)CrossRef
93.
Zurück zum Zitat N. Onofrio, D. Guzman, A. Strachan, Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 14(4), 440 (2015)CrossRef N. Onofrio, D. Guzman, A. Strachan, Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 14(4), 440 (2015)CrossRef
94.
Zurück zum Zitat N. Onofrio, A. Strachan, Voltage equilibration for reactive atomistic simulations of electrochemical processes. J. Chem. Phys. 143(5), 054109 (2015)CrossRef N. Onofrio, A. Strachan, Voltage equilibration for reactive atomistic simulations of electrochemical processes. J. Chem. Phys. 143(5), 054109 (2015)CrossRef
96.
Zurück zum Zitat D. Bedrov, G.D. Smith, A.C.T. van Duin, Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. J. Phys. Chem. A. 116(11), 2978 (2012) D. Bedrov, G.D. Smith, A.C.T. van Duin, Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. J. Phys. Chem. A. 116(11), 2978 (2012)
97.
Zurück zum Zitat J.T. Su, W.A. Goddard III, Excited electron dynamics modeling of warm dense matter. Phys. Rev. Lett. 99(18), 185003 (2007)CrossRef J.T. Su, W.A. Goddard III, Excited electron dynamics modeling of warm dense matter. Phys. Rev. Lett. 99(18), 185003 (2007)CrossRef
98.
Zurück zum Zitat S. Kale, J. Herzfeld, S. Dai, M. Blank, Lewis-inspired representation of dissociable water in clusters and Grotthuss chains. J. Biol. Phys. 38(1), 49 (2012)CrossRef S. Kale, J. Herzfeld, S. Dai, M. Blank, Lewis-inspired representation of dissociable water in clusters and Grotthuss chains. J. Biol. Phys. 38(1), 49 (2012)CrossRef
99.
Zurück zum Zitat R.A. Nistor, J.G. Polihronov, M. H. Müser, N.J. Mosey, A generalization of the charge equilibration method for nonmetallic materials. J. Chem. Phys. 125(9), 094108 (2006)CrossRef R.A. Nistor, J.G. Polihronov, M. H. Müser, N.J. Mosey, A generalization of the charge equilibration method for nonmetallic materials. J. Chem. Phys. 125(9), 094108 (2006)CrossRef
100.
Zurück zum Zitat M.T. Knippenberg, P.T. Mikulski, K.E. Ryan, S.J. Stuart, G. Gao, J.A. Harrison, Bond-order potentials with split-charge equilibration: Application to C-, H-, and O-containing systems. J. Chem. Phys. 136 (16), 164701 (2012)CrossRef M.T. Knippenberg, P.T. Mikulski, K.E. Ryan, S.J. Stuart, G. Gao, J.A. Harrison, Bond-order potentials with split-charge equilibration: Application to C-, H-, and O-containing systems. J. Chem. Phys. 136 (16), 164701 (2012)CrossRef
101.
Zurück zum Zitat W.B. Dapp, M. H. Müser, Redox reactions with empirical potentials: Atomistic battery discharge simulations. J. Chem. Phys. 139(6), 064106 (2013)CrossRef W.B. Dapp, M. H. Müser, Redox reactions with empirical potentials: Atomistic battery discharge simulations. J. Chem. Phys. 139(6), 064106 (2013)CrossRef
102.
Zurück zum Zitat M.M. Islam, G. Kolesov, T. Verstraelen, E. Kaxiras, A.C.T. van Duin, eReaxFF: A pseudoclassical treatment of explicit electrons within reactive force field simulations. J. Chem. Theory Comput. 12(8), 3463 (2016) M.M. Islam, G. Kolesov, T. Verstraelen, E. Kaxiras, A.C.T. van Duin, eReaxFF: A pseudoclassical treatment of explicit electrons within reactive force field simulations. J. Chem. Theory Comput. 12(8), 3463 (2016)
103.
Zurück zum Zitat J.T. Su, W.A. Goddard III, The dynamics of highly excited electronic systems: Applications of the electron force field. J. Chem. Phys. 131(24), 244501 (2009)CrossRef J.T. Su, W.A. Goddard III, The dynamics of highly excited electronic systems: Applications of the electron force field. J. Chem. Phys. 131(24), 244501 (2009)CrossRef
104.
