Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2019

22.02.2019 | Research Paper

Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis

verfasst von: Yanyao Bao, Ling Li, Luming Shen, Chengwang Lei, Yixiang Gan

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SPH) model is employed to simulate surface tension, contact angle and dynamic wetting effects at meso-scale. The wetting and dewetting phenomena are simulated in a capillary tube, where the liquid particles are raised or withdrawn by a shifting substrate. The SPH model is modified by introducing a newly developed viscous force formulation at the liquid–solid interface to reproduce the rate-dependent behaviour of the moving contact line. Dynamic contact angle simulations with the interfacial viscous force are conducted to verify the effectiveness and accuracy of this new formulation. In addition, the influence of interfacial viscous forces with different magnitude on the contact angle dynamics is examined by empirical power-law correlations; the derived constants suggest that the dynamic contact angle changes monotonically with the interfacial viscous force. The simulation results are consistent with experimental observations and theoretical predictions, implying that the interfacial viscous force can be associated with the slip length of flow and the microscopic surface roughness. This work demonstrates that the modified SPH model can successfully account for the rate-dependent effects of a moving contact line, and can be used for realistic multiphase flow simulations under dynamic conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abriola, L.M., Pinder, G.F.: A multiphase approach to the modeling of porous media contamination by organic compounds: 1. Equation development. Water Resour. Res. 21, 11–18 (1985)CrossRef Abriola, L.M., Pinder, G.F.: A multiphase approach to the modeling of porous media contamination by organic compounds: 1. Equation development. Water Resour. Res. 21, 11–18 (1985)CrossRef
2.
Zurück zum Zitat Ran, Q.Q., Gu, X.Y., Li, S.L.: A coupled model for multiphase fluid flow and sedimentation deformation in oil reservoir and its numerical simulation. Acta Mech. Sin. 13, 264–272 (1997)CrossRef Ran, Q.Q., Gu, X.Y., Li, S.L.: A coupled model for multiphase fluid flow and sedimentation deformation in oil reservoir and its numerical simulation. Acta Mech. Sin. 13, 264–272 (1997)CrossRef
3.
Zurück zum Zitat Bandara, U.C., Palmer, B.J., Tartakovsky, A.M.: Effect of wettability alteration on long-term behavior of fluids in subsurface. Comput. Part. Mech. 3, 277–289 (2016)CrossRef Bandara, U.C., Palmer, B.J., Tartakovsky, A.M.: Effect of wettability alteration on long-term behavior of fluids in subsurface. Comput. Part. Mech. 3, 277–289 (2016)CrossRef
4.
Zurück zum Zitat Gan, Y., Maggi, F., Buscarnera, G., et al.: A particle-water based model for water retention hysteresis. Geotech. Lett. 3, 152–161 (2013)CrossRef Gan, Y., Maggi, F., Buscarnera, G., et al.: A particle-water based model for water retention hysteresis. Geotech. Lett. 3, 152–161 (2013)CrossRef
5.
Zurück zum Zitat Flores-Johnson, E.A., Wang, S., Maggi, F., et al.: Discrete element simulation of dynamic behaviour of partially saturated sand. Int. J. Mech. Mater. Des. 12, 495–507 (2016)CrossRef Flores-Johnson, E.A., Wang, S., Maggi, F., et al.: Discrete element simulation of dynamic behaviour of partially saturated sand. Int. J. Mech. Mater. Des. 12, 495–507 (2016)CrossRef
6.
Zurück zum Zitat Li, S., Liu, M., Hanaor, D., et al.: Dynamics of viscous entrapped saturated zones in partially wetted porous media. Transp. Porous Media 125, 193–210 (2018)CrossRef Li, S., Liu, M., Hanaor, D., et al.: Dynamics of viscous entrapped saturated zones in partially wetted porous media. Transp. Porous Media 125, 193–210 (2018)CrossRef
7.
Zurück zum Zitat Kiwi-Minsker, L., Renken, A.: Microstructured reactors for catalytic reactions. Catal. Today 110, 2–14 (2005)CrossRef Kiwi-Minsker, L., Renken, A.: Microstructured reactors for catalytic reactions. Catal. Today 110, 2–14 (2005)CrossRef
8.
Zurück zum Zitat Schwartz, A.M., Tejada, S.B.: Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38, 359–375 (1972)CrossRef Schwartz, A.M., Tejada, S.B.: Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38, 359–375 (1972)CrossRef
9.
