Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2023

01.04.2023 | Review

Modifying superparamagnetic iron oxides nanoparticles for doxorubicin delivery carriers: a review

verfasst von: Linh Doan, Loc T. Nguyen, Ngan T. N. Nguyen

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cancer—one of the most life-threatening human diseases—can be treated with surgery, chemotherapy, and radiotherapy. Despite the negative side effects, conventional chemotherapy which contains doxorubicin is widely used in cancer treatment. Drug delivery carriers, an alternative cancer treatment, can be used to target tumor site by vectorizing anti-cancer drug and minimize the drug quantities. Due to unique physical and chemical properties, superparamagnetic iron oxide nanoparticles are researched and documented. This work investigates how magnetic drug delivery carriers are synthesized, how the carriers are characterized and quantified, the mechanisms of drug loading/releasing of the carriers including kinetics and thermodynamic parameters, and the future research topics of magnetic drug delivery carriers for loading and releasing doxorubicin.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Senkus E, Jassem J (2011) Cardiovascular effects of systemic cancer treatment. Cancer Treat Rev 37(4):300–311CrossRef Senkus E, Jassem J (2011) Cardiovascular effects of systemic cancer treatment. Cancer Treat Rev 37(4):300–311CrossRef
2.
Zurück zum Zitat Kucharska W, Negrusz-Kawecka M, Gromkowska M (2012) Cardiotoxicity of oncological treatment in children. Adv Clin Exp Med 21(3):281–288 Kucharska W, Negrusz-Kawecka M, Gromkowska M (2012) Cardiotoxicity of oncological treatment in children. Adv Clin Exp Med 21(3):281–288
3.
Zurück zum Zitat Doan L, Lu Y, Karatela M et al (2019) Surface modifications of superparamagnetic iron oxide nanoparticles with polylactic acid-polyethylene glycol diblock copolymer and graphene oxide for a protein delivery vehicle. Engineered Science (7):10–16. https://doi.org/10.30919/es8d510 Doan L, Lu Y, Karatela M et al (2019) Surface modifications of superparamagnetic iron oxide nanoparticles with polylactic acid-polyethylene glycol diblock copolymer and graphene oxide for a protein delivery vehicle. Engineered Science (7):10–16. https://​doi.​org/​10.​30919/​es8d510
4.
Zurück zum Zitat Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2(1):48–58CrossRef Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2(1):48–58CrossRef
5.
Zurück zum Zitat Jin S, Ye K (2013) Targeted drug delivery for breast cancer treatment. Recent Pat Anticancer Drug Discov 8(2):143–153CrossRef Jin S, Ye K (2013) Targeted drug delivery for breast cancer treatment. Recent Pat Anticancer Drug Discov 8(2):143–153CrossRef
6.
Zurück zum Zitat Minotti G, Saponiero A, Licata S et al (2001) Paclitaxel and docetaxel enhance the metabolism of doxorubicin to toxic species in human myocardium. Clin Cancer Res 7(6):1511–1515 Minotti G, Saponiero A, Licata S et al (2001) Paclitaxel and docetaxel enhance the metabolism of doxorubicin to toxic species in human myocardium. Clin Cancer Res 7(6):1511–1515
7.
Zurück zum Zitat Kalyanaraman B (2020) Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol 29:101394CrossRef Kalyanaraman B (2020) Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol 29:101394CrossRef
8.
Zurück zum Zitat Hoke EM, Maylock CA, Shacter E (2005) Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin. Free Radical Biol Med 39(3):403–411CrossRef Hoke EM, Maylock CA, Shacter E (2005) Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin. Free Radical Biol Med 39(3):403–411CrossRef
9.
Zurück zum Zitat Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems: Doxorubicin cell and molecular biological activity. J Pharm Pharmacol 65(2):157–170CrossRef Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems: Doxorubicin cell and molecular biological activity. J Pharm Pharmacol 65(2):157–170CrossRef
10.
Zurück zum Zitat Hanušová V, Boušová I, Skálová L (2011) Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Drug Metab Rev 43(4):540–557CrossRef Hanušová V, Boušová I, Skálová L (2011) Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Drug Metab Rev 43(4):540–557CrossRef
11.
Zurück zum Zitat Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741CrossRef Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741CrossRef
12.
Zurück zum Zitat Carvalho C, Santos RX, Cardoso S et al (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285CrossRef Carvalho C, Santos RX, Cardoso S et al (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285CrossRef
13.
Zurück zum Zitat Binaschi M, Bigioni M, Cipollone A et al (2001) Anthracyclines: selected new developments. Curr Med Chem Anticancer Agents 1(2):113–130CrossRef Binaschi M, Bigioni M, Cipollone A et al (2001) Anthracyclines: selected new developments. Curr Med Chem Anticancer Agents 1(2):113–130CrossRef
14.
Zurück zum Zitat Arpino G, Ciocca DR, Weiss H et al (2005) Predictive value of apoptosis, proliferation, HER-2, and topoisomerase IIalpha for anthracycline chemotherapy in locally advanced breast cancer. Breast Cancer Res Treat 92(1):69–75CrossRef Arpino G, Ciocca DR, Weiss H et al (2005) Predictive value of apoptosis, proliferation, HER-2, and topoisomerase IIalpha for anthracycline chemotherapy in locally advanced breast cancer. Breast Cancer Res Treat 92(1):69–75CrossRef
15.
Zurück zum Zitat Bertheau P, Plassa F, Espié M et al (2002) Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 360(9336):852–854CrossRef Bertheau P, Plassa F, Espié M et al (2002) Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 360(9336):852–854CrossRef
16.
Zurück zum Zitat Clementi ME, Giardina B, Di Stasio E et al (2003) Doxorubicin-derived metabolites induce release of cytochrome C and inhibition of respiration on cardiac isolated mitochondria. Anticancer Res 23(3B):2445–2450 Clementi ME, Giardina B, Di Stasio E et al (2003) Doxorubicin-derived metabolites induce release of cytochrome C and inhibition of respiration on cardiac isolated mitochondria. Anticancer Res 23(3B):2445–2450
17.
Zurück zum Zitat Di Leo A, Isola J (2003) Topoisomerase II alpha as a marker predicting the efficacy of anthracyclines in breast cancer: are we at the end of the beginning? Clin Breast Cancer 4(3):179–186 Di Leo A, Isola J (2003) Topoisomerase II alpha as a marker predicting the efficacy of anthracyclines in breast cancer: are we at the end of the beginning? Clin Breast Cancer 4(3):179–186
18.