Zurück zum Zitat T. Verstraelen, P.W. Ayers, V. Van Speybroeck, M. Waroquier, ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order. J. Chem. Phys. 138(7), 074108 (2013) T. Verstraelen, P.W. Ayers, V. Van Speybroeck, M. Waroquier, ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order. J. Chem. Phys. 138(7), 074108 (2013)
105.
Zurück zum Zitat J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer, S. Nandi, G.B. Ellison, Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem. Rev. 102(1), 231 (2002)CrossRef J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer, S. Nandi, G.B. Ellison, Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem. Rev. 102(1), 231 (2002)CrossRef
106.
Zurück zum Zitat K.D. Jordan, P.D. Burrow, Studies of the temporary anion states of unsaturated hydrocarbons by electron transmission spectroscopy. Acc. Chem. Res. 11(9), 341 (1978)CrossRef K.D. Jordan, P.D. Burrow, Studies of the temporary anion states of unsaturated hydrocarbons by electron transmission spectroscopy. Acc. Chem. Res. 11(9), 341 (1978)CrossRef
107.
Zurück zum Zitat M.M. Islam, A.C.T. van Duin, Reductive decomposition reactions of ethylene carbonate via explicit electron transfer from lithium An eReaxFF molecular dynamics study. J. Phys. Chem. C. 120(48), 27128 (2016) M.M. Islam, A.C.T. van Duin, Reductive decomposition reactions of ethylene carbonate via explicit electron transfer from lithium An eReaxFF molecular dynamics study. J. Phys. Chem. C. 120(48), 27128 (2016)
108.
Zurück zum Zitat S.P. Kim, A.C.T. Van Duin, V.B. Shenoy, Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study. J. Power. Sources. 196(20), 8590 (2011) S.P. Kim, A.C.T. Van Duin, V.B. Shenoy, Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study. J. Power. Sources. 196(20), 8590 (2011)
109.
Zurück zum Zitat Y. Bernard, V.T. Renard, P. Gonon, V. Jousseaume, Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2. Microelectron. Eng. 88(5), 814 (2011)CrossRef Y. Bernard, V.T. Renard, P. Gonon, V. Jousseaume, Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2. Microelectron. Eng. 88(5), 814 (2011)CrossRef
110.
Zurück zum Zitat N. Onofrio, D. Guzman, A. Strachan, Atomistic simulations of electrochemical metallization cells: Mechanisms of ultra-fast resistance switching in nanoscale devices Nanoscale (2016) N. Onofrio, D. Guzman, A. Strachan, Atomistic simulations of electrochemical metallization cells: Mechanisms of ultra-fast resistance switching in nanoscale devices Nanoscale (2016)
111.
Zurück zum Zitat I. Valov, G. Staikov, Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories. J. Solid State Electrochem. 17(2), 365 (2013)CrossRef I. Valov, G. Staikov, Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories. J. Solid State Electrochem. 17(2), 365 (2013)CrossRef
112.
Zurück zum Zitat A. Belmonte, U. Celano, A. Redolfi, A. Fantini, R. Muller, W. Vandervorst, M. Houssa, M. Jurczak, L. Goux, Analysis of the excellent memory disturb characteristics of a Hourglass-shaped filament in Al2 O 3/Cu-based CBRAM devices. IEEE Trans. Electron Devices. 62(6), 2007 (2015)CrossRef A. Belmonte, U. Celano, A. Redolfi, A. Fantini, R. Muller, W. Vandervorst, M. Houssa, M. Jurczak, L. Goux, Analysis of the excellent memory disturb characteristics of a Hourglass-shaped filament in Al2 O 3/Cu-based CBRAM devices. IEEE Trans. Electron Devices. 62(6), 2007 (2015)CrossRef
113.
Zurück zum Zitat D.M. Guzman, N. Onofrio, A. Strachan, Stability and migration of small copper clusters in amorphous dielectrics. J. Appl. Phys. 117(19), 195702 (2015)CrossRef D.M. Guzman, N. Onofrio, A. Strachan, Stability and migration of small copper clusters in amorphous dielectrics. J. Appl. Phys. 117(19), 195702 (2015)CrossRef
114.