Zurück zum Zitat Jiang, T.S., Soo-Gun, O.H., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sci. 69, 74–77 (1979)CrossRef Jiang, T.S., Soo-Gun, O.H., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sci. 69, 74–77 (1979)CrossRef
10.
Zurück zum Zitat Bracke, M., De Voeght, F., Joos, P.: The kinetics of wetting: the dynamic contact angle. Prog. Colloid Pol. Sci. 79, 142–149 (1989)CrossRef Bracke, M., De Voeght, F., Joos, P.: The kinetics of wetting: the dynamic contact angle. Prog. Colloid Pol. Sci. 79, 142–149 (1989)CrossRef
11.
Zurück zum Zitat Cox, R.G.: The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169–194 (1986)CrossRefMATH Cox, R.G.: The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169–194 (1986)CrossRefMATH
12.
Zurück zum Zitat Hoffman, R.L.: A study of the advancing interface: II. Theoretical prediction of the dynamic contact angle in liquid–gas systems. J. Colloid Interface Sci. 94, 470–486 (1983)CrossRef Hoffman, R.L.: A study of the advancing interface: II. Theoretical prediction of the dynamic contact angle in liquid–gas systems. J. Colloid Interface Sci. 94, 470–486 (1983)CrossRef
13.
Zurück zum Zitat Raiskinmäki, P., Shakib-Manesh, A., Jäsberg, A., et al.: Lattice-Boltzmann simulation of capillary rise dynamics. J. Stat. Phys. 107, 143–158 (2002)CrossRefMATH Raiskinmäki, P., Shakib-Manesh, A., Jäsberg, A., et al.: Lattice-Boltzmann simulation of capillary rise dynamics. J. Stat. Phys. 107, 143–158 (2002)CrossRefMATH
14.
Zurück zum Zitat Koplik, J., Banavar, J.R., Willemsen, J.F.: Molecular dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 1282–1285 (1988)CrossRef Koplik, J., Banavar, J.R., Willemsen, J.F.: Molecular dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 1282–1285 (1988)CrossRef
15.
Zurück zum Zitat Huber, M., Keller, F., Säckel, W., et al.: On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale. J. Comput. Phys. 310, 459–477 (2016)MathSciNetCrossRefMATH Huber, M., Keller, F., Säckel, W., et al.: On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale. J. Comput. Phys. 310, 459–477 (2016)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Lukyanov, A.V., Likhtman, A.E.: Dynamic contact angle at the nanoscale: a unified view. ACS Nano 10, 6045–6053 (2016)CrossRef Lukyanov, A.V., Likhtman, A.E.: Dynamic contact angle at the nanoscale: a unified view. ACS Nano 10, 6045–6053 (2016)CrossRef
17.
Zurück zum Zitat Tartakovsky, A.M., Panchenko, A.: Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J. Comput. Phys. 305, 1119–1146 (2016)MathSciNetCrossRefMATH Tartakovsky, A.M., Panchenko, A.: Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J. Comput. Phys. 305, 1119–1146 (2016)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Eral, H.B., Oh, J.M.: Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291, 247–260 (2013)CrossRef Eral, H.B., Oh, J.M.: Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291, 247–260 (2013)CrossRef
19.
Zurück zum Zitat Rame, E.: The interpretation of dynamic contact angles measured by the Wilhelmy plate method. J. Colloid Interface Sci. 185, 245–251 (1997)CrossRef Rame, E.: The interpretation of dynamic contact angles measured by the Wilhelmy plate method. J. Colloid Interface Sci. 185, 245–251 (1997)CrossRef
20.
Zurück zum Zitat Blake, T.D., Haynes, J.M.: Kinetics of liquid–liquid displacement. J. Colloid Interface Sci. 30, 421–423 (1969)CrossRef Blake, T.D., Haynes, J.M.: Kinetics of liquid–liquid displacement. J. Colloid Interface Sci. 30, 421–423 (1969)CrossRef
21.
Zurück zum Zitat Petrov, P., Petrov, I.: A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8, 1762–1767 (1992)CrossRef Petrov, P., Petrov, I.: A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8, 1762–1767 (1992)CrossRef
22.