Zurück zum Zitat Doroshow JH (1986) Prevention of doxorubicin-induced killing of MCF-7 human breast cancer cells by oxygen radical scavengers and iron chelating agents. Biochem Biophys Res Commun 135(1):330–335CrossRef Doroshow JH (1986) Prevention of doxorubicin-induced killing of MCF-7 human breast cancer cells by oxygen radical scavengers and iron chelating agents. Biochem Biophys Res Commun 135(1):330–335CrossRef
19.
Zurück zum Zitat Dunkern TR, Wedemeyer I, Baumgärtner M et al (2003) Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling. DNA Repair 2(1):49–60CrossRef Dunkern TR, Wedemeyer I, Baumgärtner M et al (2003) Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling. DNA Repair 2(1):49–60CrossRef
20.
Zurück zum Zitat Green PS, Leeuwenburgh C (2002) Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta 1588(1):94–101CrossRef Green PS, Leeuwenburgh C (2002) Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta 1588(1):94–101CrossRef
21.
Zurück zum Zitat Guano F, Pourquier P, Tinelli S et al (1999) Topoisomerase poisoning activity of novel disaccharide anthracyclines. Mol Pharmacol 56(1):77–84CrossRef Guano F, Pourquier P, Tinelli S et al (1999) Topoisomerase poisoning activity of novel disaccharide anthracyclines. Mol Pharmacol 56(1):77–84CrossRef
22.
Zurück zum Zitat Inoue A, Narumi K, Matsubara N et al (2000) Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett 157(1):105–112CrossRef Inoue A, Narumi K, Matsubara N et al (2000) Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett 157(1):105–112CrossRef
23.
Zurück zum Zitat Lage H, Dietel M (2002) Multiple mechanisms confer different drug-resistant phenotypes in pancreatic carcinoma cells. J Cancer Res Clin Oncol 128(7):349–357CrossRef Lage H, Dietel M (2002) Multiple mechanisms confer different drug-resistant phenotypes in pancreatic carcinoma cells. J Cancer Res Clin Oncol 128(7):349–357CrossRef
24.
Zurück zum Zitat Lage H, Helmbach H, Dietel M et al (2000) Modulation of DNA topoisomerase II activity and expression in melanoma cells with acquired drug resistance. Br J Cancer 82(2):488–491CrossRef Lage H, Helmbach H, Dietel M et al (2000) Modulation of DNA topoisomerase II activity and expression in melanoma cells with acquired drug resistance. Br J Cancer 82(2):488–491CrossRef
25.
Zurück zum Zitat MacGrogan G, Rudolph P, de Mascarel Id I et al (2003) DNA topoisomerase IIalpha expression and the response toprimary chemotherapy in breast cancer. Br J Cancer 89(4):666–671CrossRef MacGrogan G, Rudolph P, de Mascarel Id I et al (2003) DNA topoisomerase IIalpha expression and the response toprimary chemotherapy in breast cancer. Br J Cancer 89(4):666–671CrossRef
26.
Zurück zum Zitat Penault-Llorca F, Cayre A, Bouchet Mishellany F et al (2003) Induction chemotherapy for breast carcinoma: predictive markers and relation with outcome. Int J Oncol 22(6):1319–1325 Penault-Llorca F, Cayre A, Bouchet Mishellany F et al (2003) Induction chemotherapy for breast carcinoma: predictive markers and relation with outcome. Int J Oncol 22(6):1319–1325
27.
Zurück zum Zitat Perego P, Corna E, De Cesare M et al (2001) Role of apoptosis and apoptosis-related genes in cellular response and antitumor efficacy of anthracyclines. Curr Med Chem 8(1):31–37CrossRef Perego P, Corna E, De Cesare M et al (2001) Role of apoptosis and apoptosis-related genes in cellular response and antitumor efficacy of anthracyclines. Curr Med Chem 8(1):31–37CrossRef
28.
Zurück zum Zitat Ramachandran C, Samy TS, Huang XL et al (1993) Doxorubicin-induced DNA breaks, topoisomerase II activity and gene expression in human melanoma cells. Biochem Pharmacol 45(6):1367–1371CrossRef Ramachandran C, Samy TS, Huang XL et al (1993) Doxorubicin-induced DNA breaks, topoisomerase II activity and gene expression in human melanoma cells. Biochem Pharmacol 45(6):1367–1371CrossRef
29.
Zurück zum Zitat Ruiz-Ruiz C, Robledo G, Cano E et al (2003) Characterization of p53-mediated up-regulation of CD95 gene expression upon genotoxic treatment in human breast tumor cells. J Biol Chem 278(34):31667–31675CrossRef Ruiz-Ruiz C, Robledo G, Cano E et al (2003) Characterization of p53-mediated up-regulation of CD95 gene expression upon genotoxic treatment in human breast tumor cells. J Biol Chem 278(34):31667–31675CrossRef
30.
Zurück zum Zitat Sinha BK, Katki AG, Batist G et al (1987) Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. Biochem Pharmacol 36(6):793–796CrossRef Sinha BK, Katki AG, Batist G et al (1987) Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. Biochem Pharmacol 36(6):793–796CrossRef
31.
Zurück zum Zitat Stearns V, Singh B, Tsangaris T et al (2003) A prospective randomized pilot study to evaluate predictors of response in serial core biopsies to single agent neoadjuvant doxorubicin or paclitaxel for patients with locally advanced breast cancer. Clin Cancer Res 9(1):124–133 Stearns V, Singh B, Tsangaris T et al (2003) A prospective randomized pilot study to evaluate predictors of response in serial core biopsies to single agent neoadjuvant doxorubicin or paclitaxel for patients with locally advanced breast cancer. Clin Cancer Res 9(1):124–133
32.
Zurück zum Zitat Lipshultz SE, Lipsitz SR, Sallan SE et al (2005) Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. JCO 23(12):2629–2636CrossRef Lipshultz SE, Lipsitz SR, Sallan SE et al (2005) Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. JCO 23(12):2629–2636CrossRef
33.