Zurück zum Zitat S.C. Pandey, R. Meade, G.S. Sandhu, Cu impurity in insulators and in metal-insulator-metal structures: Implications for resistance-switching random access memories. J. Appl. Phys. 117(5), 054504 (2015)CrossRef S.C. Pandey, R. Meade, G.S. Sandhu, Cu impurity in insulators and in metal-insulator-metal structures: Implications for resistance-switching random access memories. J. Appl. Phys. 117(5), 054504 (2015)CrossRef
115.
Zurück zum Zitat Z. Jiang, M. Povolotskyi, N. Onofrio, D. Guzman, D. Lemus, S. Perez, J. Bermeo, A. Strachan, G. Klimeck, Multi-scale quantum simulations of conductive bridging RAM. IWCE (2015) Z. Jiang, M. Povolotskyi, N. Onofrio, D. Guzman, D. Lemus, S. Perez, J. Bermeo, A. Strachan, G. Klimeck, Multi-scale quantum simulations of conductive bridging RAM. IWCE (2015)
116.
Zurück zum Zitat S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.W. Kim, C.U. Jung, S. Seo, M.J. Lee, T.W. Noh, Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6), 1154 (2008)CrossRef S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.W. Kim, C.U. Jung, S. Seo, M.J. Lee, T.W. Noh, Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6), 1154 (2008)CrossRef
117.
Zurück zum Zitat N. Xu, B. Gao, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, in A unified physical model of switching behavior in oxide-based RRAM. in 2008 IEEE Symposium on VLSI Technology-Digest of Technical Papers, (2008), pp. 100–101CrossRef N. Xu, B. Gao, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, in A unified physical model of switching behavior in oxide-based RRAM. in 2008 IEEE Symposium on VLSI Technology-Digest of Technical Papers, (2008), pp. 100–101CrossRef
118.
Zurück zum Zitat X. Guan, S. Yu, H.S.P. Wong, On the switching parameter variation of metal-oxide RRAM – Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices. 59(4), 1172 (2012)CrossRef X. Guan, S. Yu, H.S.P. Wong, On the switching parameter variation of metal-oxide RRAM – Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices. 59(4), 1172 (2012)CrossRef
119.
Zurück zum Zitat L. Larcher, A. Padovani, O. Pirrotta, L. Vandelli, G. Bersuker, in Microscopic understanding and modeling of HfO 2 RRAM device physics. in 2012 IEEE International Electron Devices Meeting (IEDM) Technical Digest, (2012), p. 474 L. Larcher, A. Padovani, O. Pirrotta, L. Vandelli, G. Bersuker, in Microscopic understanding and modeling of HfO 2 RRAM device physics. in 2012 IEEE International Electron Devices Meeting (IEDM) Technical Digest, (2012), p. 474
120.
Zurück zum Zitat S. Qin, Z. Liu, G. Zhang, J. Zhang, Y. Sun, H. Wu, H. Qian, Z. Yu, Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory. Phys. Chem. Chem. Phys. 17, 8627 (2015)CrossRef S. Qin, Z. Liu, G. Zhang, J. Zhang, Y. Sun, H. Wu, H. Qian, Z. Yu, Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory. Phys. Chem. Chem. Phys. 17, 8627 (2015)CrossRef
121.
Zurück zum Zitat J. Guy, G. Molas, P. Blaise, M. Bernard, A. Roule, G. Le Carval, V. Delaye, A. Toffoli, G. Ghibaudo, F. Clermidy, B. De Salvo, L. Perniola, Investigation of forming, SET, and data retention of conductive-bridge random-access memory for stack optimization. IEEE Trans. Electron Devices. 62, 3482 (2015)CrossRef J. Guy, G. Molas, P. Blaise, M. Bernard, A. Roule, G. Le Carval, V. Delaye, A. Toffoli, G. Ghibaudo, F. Clermidy, B. De Salvo, L. Perniola, Investigation of forming, SET, and data retention of conductive-bridge random-access memory for stack optimization. IEEE Trans. Electron Devices. 62, 3482 (2015)CrossRef
122.