Zurück zum Zitat Elliott, G.E.P., Riddiford, A.C.: Dynamic contact angles: I. The effect of impressed motion. J. Colloid Interface Sci. 23, 389–398 (1967)CrossRef Elliott, G.E.P., Riddiford, A.C.: Dynamic contact angles: I. The effect of impressed motion. J. Colloid Interface Sci. 23, 389–398 (1967)CrossRef
23.
Zurück zum Zitat Schäffer, E., Wong, P.Z.: Contact line dynamics near the pinning threshold: a capillary rise and fall experiment. Phys. Rev. E 61, 5257–5277 (2000)CrossRef Schäffer, E., Wong, P.Z.: Contact line dynamics near the pinning threshold: a capillary rise and fall experiment. Phys. Rev. E 61, 5257–5277 (2000)CrossRef
24.
Zurück zum Zitat Shi, Z., Zhang, Y., Liu, M., et al.: Dynamic contact angle hysteresis in liquid bridges. Colloids Surf. A Physicochem. Eng. Asp. 555, 365–371 (2018)CrossRef Shi, Z., Zhang, Y., Liu, M., et al.: Dynamic contact angle hysteresis in liquid bridges. Colloids Surf. A Physicochem. Eng. Asp. 555, 365–371 (2018)CrossRef
25.
Zurück zum Zitat Kim, J.H., Rothstein, J.P.: Dynamic contact angle measurements of viscoelastic fluids. J. Nonnewton Fluid Mech. 225, 54–61 (2015)CrossRef Kim, J.H., Rothstein, J.P.: Dynamic contact angle measurements of viscoelastic fluids. J. Nonnewton Fluid Mech. 225, 54–61 (2015)CrossRef
26.
Zurück zum Zitat Seebergh, J.E., Berg, J.C.: Dynamic wetting in the low capillary number regime. Chem. Eng. Sci. 47, 4455–4464 (1992)CrossRef Seebergh, J.E., Berg, J.C.: Dynamic wetting in the low capillary number regime. Chem. Eng. Sci. 47, 4455–4464 (1992)CrossRef
27.
Zurück zum Zitat Kordilla, J., Tartakovsky, A.M., Geyer, T.: A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces. Adv. Water Resour. 59, 1–14 (2013)CrossRef Kordilla, J., Tartakovsky, A.M., Geyer, T.: A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces. Adv. Water Resour. 59, 1–14 (2013)CrossRef
28.
Zurück zum Zitat Shigorina, E., Kordilla, J., Tartakovsky, A.M.: Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow. Phys. Rev. E 96, 033115 (2017)CrossRef Shigorina, E., Kordilla, J., Tartakovsky, A.M.: Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow. Phys. Rev. E 96, 033115 (2017)CrossRef
29.
Zurück zum Zitat Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002 (2009)CrossRef Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002 (2009)CrossRef
30.
Zurück zum Zitat Thompson, P.A., Robbins, M.O.: Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989)CrossRef Thompson, P.A., Robbins, M.O.: Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989)CrossRef
31.
Zurück zum Zitat Huang, P., Shen, L., Gan, Y., et al.: Coarse-grained modeling of multiphase interactions at microscale. J. Chem. Phys. 149, 124505 (2018)CrossRef Huang, P., Shen, L., Gan, Y., et al.: Coarse-grained modeling of multiphase interactions at microscale. J. Chem. Phys. 149, 124505 (2018)CrossRef
32.
Zurück zum Zitat Dos Santos, L.O., Wolf, F.G., Philippi, P.C.: Dynamics of interface displacement in capillary flow. J. Stat. Phys. 121, 197–207 (2005)MathSciNetCrossRefMATH Dos Santos, L.O., Wolf, F.G., Philippi, P.C.: Dynamics of interface displacement in capillary flow. J. Stat. Phys. 121, 197–207 (2005)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Chibbaro, S., Biferale, L., Diotallevi, F., et al.: Capillary filling for multicomponent fluid using the pseudo-potential lattice Boltzmann method. Eur. Phys. J. Spec. Top. 171, 223–228 (2009)CrossRef Chibbaro, S., Biferale, L., Diotallevi, F., et al.: Capillary filling for multicomponent fluid using the pseudo-potential lattice Boltzmann method. Eur. Phys. J. Spec. Top. 171, 223–228 (2009)CrossRef
34.