Zurück zum Zitat Iarussi D, Indolfi P, Casale F et al (2005) Anthracycline-induced cardiotoxicity in children with cancer: strategies for prevention and management. Pediatr Drugs 7(2):67–76CrossRef Iarussi D, Indolfi P, Casale F et al (2005) Anthracycline-induced cardiotoxicity in children with cancer: strategies for prevention and management. Pediatr Drugs 7(2):67–76CrossRef
34.
Zurück zum Zitat Sorensen K, Levitt GA, Bull C et al (2003) Late anthracycline cardiotoxicity after childhood cancer. Cancer 97(8):1991–1998CrossRef Sorensen K, Levitt GA, Bull C et al (2003) Late anthracycline cardiotoxicity after childhood cancer. Cancer 97(8):1991–1998CrossRef
35.
Zurück zum Zitat Doyle JJ, Neugut AI, Jacobson JS et al (2005) Chemotherapy and cardiotoxicity in older breast cancer patients: a population-based study. JCO 23(34):8597–8605CrossRef Doyle JJ, Neugut AI, Jacobson JS et al (2005) Chemotherapy and cardiotoxicity in older breast cancer patients: a population-based study. JCO 23(34):8597–8605CrossRef
36.
Zurück zum Zitat Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339(13):900–905CrossRef Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339(13):900–905CrossRef
37.
Zurück zum Zitat Chlebowski RT (1979) Adriamycin (doxorubicin) cardiotoxicity: a review. West J Med 131(5):364–368 Chlebowski RT (1979) Adriamycin (doxorubicin) cardiotoxicity: a review. West J Med 131(5):364–368
38.
Zurück zum Zitat Bristow MR, Billingham ME, Mason JW et al (1978) Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep 62(6):873–879 Bristow MR, Billingham ME, Mason JW et al (1978) Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep 62(6):873–879
39.
Zurück zum Zitat Zhao X, Zhang J, Tong N et al (2012) Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biol Pharm Bull 35(5):796–800CrossRef Zhao X, Zhang J, Tong N et al (2012) Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biol Pharm Bull 35(5):796–800CrossRef
40.
Zurück zum Zitat Jacevic V, Djordjevic A, Srdjenovic B et al (2017) Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Exp Mol Pathol 102(2):360–369CrossRef Jacevic V, Djordjevic A, Srdjenovic B et al (2017) Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Exp Mol Pathol 102(2):360–369CrossRef
41.
Zurück zum Zitat Pugazhendhi A, Edison TNJI, Velmurugan BK et al (2018) Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci 200:26–30CrossRef Pugazhendhi A, Edison TNJI, Velmurugan BK et al (2018) Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci 200:26–30CrossRef
42.
Zurück zum Zitat Nowara E, Huszno J (2013) Skin toxicity after palliative chemotherapy containing pegylated liposomal doxorubicin for ovarian cancer patients. Ann Palliat Med 2(2):71–75 Nowara E, Huszno J (2013) Skin toxicity after palliative chemotherapy containing pegylated liposomal doxorubicin for ovarian cancer patients. Ann Palliat Med 2(2):71–75
43.
Zurück zum Zitat Siswanto S, Arozal W, Juniantito V et al (2016) The effect of mangiferin against brain damage caused by oxidative stress and inflammation induced by doxorubicin. HAYATI J Biosci 23(2):51–55CrossRef Siswanto S, Arozal W, Juniantito V et al (2016) The effect of mangiferin against brain damage caused by oxidative stress and inflammation induced by doxorubicin. HAYATI J Biosci 23(2):51–55CrossRef
44.
Zurück zum Zitat Tangpong J, Miriyala S, Noel T et al (2011) Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia Mangostana. Neuroscience 175:292–299CrossRef Tangpong J, Miriyala S, Noel T et al (2011) Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia Mangostana. Neuroscience 175:292–299CrossRef
45.
Zurück zum Zitat Su Z, Ye J, Qin Z et al (2016) Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro. Sci Rep 5(1):18314CrossRef Su Z, Ye J, Qin Z et al (2016) Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro. Sci Rep 5(1):18314CrossRef
46.
Zurück zum Zitat Kim DR, Lee SY, Kim JS et al (2017) Ameliorating effect of gemigliptin on renal injury in murine adriamycin-induced nephropathy. Biomed Res Int 2017:1–10 Kim DR, Lee SY, Kim JS et al (2017) Ameliorating effect of gemigliptin on renal injury in murine adriamycin-induced nephropathy. Biomed Res Int 2017:1–10
47.
Zurück zum Zitat Kabel AM (2018) Zinc/alogliptin combination attenuates testicular toxicity induced by doxorubicin in rats: role of oxidative stress, apoptosis and TGF-β1/NF-κB signaling. Biomed Pharmacother 97:439–449CrossRef Kabel AM (2018) Zinc/alogliptin combination attenuates testicular toxicity induced by doxorubicin in rats: role of oxidative stress, apoptosis and TGF-β1/NF-κB signaling. Biomed Pharmacother 97:439–449CrossRef
48.
Zurück zum Zitat Leonard RCF, Williams S, Tulpule A et al (2009) Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet™). The Breast 18(4):218–224CrossRef Leonard RCF, Williams S, Tulpule A et al (2009) Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet™). The Breast 18(4):218–224CrossRef
49.
Zurück zum Zitat Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8(6):473–480CrossRef Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8(6):473–480CrossRef
50.
Zurück zum Zitat Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46(40):7548–7558CrossRef Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46(40):7548–7558CrossRef
51.
Zurück zum Zitat Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764CrossRef Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764CrossRef
52.
Zurück zum Zitat Kohzadi S, Najmoddin N, Baharifar H et al (2022) Functionalized SPION immobilized on graphene-oxide: anticancer and antiviral study. Diam Relat Mater 127:109149CrossRef Kohzadi S, Najmoddin N, Baharifar H et al (2022) Functionalized SPION immobilized on graphene-oxide: anticancer and antiviral study. Diam Relat Mater 127:109149CrossRef
53.
Zurück zum Zitat Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health, Part A 41(12):2699–2711CrossRef Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health, Part A 41(12):2699–2711CrossRef
54.
Zurück zum Zitat Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983CrossRef Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983CrossRef
55.
Zurück zum Zitat Kim JS, Yoon TJ, Yu KN et al (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89(1):338–347CrossRef Kim JS, Yoon TJ, Yu KN et al (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89(1):338–347CrossRef
56.