Zurück zum Zitat S. Menzel, P. Kaupmann, R. Waser, Understanding filamentary growth in electrochemical metallization memory cells using Kinetic Monte Carlo simulations. Nanoscale. 7, 12673 (2015)CrossRef S. Menzel, P. Kaupmann, R. Waser, Understanding filamentary growth in electrochemical metallization memory cells using Kinetic Monte Carlo simulations. Nanoscale. 7, 12673 (2015)CrossRef
123.
Zurück zum Zitat F. Pan, S. Yin, V. Subramanian, A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. IEEE Electron Device Lett. 32, 949 (2011)CrossRef F. Pan, S. Yin, V. Subramanian, A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. IEEE Electron Device Lett. 32, 949 (2011)CrossRef
124.
Zurück zum Zitat A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, G. Bersuker, Microscopic modeling of HfOx RRAM operations From forming to switching. IEEE Trans. Electron Devices. 62, 1998 (2015)CrossRef A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, G. Bersuker, Microscopic modeling of HfOx RRAM operations From forming to switching. IEEE Trans. Electron Devices. 62, 1998 (2015)CrossRef
125.
Zurück zum Zitat J. Hur, D. Lee, S. Jeon, A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides. Appl. Phys. Lett. 203504, 107 (2015) J. Hur, D. Lee, S. Jeon, A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides. Appl. Phys. Lett. 203504, 107 (2015)
126.
Zurück zum Zitat D. Ielmini, Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth. IEEE Trans. Electron Devices. 58(12), 4309 (2011)CrossRef D. Ielmini, Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth. IEEE Trans. Electron Devices. 58(12), 4309 (2011)CrossRef
127.
Zurück zum Zitat S. Yu, H.S.P. Wong, Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron devices. 58(5), 1352 (2011)CrossRef S. Yu, H.S.P. Wong, Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron devices. 58(5), 1352 (2011)CrossRef
128.
Zurück zum Zitat S. Lin, L. Zhao, J. Zhang, H. Wu, Y. Wang, H. Qian, Z. Yu, in Electrochemical simulation of filament growth and dissolution in conductive-bridging RAM (CBRAM) with cylindrical coordinates. in 2012 IEEE International Electron Devices Meeting (IEDM) Technical Digest, (2012), p. 593 S. Lin, L. Zhao, J. Zhang, H. Wu, Y. Wang, H. Qian, Z. Yu, in Electrochemical simulation of filament growth and dissolution in conductive-bridging RAM (CBRAM) with cylindrical coordinates. in 2012 IEEE International Electron Devices Meeting (IEDM) Technical Digest, (2012), p. 593
129.
Zurück zum Zitat S. Ambrogio, S. Balatti, D.C. Gilmer, D. Ielmini, Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices. 61, 2378–2386 (2014)CrossRef S. Ambrogio, S. Balatti, D.C. Gilmer, D. Ielmini, Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices. 61, 2378–2386 (2014)CrossRef
130.
Zurück zum Zitat S. Yu, Y. Wu, H.S.P. Wong, Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98(10), 103514 (2011)CrossRef S. Yu, Y. Wu, H.S.P. Wong, Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98(10), 103514 (2011)CrossRef
131.
Zurück zum Zitat Z. Fang, H.Y. Yu, W.J. Fan, G. Ghibaudo, J. Buckley, B. DeSalvo, X. Li, X.P. Wang, G.Q. Lo, D.L. Kwong, Current conduction model for oxide-based resistive random access memory verified by low-frequency noise analysis. IEEE Trans. Electron Devices. 60(3), 1272 (2013)CrossRef Z. Fang, H.Y. Yu, W.J. Fan, G. Ghibaudo, J. Buckley, B. DeSalvo, X. Li, X.P. Wang, G.Q. Lo, D.L. Kwong, Current conduction model for oxide-based resistive random access memory verified by low-frequency noise analysis. IEEE Trans. Electron Devices. 60(3), 1272 (2013)CrossRef
132.
Zurück zum Zitat S. Lv, H. Wang, J. Zhang, J. Liu, L. Sun, Z. Yu, An analytical model for the forming process of conductive-bridge resistive-switching random-access memory. IEEE Trans. Electron Devices. 61, 3166–3171 (2014)CrossRef S. Lv, H. Wang, J. Zhang, J. Liu, L. Sun, Z. Yu, An analytical model for the forming process of conductive-bridge resistive-switching random-access memory. IEEE Trans. Electron Devices. 61, 3166–3171 (2014)CrossRef
133.