Zurück zum Zitat Xu, A., Shyy, W., Zhao, T.: Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries. Acta Mech. Sin. 33, 555–574 (2017)MathSciNetCrossRefMATH Xu, A., Shyy, W., Zhao, T.: Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries. Acta Mech. Sin. 33, 555–574 (2017)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Bertrand, E., Blake, T.D., De Coninck, J.: Influence of solid–liquid interactions on dynamic wetting: a molecular dynamics study. J. Phys. Condens. Matter 21, 464124 (2009)CrossRef Bertrand, E., Blake, T.D., De Coninck, J.: Influence of solid–liquid interactions on dynamic wetting: a molecular dynamics study. J. Phys. Condens. Matter 21, 464124 (2009)CrossRef
37.
Zurück zum Zitat Benzi, R., Biferale, L., Sbragaglia, M., et al.: Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74, 021509 (2006)MathSciNetCrossRef Benzi, R., Biferale, L., Sbragaglia, M., et al.: Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74, 021509 (2006)MathSciNetCrossRef
38.
Zurück zum Zitat Caiazzo, A.: Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn. 8, 3–10 (2008)MathSciNetCrossRefMATH Caiazzo, A.: Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn. 8, 3–10 (2008)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Tartakovsky, A., Meakin, P.: Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E 72, 026301 (2005)CrossRef Tartakovsky, A., Meakin, P.: Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E 72, 026301 (2005)CrossRef
40.
Zurück zum Zitat Liu, M., Meakin, P., Huang, H.: Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water. Resour. Res. 43, W04411 (2007) Liu, M., Meakin, P., Huang, H.: Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water. Resour. Res. 43, W04411 (2007)
41.
Zurück zum Zitat Li, L., Shen, L., Nguyen, G.D., et al.: A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput. Mech. 62, 1071–1085 (2018)MathSciNetCrossRefMATH Li, L., Shen, L., Nguyen, G.D., et al.: A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput. Mech. 62, 1071–1085 (2018)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)CrossRefMATH Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)CrossRefMATH
43.
Zurück zum Zitat Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation San Diego, California, 209–217 (2007) Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation San Diego, California, 209–217 (2007)
44.
Zurück zum Zitat Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)CrossRefMATH Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)CrossRefMATH
45.
Zurück zum Zitat Breinlinger, T., Polfer, P., Hashibon, A., et al.: Surface tension and wetting effects with smoothed particle hydrodynamics. J. Comput. Phys. 243, 14–27 (2013)CrossRefMATH Breinlinger, T., Polfer, P., Hashibon, A., et al.: Surface tension and wetting effects with smoothed particle hydrodynamics. J. Comput. Phys. 243, 14–27 (2013)CrossRefMATH
46.
Zurück zum Zitat Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)CrossRef Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)CrossRef
47.
Zurück zum Zitat Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)MathSciNetCrossRefMATH Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Meister, M., Burger, G., Rauch, W.: On the Reynolds number sensitivity of smoothed particle hydrodynamics. J. Hydraul. Res. 52, 824–835 (2014)CrossRef Meister, M., Burger, G., Rauch, W.: On the Reynolds number sensitivity of smoothed particle hydrodynamics. J. Hydraul. Res. 52, 824–835 (2014)CrossRef
49.
Zurück zum Zitat Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)MathSciNetCrossRefMATH Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Monaghan, J.J., Kajtar, J.B.: SPH particle boundary forces for arbitrary boundaries. Comput. Phys. Commun. 180, 1811–1820 (2009)MathSciNetCrossRefMATH Monaghan, J.J., Kajtar, J.B.: SPH particle boundary forces for arbitrary boundaries. Comput. Phys. Commun. 180, 1811–1820 (2009)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)CrossRefMATH Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)CrossRefMATH
52.
Zurück zum Zitat Feldman, J., Bonet, J.: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int. J. Numer. Methods Eng. 72, 295–324 (2007)MathSciNetCrossRefMATH Feldman, J., Bonet, J.: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int. J. Numer. Methods Eng. 72, 295–324 (2007)MathSciNetCrossRefMATH
53.
Zurück zum Zitat Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil–structure interaction. Int. J. Numer. Anal. Methods Geomech. 38, 747–770 (2014)CrossRef Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil–structure interaction. Int. J. Numer. Anal. Methods Geomech. 38, 747–770 (2014)CrossRef
54.
Zurück zum Zitat Schnell, E.: Slippage of water over nonwettable surfaces. J. Appl. Phys. 27, 1149–1152 (1956)CrossRef Schnell, E.: Slippage of water over nonwettable surfaces. J. Appl. Phys. 27, 1149–1152 (1956)CrossRef
55.