Zurück zum Zitat Karlsson HL, Gustafsson J, Cronholm P et al (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118CrossRef Karlsson HL, Gustafsson J, Cronholm P et al (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118CrossRef
57.
Zurück zum Zitat Ma H-L, Qi XR, Maitani Y et al (2007) Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 333(1):177–186CrossRef Ma H-L, Qi XR, Maitani Y et al (2007) Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 333(1):177–186CrossRef
58.
Zurück zum Zitat Rahmani R, Gharanfoli M, Gholamin M et al (2020) Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceram Int 46(3):3051–3058CrossRef Rahmani R, Gharanfoli M, Gholamin M et al (2020) Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceram Int 46(3):3051–3058CrossRef
59.
Zurück zum Zitat Singh N, Jenkins GJS, Asadi R et al (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews 1(1):5358CrossRef Singh N, Jenkins GJS, Asadi R et al (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews 1(1):5358CrossRef
60.
Zurück zum Zitat Gao S, Wu C, Jiang H et al (2014) Size-controlled porous superparamagnetic Zn1/3Fe8/3O4 nanospheres: synthesis, properties and application for drug delivery. RSC Advances 4:20841–20846CrossRef Gao S, Wu C, Jiang H et al (2014) Size-controlled porous superparamagnetic Zn1/3Fe8/3O4 nanospheres: synthesis, properties and application for drug delivery. RSC Advances 4:20841–20846CrossRef
61.
Zurück zum Zitat Min KA, Shin MC, Yu F et al (2013) Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers. ACS Nano 7(3):2161–2171CrossRef Min KA, Shin MC, Yu F et al (2013) Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers. ACS Nano 7(3):2161–2171CrossRef
62.
Zurück zum Zitat Min KA, Yu F, Yang VC et al (2010) Transcellular transport of heparin-coated magnetic iron oxide nanoparticles (Hep-MION) under the influence of an applied magnetic field. Pharmaceutics 2(2):119–135CrossRef Min KA, Yu F, Yang VC et al (2010) Transcellular transport of heparin-coated magnetic iron oxide nanoparticles (Hep-MION) under the influence of an applied magnetic field. Pharmaceutics 2(2):119–135CrossRef
63.
Zurück zum Zitat Domenech M, Marrero-Berrios I, Torres-Lugo M et al (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7(6):5091–5101CrossRef Domenech M, Marrero-Berrios I, Torres-Lugo M et al (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7(6):5091–5101CrossRef
64.
Zurück zum Zitat Alexiou C, Arnold W, Klein RJ et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60(23):6641–6648 Alexiou C, Arnold W, Klein RJ et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60(23):6641–6648
65.
Zurück zum Zitat Alexiou C, Schmid RJ, Jurgons R et al (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35(5):446–450CrossRef Alexiou C, Schmid RJ, Jurgons R et al (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35(5):446–450CrossRef
66.
Zurück zum Zitat Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRef Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRef
67.
Zurück zum Zitat Pankhurst QA, Connolly J, Jones SK et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36(13):R167–R181CrossRef Pankhurst QA, Connolly J, Jones SK et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36(13):R167–R181CrossRef
68.
Zurück zum Zitat Lübbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95(2):200–206CrossRef Lübbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95(2):200–206CrossRef
69.
Zurück zum Zitat Lübbe AS, Bergemann C, Riess H et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693 Lübbe AS, Bergemann C, Riess H et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693
70.
Zurück zum Zitat Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nature Mater 12(11):991–1003CrossRef Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nature Mater 12(11):991–1003CrossRef
71.
Zurück zum Zitat Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852CrossRef Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852CrossRef
72.
Zurück zum Zitat Curcio A, Marotta R, Riedinger A et al (2012) Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chem Commun 48(18):2400CrossRef Curcio A, Marotta R, Riedinger A et al (2012) Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chem Commun 48(18):2400CrossRef
73.
Zurück zum Zitat Yu MK, Jeong YY, Park J et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 47(29):5362–5365CrossRef Yu MK, Jeong YY, Park J et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 47(29):5362–5365CrossRef
74.
Zurück zum Zitat Sanson C, Diou O, Thévenot J et al (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2):1122–1140CrossRef Sanson C, Diou O, Thévenot J et al (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2):1122–1140CrossRef
75.
Zurück zum Zitat Amstad E, Kohlbrecher J, Müller E et al (2011) Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11(4):1664–1670CrossRef Amstad E, Kohlbrecher J, Müller E et al (2011) Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11(4):1664–1670CrossRef
76.
Zurück zum Zitat Gupta AK, Naregalkar RR, Vaidya VD et al (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2(1):23–39CrossRef Gupta AK, Naregalkar RR, Vaidya VD et al (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2(1):23–39CrossRef
77.
Zurück zum Zitat Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573CrossRef Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573CrossRef
78.
Zurück zum Zitat Duguet E, Vasseur S, Mornet S et al (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1(2):157–168CrossRef Duguet E, Vasseur S, Mornet S et al (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1(2):157–168CrossRef
79.
Zurück zum Zitat Gurzau ES, Neagu C, Gurzau AE (2003) Essential metals—case study on iron. Ecotoxicol Environ Saf 56(1):190–200CrossRef Gurzau ES, Neagu C, Gurzau AE (2003) Essential metals—case study on iron. Ecotoxicol Environ Saf 56(1):190–200CrossRef
80.
Zurück zum Zitat Elias A, Tourkas A (2009) Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology 1:720–726CrossRef Elias A, Tourkas A (2009) Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology 1:720–726CrossRef
81.
Zurück zum Zitat Veranth JM, Kaser EG, Veranth MM et al (2007) Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4(1):2CrossRef Veranth JM, Kaser EG, Veranth MM et al (2007) Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4(1):2CrossRef
82.
Zurück zum Zitat Häfeli UO, Riffle JS, Harris-Shekhawat L et al (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharmaceutics 6(5):1417–1428CrossRef Häfeli UO, Riffle JS, Harris-Shekhawat L et al (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharmaceutics 6(5):1417–1428CrossRef
83.
Zurück zum Zitat Stroh A, Zimmer C, Gutzeit C et al (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radical Biol Med 36(8):976–984CrossRef Stroh A, Zimmer C, Gutzeit C et al (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radical Biol Med 36(8):976–984CrossRef
84.