Zurück zum Zitat S. Menzel, S. Tappertzhofen, R. Waser, I. Valov, Switching kinetics of electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 15, 6945 (2013)CrossRef S. Menzel, S. Tappertzhofen, R. Waser, I. Valov, Switching kinetics of electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 15, 6945 (2013)CrossRef
134.
Zurück zum Zitat P. Sun, L. Li, N. Lu, Y. Li, M. Wang, H. Xie, S. Liu, M. Liu, Physical model of dynamic Joule heating effect for reset process in conductive-bridge random access memory. J. Comput. Electron. 13, 432 (2014)CrossRef P. Sun, L. Li, N. Lu, Y. Li, M. Wang, H. Xie, S. Liu, M. Liu, Physical model of dynamic Joule heating effect for reset process in conductive-bridge random access memory. J. Comput. Electron. 13, 432 (2014)CrossRef
135.
Zurück zum Zitat R. Degraeve, A. Fantini, S. Clima, B. Govoreanu, L. Goux, Y.Y. Chen, D.J. Wouters, P. Roussel, G.S. Kar, G. Pourtois, S. Cosemans, J.A. Kittl, G. Groeseneken, M. Jurczak, L. Altimime, in Dynamic ’hour glass’ model for SET and RESET in HfO 2 RRAM. in 2012 IEEE Symposium on VLSI Technology-Digest of Technical Papers (IEEE, 2012), p. 75 R. Degraeve, A. Fantini, S. Clima, B. Govoreanu, L. Goux, Y.Y. Chen, D.J. Wouters, P. Roussel, G.S. Kar, G. Pourtois, S. Cosemans, J.A. Kittl, G. Groeseneken, M. Jurczak, L. Altimime, in Dynamic ’hour glass’ model for SET and RESET in HfO 2 RRAM. in 2012 IEEE Symposium on VLSI Technology-Digest of Technical Papers (IEEE, 2012), p. 75
136.
Zurück zum Zitat S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. Ielmini, Statistical fluctuations in HfOx resistive-switching memory Part I - Set/Reset variability. IEEE Trans. Electron Devices. 61 (8), 2912 (2014)CrossRef S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. Ielmini, Statistical fluctuations in HfOx resistive-switching memory Part I - Set/Reset variability. IEEE Trans. Electron Devices. 61 (8), 2912 (2014)CrossRef
137.
Zurück zum Zitat N. Raghavan, R. Degraeve, A. Fantini, L. Goux, S. Strangio, B. Govoreanu, D.J. Wouters, G. Groeseneken, M. Jurczak, in Microscopic origin of random telegraph noise fluctuations in aggressively scaled RRAM and its impact on read disturb variability. in 2013 IEEE International Reliability Physics Symposium (IRPS) (IEEE, 2013), pp. 5E–3 N. Raghavan, R. Degraeve, A. Fantini, L. Goux, S. Strangio, B. Govoreanu, D.J. Wouters, G. Groeseneken, M. Jurczak, in Microscopic origin of random telegraph noise fluctuations in aggressively scaled RRAM and its impact on read disturb variability. in 2013 IEEE International Reliability Physics Symposium (IRPS) (IEEE, 2013), pp. 5E–3
138.
Zurück zum Zitat A. Fantini, L. Goux, R. Degraeve, D.J. Wouters, N. Raghavan, G. Kar, A. Belmonte, Y.-Y. Chen, B. Govoreanu, M. Jurczak, in Intrinsic switching variability in HfO2 RRAM. in Memory Workshop (IMW), 2013 5th IEEE International (IEEE, 2013), p. 30 A. Fantini, L. Goux, R. Degraeve, D.J. Wouters, N. Raghavan, G. Kar, A. Belmonte, Y.-Y. Chen, B. Govoreanu, M. Jurczak, in Intrinsic switching variability in HfO2 RRAM. in Memory Workshop (IMW), 2013 5th IEEE International (IEEE, 2013), p. 30
139.