Zurück zum Zitat Churaev, N.V., Sobolev, V.D., Somov, A.N.: Slippage of liquids over lyophobic solid surfaces. J. Colloid Interface Sci. 97, 574–581 (1984)CrossRef Churaev, N.V., Sobolev, V.D., Somov, A.N.: Slippage of liquids over lyophobic solid surfaces. J. Colloid Interface Sci. 97, 574–581 (1984)CrossRef
56.
Zurück zum Zitat Cheng, J.T., Giordano, N.: Fluid flow through nanometer-scale channels. Phys. Rev. E 65, 031206 (2002)CrossRef Cheng, J.T., Giordano, N.: Fluid flow through nanometer-scale channels. Phys. Rev. E 65, 031206 (2002)CrossRef
57.
Zurück zum Zitat Choi, C.H., Westin, K.J.A., Breuer, K.S.: Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15, 2897–2902 (2003)CrossRefMATH Choi, C.H., Westin, K.J.A., Breuer, K.S.: Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15, 2897–2902 (2003)CrossRefMATH
58.
Zurück zum Zitat Pit, R., Hervet, H., Leger, L.: Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85, 980–983 (2000)CrossRef Pit, R., Hervet, H., Leger, L.: Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85, 980–983 (2000)CrossRef
59.
Zurück zum Zitat Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)CrossRef Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)CrossRef
60.
Zurück zum Zitat Majumder, M., Chopra, N., Andrews, R., et al.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005)CrossRef Majumder, M., Chopra, N., Andrews, R., et al.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005)CrossRef
61.
Zurück zum Zitat Lee, C., Kim, C.J.C.: Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25, 12812–12818 (2009)CrossRef Lee, C., Kim, C.J.C.: Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25, 12812–12818 (2009)CrossRef
62.
Zurück zum Zitat Ramachandran, P.: A reproducible and high-performance framework for smoothed particle hydrodynamics. In: Proceedings of the 15th Python in Science Conference, pp. 127–135 (2016) Ramachandran, P.: A reproducible and high-performance framework for smoothed particle hydrodynamics. In: Proceedings of the 15th Python in Science Conference, pp. 127–135 (2016)
63.
Zurück zum Zitat Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)CrossRefMATH Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)CrossRefMATH
64.
Zurück zum Zitat Hocking, L.M.: A moving fluid interface on a rough surface. J. Fluid Mech. 76, 801–817 (1976)CrossRefMATH Hocking, L.M.: A moving fluid interface on a rough surface. J. Fluid Mech. 76, 801–817 (1976)CrossRefMATH
65.
Zurück zum Zitat Niavarani, A., Priezjev, N.V.: Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids. Phys. Rev. E 81, 011606 (2010)CrossRef Niavarani, A., Priezjev, N.V.: Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids. Phys. Rev. E 81, 011606 (2010)CrossRef
66.
Zurück zum Zitat Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)CrossRef Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)CrossRef
67.
Zurück zum Zitat Karim, A.M., Rothstein, J.P., Kavehpour, H.P.: Experimental study of dynamic contact angles on rough hydrophobic surfaces. J. Colloid Interface Sci. 513, 658–665 (2018)CrossRef Karim, A.M., Rothstein, J.P., Kavehpour, H.P.: Experimental study of dynamic contact angles on rough hydrophobic surfaces. J. Colloid Interface Sci. 513, 658–665 (2018)CrossRef
68.
Zurück zum Zitat Landau, L.D., Levich, B.: Dynamics of Curved Fronts. Academic, San Diego (1988) Landau, L.D., Levich, B.: Dynamics of Curved Fronts. Academic, San Diego (1988)
69.
Zurück zum Zitat Li, X., Fan, X., Askounis, A., et al.: An experimental study on dynamic pore wettability. Chem. Eng. Sci. 104, 988–997 (2013)CrossRef Li, X., Fan, X., Askounis, A., et al.: An experimental study on dynamic pore wettability. Chem. Eng. Sci. 104, 988–997 (2013)CrossRef
Metadaten
Titel
Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis
verfasst von
Yanyao Bao
Ling Li
Luming Shen
Chengwang Lei
Yixiang Gan
Publikationsdatum
22.02.2019
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2019
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-00837-8

Weitere Artikel der Ausgabe 3/2019

Acta Mechanica Sinica 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.