Zurück zum Zitat Sadeghiani N, Barbosa LS, Silva LP et al (2005) Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater 289:466–468CrossRef Sadeghiani N, Barbosa LS, Silva LP et al (2005) Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater 289:466–468CrossRef
85.
Zurück zum Zitat Ejderyan N, Sanyal R, Sanyal A (2022) Stimuli-responsive polymer-coated iron oxide nanoparticles as drug delivery platforms. In Stimuli-responsive nanocarriers 133–169 Ejderyan N, Sanyal R, Sanyal A (2022) Stimuli-responsive polymer-coated iron oxide nanoparticles as drug delivery platforms. In Stimuli-responsive nanocarriers 133–169
86.
Zurück zum Zitat Basuki JS, Jacquemin A, Esser L et al (2014) A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents. Polym Chem 5(7):2611–2620CrossRef Basuki JS, Jacquemin A, Esser L et al (2014) A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents. Polym Chem 5(7):2611–2620CrossRef
87.
Zurück zum Zitat Herranz F, Salinas B, Groult H et al (2014) Superparamagnetic nanoparticles for atherosclerosis imaging. Nanomaterials 4(2):408–438CrossRef Herranz F, Salinas B, Groult H et al (2014) Superparamagnetic nanoparticles for atherosclerosis imaging. Nanomaterials 4(2):408–438CrossRef
88.
Zurück zum Zitat Jensen KMØ, Andersen HL, Tyrsted C et al (2014) Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS Nano 8(10):10704–10714CrossRef Jensen KMØ, Andersen HL, Tyrsted C et al (2014) Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS Nano 8(10):10704–10714CrossRef
89.
Zurück zum Zitat Kurzhals S, Zirbs R, Reimhult E (2015) Synthesis and magneto-thermal actuation of iron oxide core–PNIPAM shell nanoparticles. ACS Appl Mater Interfaces 7(34):19342–19352CrossRef Kurzhals S, Zirbs R, Reimhult E (2015) Synthesis and magneto-thermal actuation of iron oxide core–PNIPAM shell nanoparticles. ACS Appl Mater Interfaces 7(34):19342–19352CrossRef
90.
Zurück zum Zitat Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191(1):235–237CrossRef Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191(1):235–237CrossRef
91.
Zurück zum Zitat Wang J, Sun J, Sun Q et al (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38(7):1113–1118CrossRef Wang J, Sun J, Sun Q et al (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38(7):1113–1118CrossRef
92.
Zurück zum Zitat Mao B, Kang Z, Wang E et al (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41(12):2226–2231CrossRef Mao B, Kang Z, Wang E et al (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41(12):2226–2231CrossRef
93.
Zurück zum Zitat Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205CrossRef Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205CrossRef
94.
Zurück zum Zitat Lassenberger A, Grünewald TA, van Oostrum PDJ et al (2017) Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem Mater 29(10):4511–4522CrossRef Lassenberger A, Grünewald TA, van Oostrum PDJ et al (2017) Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem Mater 29(10):4511–4522CrossRef
95.
Zurück zum Zitat Park J, An K, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater 3(12):891–895CrossRef Park J, An K, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater 3(12):891–895CrossRef
96.
Zurück zum Zitat Guardia P, Pérez-Juste J, Labarta A et al (2010) Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. Chem Commun 46(33):6108–6110CrossRef Guardia P, Pérez-Juste J, Labarta A et al (2010) Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. Chem Commun 46(33):6108–6110CrossRef
97.
Zurück zum Zitat Riaz S, Bashir M, Naseem S (2014) Iron oxide nanoparticles prepared by modified co-precipitation method. IEEE Trans Magn 50(1):1–4 Riaz S, Bashir M, Naseem S (2014) Iron oxide nanoparticles prepared by modified co-precipitation method. IEEE Trans Magn 50(1):1–4
98.
Zurück zum Zitat Kang YS, Risbud S, Rabolt JF et al (1996) Synthesis and characterization of nanometer-size Fe 3 O 4 and γ-Fe 2 O 3 particles. Chem Mater 8(9):2209–2211CrossRef Kang YS, Risbud S, Rabolt JF et al (1996) Synthesis and characterization of nanometer-size Fe 3 O 4 and γ-Fe 2 O 3 particles. Chem Mater 8(9):2209–2211CrossRef
99.
Zurück zum Zitat Bruce IJ, Taylor J, Todd M et al (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160CrossRef Bruce IJ, Taylor J, Todd M et al (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160CrossRef
100.
Zurück zum Zitat Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRef Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRef
101.
Zurück zum Zitat Gupta AK, Curtis ASG (2004) Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25(15):3029–3040CrossRef Gupta AK, Curtis ASG (2004) Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25(15):3029–3040CrossRef
102.
Zurück zum Zitat Kim DK, Zhang Y, Voit W et al (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36CrossRef Kim DK, Zhang Y, Voit W et al (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36CrossRef
103.
Zurück zum Zitat Marinin A (2012) Synthesis and characterization of superparamagnetic iron oxide nanoparticles coated with silica [Internet] [Master Thesis]. [Stockholm]: Royal Institute of Technology Marinin A (2012) Synthesis and characterization of superparamagnetic iron oxide nanoparticles coated with silica [Internet] [Master Thesis]. [Stockholm]: Royal Institute of Technology
104.
Zurück zum Zitat Muthiah M, Park IK, Cho CS (2013) Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31(8):1224–1236CrossRef Muthiah M, Park IK, Cho CS (2013) Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31(8):1224–1236CrossRef
105.
Zurück zum Zitat Gribanov NM, Bibik EE, Buzunov OV et al (1990) Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater 85(1–3):7–10CrossRef Gribanov NM, Bibik EE, Buzunov OV et al (1990) Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater 85(1–3):7–10CrossRef
106.
107.
Zurück zum Zitat Karbarz M, Dagdelen S, Mackiewicz M et al (2023) Redox-responsive degradable microgel modified with superparamagnetic nanoparticles exhibiting controlled, hyperthermia-enhanced drug release. J Mater Sci 58:4094–4114CrossRef Karbarz M, Dagdelen S, Mackiewicz M et al (2023) Redox-responsive degradable microgel modified with superparamagnetic nanoparticles exhibiting controlled, hyperthermia-enhanced drug release. J Mater Sci 58:4094–4114CrossRef
108.