Zurück zum Zitat I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, et al., in Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. in 2004 IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2004), p. 587 I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, et al., in Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. in 2004 IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2004), p. 587
140.
Zurück zum Zitat I.G. Baek, D.C. Kim, M.J. Lee, H.J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, et al., in Multi-layer cross-point binary oxide resistive memory (oxrram) for post-NAND storage application. in 2005 IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2005), p. 750 I.G. Baek, D.C. Kim, M.J. Lee, H.J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, et al., in Multi-layer cross-point binary oxide resistive memory (oxrram) for post-NAND storage application. in 2005 IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2005), p. 750
141.
Zurück zum Zitat G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology. 24, 384010 (2013)CrossRef G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology. 24, 384010 (2013)CrossRef
142.
Zurück zum Zitat M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello, D. Vuillaume, C. Gamrat, B. DeSalvo, Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron Devices. 60(7), 2402 (2013)CrossRef M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello, D. Vuillaume, C. Gamrat, B. DeSalvo, Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron Devices. 60(7), 2402 (2013)CrossRef
143.
Zurück zum Zitat B.L. Jackson, B. Rajendran, G.S. Corrado, M. Breitwisch, G.W. Burr, R. Cheek, K. Gopalakrishnan, S. Raoux, C. Rettner, A. Padilla, A.G. Schrott, R.S. Shenoy, B.N. Kurdi, C.H. Lam, D.S. Modha, Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. 9(2), 1 (2013)CrossRef B.L. Jackson, B. Rajendran, G.S. Corrado, M. Breitwisch, G.W. Burr, R. Cheek, K. Gopalakrishnan, S. Raoux, C. Rettner, A. Padilla, A.G. Schrott, R.S. Shenoy, B.N. Kurdi, C.H. Lam, D.S. Modha, Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. 9(2), 1 (2013)CrossRef
144.
Zurück zum Zitat M. Youssef, B. Yildiz, Predicting self diffusion in metal oxides from first principles: The case of oxygen in tetragonal ZrO2. Phys. Rev. B. 89(2), 024105 (2014)CrossRef M. Youssef, B. Yildiz, Predicting self diffusion in metal oxides from first principles: The case of oxygen in tetragonal ZrO2. Phys. Rev. B. 89(2), 024105 (2014)CrossRef
145.
Zurück zum Zitat M. Panzer, M. Shandalov, J. Rowlette, Y. Oshima, Y.W. Chen, P. McIntyre, K. Goodson, Thermal properties of ultrathin hafnium oxide gate dielectric films. IEEE Electron Device Lett. 30(12), 1269 (2009)CrossRef M. Panzer, M. Shandalov, J. Rowlette, Y. Oshima, Y.W. Chen, P. McIntyre, K. Goodson, Thermal properties of ultrathin hafnium oxide gate dielectric films. IEEE Electron Device Lett. 30(12), 1269 (2009)CrossRef
146.
Zurück zum Zitat S. Larentis, F. Nardi, S. Balatti, D.C. Gilmer, D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM – Part II Modeling. IEEE Trans. Electron Devices. 59(9), 2468 (2012)CrossRef S. Larentis, F. Nardi, S. Balatti, D.C. Gilmer, D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM – Part II Modeling. IEEE Trans. Electron Devices. 59(9), 2468 (2012)CrossRef
147.
Zurück zum Zitat S. Kim, S.J. Kim, K.M. Kim, S.R. Lee, M. Chang, E. Cho, Y.B. Kim, C.J. Kim, U.I. Chung, I.K. Yoo, Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013)CrossRef S. Kim, S.J. Kim, K.M. Kim, S.R. Lee, M. Chang, E. Cho, Y.B. Kim, C.J. Kim, U.I. Chung, I.K. Yoo, Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013)CrossRef
148.
Zurück zum Zitat F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, D.J. Wouters, Control of filament size and reduction of reset current below 10 μ A in NiO resistance switching memories. Solid-State Electron. 58(1), 42 (2011)CrossRef F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, D.J. Wouters, Control of filament size and reduction of reset current below 10 μ A in NiO resistance switching memories. Solid-State Electron. 58(1), 42 (2011)CrossRef
149.