Zurück zum Zitat Noh K, Uthaman S, Lee CS et al (2022) Tumor intracellular microenvironment-responsive nanoparticles for magnetically targeted chemotherapy. J Ind Eng Chem 111:121–128CrossRef Noh K, Uthaman S, Lee CS et al (2022) Tumor intracellular microenvironment-responsive nanoparticles for magnetically targeted chemotherapy. J Ind Eng Chem 111:121–128CrossRef
109.
Zurück zum Zitat Nguyen MP, Kim Y, Ryu D et al (2022) Targeted chemotherapy based on amplifying the reactive oxygen species of doxorubicin-loaded polyaspartamide-encapsulated iron oxide nanoparticles. ACS Appl Nano Mater 5(5):7619–7631CrossRef Nguyen MP, Kim Y, Ryu D et al (2022) Targeted chemotherapy based on amplifying the reactive oxygen species of doxorubicin-loaded polyaspartamide-encapsulated iron oxide nanoparticles. ACS Appl Nano Mater 5(5):7619–7631CrossRef
111.
Zurück zum Zitat Sjøgren CE, Briley-Saebø K, Hanson M et al (1994) Magnetic characterization of iron oxides for magnetic resonance imaging. Magn Reson Med 31(3):268–272CrossRef Sjøgren CE, Briley-Saebø K, Hanson M et al (1994) Magnetic characterization of iron oxides for magnetic resonance imaging. Magn Reson Med 31(3):268–272CrossRef
112.
Zurück zum Zitat Babes L, Denizot B, Tanguy G et al (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212(2):474–482CrossRef Babes L, Denizot B, Tanguy G et al (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212(2):474–482CrossRef
113.
Zurück zum Zitat Tartaj P, Morales MP, Veintemillas-Verdaguer S et al (2006) Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook of magnetic materials 16(5):403–482 Tartaj P, Morales MP, Veintemillas-Verdaguer S et al (2006) Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook of magnetic materials 16(5):403–482
114.
Zurück zum Zitat Hyeon T, Lee SS, Park J et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801CrossRef Hyeon T, Lee SS, Park J et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801CrossRef
115.
Zurück zum Zitat Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33(7):1015–1021CrossRef Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33(7):1015–1021CrossRef
116.
Zurück zum Zitat Sato S, Murakata T, Yanagi H et al (1994) Hydrothermal synthesis of fine perovskite PbTiO3 powders with a simple mode of size distribution. J Mater Sci 29(21):5657–5663CrossRef Sato S, Murakata T, Yanagi H et al (1994) Hydrothermal synthesis of fine perovskite PbTiO3 powders with a simple mode of size distribution. J Mater Sci 29(21):5657–5663CrossRef
117.
Zurück zum Zitat Park J, Lee E, Hwang NM et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed 44(19):2872–2877CrossRef Park J, Lee E, Hwang NM et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed 44(19):2872–2877CrossRef
118.
Zurück zum Zitat Dai Z, Meiser F, Möhwald H (2005) Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J Colloid Interface Sci 288(1):298–300CrossRef Dai Z, Meiser F, Möhwald H (2005) Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J Colloid Interface Sci 288(1):298–300CrossRef
119.
Zurück zum Zitat Durães L, Costa BFO, Vasques J et al (2005) Phase investigation of as-prepared iron oxide/hydroxide produced by sol–gel synthesis. Mater Lett 59(7):859–863CrossRef Durães L, Costa BFO, Vasques J et al (2005) Phase investigation of as-prepared iron oxide/hydroxide produced by sol–gel synthesis. Mater Lett 59(7):859–863CrossRef
120.
Zurück zum Zitat Ismail AA (2005) Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol–gel method. Appl Catal B 58(1):115–121CrossRef Ismail AA (2005) Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol–gel method. Appl Catal B 58(1):115–121CrossRef
121.
Zurück zum Zitat Liu XQ, Tao SW, Shen YS (1997) Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process. Sens Actuators, B Chem 40(2):161–165CrossRef Liu XQ, Tao SW, Shen YS (1997) Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process. Sens Actuators, B Chem 40(2):161–165CrossRef
122.
Zurück zum Zitat Kojima K, Miyazaki M, Mizukami F et al (1997) Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J Sol-Gel Sci Technol 8(1):77–81CrossRef Kojima K, Miyazaki M, Mizukami F et al (1997) Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J Sol-Gel Sci Technol 8(1):77–81CrossRef
123.
Zurück zum Zitat Cannas C, Gatteschi D, Musinu A et al (1998) Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix. J Phys Chem B 102(40):7721–7726CrossRef Cannas C, Gatteschi D, Musinu A et al (1998) Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix. J Phys Chem B 102(40):7721–7726CrossRef
124.
Zurück zum Zitat Ennas G, Musinu A, Piccaluga G et al (1998) Characterization of iron oxide nanoparticles in an Fe2O3−SiO2 composite prepared by a sol−gel method. Chem Mater 10(2):495–502CrossRef Ennas G, Musinu A, Piccaluga G et al (1998) Characterization of iron oxide nanoparticles in an Fe2O3−SiO2 composite prepared by a sol−gel method. Chem Mater 10(2):495–502CrossRef
125.
Zurück zum Zitat da Costa GM, De Grave E, de Bakker PMA et al (1994) Synthesis and characterization of some iron oxides by sol-gel method. J Solid State Chem 113(2):405–412CrossRef da Costa GM, De Grave E, de Bakker PMA et al (1994) Synthesis and characterization of some iron oxides by sol-gel method. J Solid State Chem 113(2):405–412CrossRef
126.
Zurück zum Zitat del Monte F, Morales MP, Levy D et al (1997) Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 13(14):3627–3634CrossRef del Monte F, Morales MP, Levy D et al (1997) Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 13(14):3627–3634CrossRef
127.
Zurück zum Zitat Chanéac C, Tronc E, Jolivet JP (1995) Thermal behavior of spinel iron oxide-silica composites. Nanostruct Mater 6(5):715–718CrossRef Chanéac C, Tronc E, Jolivet JP (1995) Thermal behavior of spinel iron oxide-silica composites. Nanostruct Mater 6(5):715–718CrossRef
128.
Zurück zum Zitat Niznansky D, Rehspringer JL, Drillon M (1994) Preparation of magnetic nanoparticles (/spl gamma/-Fe/sub 2/O/sub 3/) in the silica matrix. IEEE Trans Magn 30(2):821–823CrossRef Niznansky D, Rehspringer JL, Drillon M (1994) Preparation of magnetic nanoparticles (/spl gamma/-Fe/sub 2/O/sub 3/) in the silica matrix. IEEE Trans Magn 30(2):821–823CrossRef
129.
Zurück zum Zitat Bentivegna F, Nyvlt M, Ferré J et al (1999) Magnetically textured γ-Fe2O3 nanoparticles in a silica gel matrix: optical and magneto-optical properties. J Appl Phys 85(4):2270–2278CrossRef Bentivegna F, Nyvlt M, Ferré J et al (1999) Magnetically textured γ-Fe2O3 nanoparticles in a silica gel matrix: optical and magneto-optical properties. J Appl Phys 85(4):2270–2278CrossRef
130.
Zurück zum Zitat Solinas S, Piccaluga G, Morales MP et al (2001) Sol-gel formation of γ-Fe2O3/SiO2 nanocomposites. Acta Mater 49(14):2805–2811CrossRef Solinas S, Piccaluga G, Morales MP et al (2001) Sol-gel formation of γ-Fe2O3/SiO2 nanocomposites. Acta Mater 49(14):2805–2811CrossRef
131.
Zurück zum Zitat Fievet F, Lagier JP, Blin B et al (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32–33:198–205CrossRef Fievet F, Lagier JP, Blin B et al (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32–33:198–205CrossRef
132.
Zurück zum Zitat Tzitzios VK, Petridis D, Zafiropoulou I et al (2005) Synthesis and characterization of L10 FePt nanoparticles from Pt–Fe3O4 core-shell nanoparticles. J Magn Magn Mater 294(2):e95–e98CrossRef Tzitzios VK, Petridis D, Zafiropoulou I et al (2005) Synthesis and characterization of L10 FePt nanoparticles from Pt–Fe3O4 core-shell nanoparticles. J Magn Magn Mater 294(2):e95–e98CrossRef
133.
Zurück zum Zitat Chow GM, Kurihara LK, Kemner KM et al (1995) Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process. J Mater Res 10(6):1546–1554CrossRef Chow GM, Kurihara LK, Kemner KM et al (1995) Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process. J Mater Res 10(6):1546–1554CrossRef
134.
Zurück zum Zitat Viau G, Ravel F, Acher O et al (1994) Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles. J Appl Phys 76(10):6570–6572CrossRef Viau G, Ravel F, Acher O et al (1994) Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles. J Appl Phys 76(10):6570–6572CrossRef
135.
Zurück zum Zitat Viau G, Ravel F, Acher O et al (1995) Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles. J Magn Magn Mater 140–144:377–378CrossRef Viau G, Ravel F, Acher O et al (1995) Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles. J Magn Magn Mater 140–144:377–378CrossRef
136.
Zurück zum Zitat Viau G, Fiévet-Vincent F, Fiévet F (1996) Monodisperse iron-based particles: precipitation in liquid polyols. J Mater Chem 6(6):1047–1053CrossRef Viau G, Fiévet-Vincent F, Fiévet F (1996) Monodisperse iron-based particles: precipitation in liquid polyols. J Mater Chem 6(6):1047–1053CrossRef
137.
Zurück zum Zitat Viau G, Fiévet-Vincent F, Fiévet F (1996) Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ionics 84(3):259–270CrossRef Viau G, Fiévet-Vincent F, Fiévet F (1996) Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ionics 84(3):259–270CrossRef
138.
Zurück zum Zitat Viau G, Fiévet-Vincent F, Fiévet F et al (1997) Size dependence of microwave permeability of spherical ferromagnetic particles. J Appl Phys 81(6):2749–2754CrossRef Viau G, Fiévet-Vincent F, Fiévet F et al (1997) Size dependence of microwave permeability of spherical ferromagnetic particles. J Appl Phys 81(6):2749–2754CrossRef
139.
Zurück zum Zitat Toneguzzo Ph, Acher O, Viau G et al (1997) Observations of exchange resonance modes on submicrometer sized ferromagnetic particles. J Appl Phys 81(8):5546–5548CrossRef Toneguzzo Ph, Acher O, Viau G et al (1997) Observations of exchange resonance modes on submicrometer sized ferromagnetic particles. J Appl Phys 81(8):5546–5548CrossRef
140.
Zurück zum Zitat Toneguzzo P, Viau G, Acher O et al (1998) Monodisperse ferromagnetic particles for microwave applications. Adv Mater 10(13):1032–1035CrossRef Toneguzzo P, Viau G, Acher O et al (1998) Monodisperse ferromagnetic particles for microwave applications. Adv Mater 10(13):1032–1035CrossRef
141.
Zurück zum Zitat Toneguzzo P, Acher O, Viau G et al (1999) Static and dynamic magnetic properties of fine CoNi and FeCoNi particles synthesized by the polyol process. IEEE Trans Magn 35(5):3469–3471CrossRef Toneguzzo P, Acher O, Viau G et al (1999) Static and dynamic magnetic properties of fine CoNi and FeCoNi particles synthesized by the polyol process. IEEE Trans Magn 35(5):3469–3471CrossRef
142.
Zurück zum Zitat Yu S, Chow GM (2006) Synthesis of monodisperse iron oxide and iron/iron oxide core/shell nanoparticles via iron-oleylamine complex. J Nanosci Nanotechnol 6(7):2135–2140CrossRef Yu S, Chow GM (2006) Synthesis of monodisperse iron oxide and iron/iron oxide core/shell nanoparticles via iron-oleylamine complex. J Nanosci Nanotechnol 6(7):2135–2140CrossRef
143.
Zurück zum Zitat Hegde MS, Larcher D, Dupont L et al (1996) Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders. Solid State Ionics 93(1):33–50CrossRef Hegde MS, Larcher D, Dupont L et al (1996) Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders. Solid State Ionics 93(1):33–50CrossRef
144.
Zurück zum Zitat Saravanan P, Jose TA, Thomas PJ et al (2001) Submicron particles of Co, Ni and Co-Ni alloys. Bull Mater Sci 24(5):515–521CrossRef Saravanan P, Jose TA, Thomas PJ et al (2001) Submicron particles of Co, Ni and Co-Ni alloys. Bull Mater Sci 24(5):515–521CrossRef
145.