Zurück zum Zitat A. Marchewka, B. Roesgen, K. Skaja, H. Du, C.L. Jia, J. Mayer, V. Rana, R. Waser, S. Menzel, Nanoionic resistive switching memories: On the physical nature of the dynamic reset process. Advanced Electronic Materials. 2, 1500233 (2016)CrossRef A. Marchewka, B. Roesgen, K. Skaja, H. Du, C.L. Jia, J. Mayer, V. Rana, R. Waser, S. Menzel, Nanoionic resistive switching memories: On the physical nature of the dynamic reset process. Advanced Electronic Materials. 2, 1500233 (2016)CrossRef
150.
Zurück zum Zitat J.S. Lee, S.B. Lee, B. Kahng, T.W. Noh, Two opposite hysteresis curves in semiconductors with mobile dopants. Appl. Phys. Lett. 102, 253503 (2013)CrossRef J.S. Lee, S.B. Lee, B. Kahng, T.W. Noh, Two opposite hysteresis curves in semiconductors with mobile dopants. Appl. Phys. Lett. 102, 253503 (2013)CrossRef
151.
Zurück zum Zitat S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. Ielmini, Statistical fluctuations in HfOx resistive-switching memory Part II – random telegraph noise. IEEE Trans. Electron Devices. 61(8), 2920 (2014)CrossRef S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. Ielmini, Statistical fluctuations in HfOx resistive-switching memory Part II – random telegraph noise. IEEE Trans. Electron Devices. 61(8), 2920 (2014)CrossRef
152.
Zurück zum Zitat S. Ambrogio, S. Balatti, V. McCaffrey, D.C. Wang, D. Ielmini, Noise-induced resistance broadening in resistive switching memory – Part II Array statistics. IEEE Trans. Electron Devices. 62(11), 3812 (2015)CrossRef S. Ambrogio, S. Balatti, V. McCaffrey, D.C. Wang, D. Ielmini, Noise-induced resistance broadening in resistive switching memory – Part II Array statistics. IEEE Trans. Electron Devices. 62(11), 3812 (2015)CrossRef
153.
Zurück zum Zitat K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Discrete resistance switching in submicrometer silicon inversion layers Individual interface traps and low-frequency (1 f) noise. Phys. Rev. Lett. 52(3), 228 (1984)CrossRef K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Discrete resistance switching in submicrometer silicon inversion layers Individual interface traps and low-frequency (1 f) noise. Phys. Rev. Lett. 52(3), 228 (1984)CrossRef
154.
Zurück zum Zitat R. Soni, P. Meuffels, A. Petraru, M. Weides, C. Kügeler, R. Waser, H. Kohlstedt, Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise. J. Appl. Phys. 107(2), 024517 (2010)CrossRef R. Soni, P. Meuffels, A. Petraru, M. Weides, C. Kügeler, R. Waser, H. Kohlstedt, Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise. J. Appl. Phys. 107(2), 024517 (2010)CrossRef
155.
Zurück zum Zitat D. Veksler, G. Bersuker, L. Vandelli, A. Padovani, L. Larcher, A. Muraviev, B. Chakrabarti, E. Vogel, D.C. Gilmer, P.D. Kirsch, in Random telegraph noise (RTN) In scaled RRAM devices. in 2013 IEEE International Reliability Physics Symposium (IRPS) (IEEE, p. 2013 D. Veksler, G. Bersuker, L. Vandelli, A. Padovani, L. Larcher, A. Muraviev, B. Chakrabarti, E. Vogel, D.C. Gilmer, P.D. Kirsch, in Random telegraph noise (RTN) In scaled RRAM devices. in 2013 IEEE International Reliability Physics Symposium (IRPS) (IEEE, p. 2013
Metadaten
Titel
Modeling resistive switching materials and devices across scales
Publikationsdatum
09.06.2017
Erschienen in
Journal of Electroceramics / Ausgabe 1-4/2017
Print ISSN: 1385-3449
Elektronische ISSN: 1573-8663
DOI
https://doi.org/10.1007/s10832-017-0093-y

Weitere Artikel der Ausgabe 1-4/2017

Journal of Electroceramics 1-4/2017 Zur Ausgabe

Neuer Inhalt