Zurück zum Zitat Jungk HO, Feldmann C (2000) Nonagglomerated, submicron α–Fe2O3 particles: preparation and application. J Mater Res 15(10):2244–2248CrossRef Jungk HO, Feldmann C (2000) Nonagglomerated, submicron α–Fe2O3 particles: preparation and application. J Mater Res 15(10):2244–2248CrossRef
146.
Zurück zum Zitat Feldmann C (2001) Preparation of nanoscale pigment particles. Adv Mater 13(17):1301–1303CrossRef Feldmann C (2001) Preparation of nanoscale pigment particles. Adv Mater 13(17):1301–1303CrossRef
147.
Zurück zum Zitat Bianco A, Gusmano G, Montanari R et al (1994) Preparation of Ni Co metal powders by co-reduction of Ni (II) and Co(II) hydroxides for magnetoresistive sensors. Mater Lett 19(5):263–268CrossRef Bianco A, Gusmano G, Montanari R et al (1994) Preparation of Ni Co metal powders by co-reduction of Ni (II) and Co(II) hydroxides for magnetoresistive sensors. Mater Lett 19(5):263–268CrossRef
148.
Zurück zum Zitat Bianco A, Gusmano G, Montanari R et al (1995) Microstructural characterisation of Ni, Co and Ni Co fine powders for physical sensors. Thermochim Acta 269–270:117–132CrossRef Bianco A, Gusmano G, Montanari R et al (1995) Microstructural characterisation of Ni, Co and Ni Co fine powders for physical sensors. Thermochim Acta 269–270:117–132CrossRef
149.
Zurück zum Zitat Kurihara LK, Chow GM, Schoen PE (1995) Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct Mater 5(6):607–613CrossRef Kurihara LK, Chow GM, Schoen PE (1995) Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct Mater 5(6):607–613CrossRef
150.
Zurück zum Zitat Ammar S, Helfen A, Jouini N et al (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol mediumBasis of a presentation given at Materials Discussion No. 3, 26–29 September, 2000, University of Cambridge. UK. J Mater Chem 11(1):186–92CrossRef Ammar S, Helfen A, Jouini N et al (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol mediumBasis of a presentation given at Materials Discussion No. 3, 26–29 September, 2000, University of Cambridge. UK. J Mater Chem 11(1):186–92CrossRef
151.
Zurück zum Zitat Yu W, Wang Y, Liu H et al (1996) Preparation and characterization of polymer-protected PtCo bimetallic colloids and their catalytic properties in the selective hydrogenation of cinnamaldehyde. J Mol Catal A: Chem 112(1):105–113CrossRef Yu W, Wang Y, Liu H et al (1996) Preparation and characterization of polymer-protected PtCo bimetallic colloids and their catalytic properties in the selective hydrogenation of cinnamaldehyde. J Mol Catal A: Chem 112(1):105–113CrossRef
152.
Zurück zum Zitat Kooli F, Rives V, Jones W (1997) Reduction of Ni2+−Al3+ and Cu2+−Al3+ layered double hydroxides to metallic Ni0 and Cu0 via polyol treatment. Chem Mater 9(10):2231–2235CrossRef Kooli F, Rives V, Jones W (1997) Reduction of Ni2+−Al3+ and Cu2+−Al3+ layered double hydroxides to metallic Ni0 and Cu0 via polyol treatment. Chem Mater 9(10):2231–2235CrossRef
153.
Zurück zum Zitat Yamaguchi T, Kitajima K (1998) Reduction of interlayer Co2+ ions in fluorine mica using diethylene glycol. J Mater Sci 33(3):653–657CrossRef Yamaguchi T, Kitajima K (1998) Reduction of interlayer Co2+ ions in fluorine mica using diethylene glycol. J Mater Sci 33(3):653–657CrossRef
154.
Zurück zum Zitat Toneguzzo Ph, Viau G, Acher O et al (2000) CoNi and FeCoNi fine particles prepared by the polyol process: physico-chemical characterization and dynamic magnetic properties. J Mater Sci 35(15):3767–3784CrossRef Toneguzzo Ph, Viau G, Acher O et al (2000) CoNi and FeCoNi fine particles prepared by the polyol process: physico-chemical characterization and dynamic magnetic properties. J Mater Sci 35(15):3767–3784CrossRef
155.
Zurück zum Zitat Poul L, Jouini N, Fiévet F (2000) Layered hydroxide metal acetates (metal = zinc, cobalt, and nickel): elaboration via hydrolysis in polyol medium and comparative study. Chem Mater 12(10):3123–3132CrossRef Poul L, Jouini N, Fiévet F (2000) Layered hydroxide metal acetates (metal = zinc, cobalt, and nickel): elaboration via hydrolysis in polyol medium and comparative study. Chem Mater 12(10):3123–3132CrossRef
156.
Zurück zum Zitat Wu M, He H, Zhao Z et al (2000) Preparation of magnetic cobalt fibres and their microwave properties. J Phys D: Appl Phys 33(22):2927–2930CrossRef Wu M, He H, Zhao Z et al (2000) Preparation of magnetic cobalt fibres and their microwave properties. J Phys D: Appl Phys 33(22):2927–2930CrossRef
157.
Zurück zum Zitat Elumalai P, Vasan HN, Verelst M et al (2002) Synthesis and characterization of sub-micron size Co–Ni alloys using malonate as precursor. Mater Res Bull 37(2):353–363CrossRef Elumalai P, Vasan HN, Verelst M et al (2002) Synthesis and characterization of sub-micron size Co–Ni alloys using malonate as precursor. Mater Res Bull 37(2):353–363CrossRef
158.
Zurück zum Zitat Teranishi T, Miyake M (1999) Novel synthesis of monodispersed Pd/Ni nanoparticles. Chem Mater 11(12):3414–3416CrossRef Teranishi T, Miyake M (1999) Novel synthesis of monodispersed Pd/Ni nanoparticles. Chem Mater 11(12):3414–3416CrossRef
159.
Zurück zum Zitat Jézéquel D, Guenot J, Jouini N et al (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10(1):77–83CrossRef Jézéquel D, Guenot J, Jouini N et al (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10(1):77–83CrossRef
160.
Zurück zum Zitat Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305(2):366–370CrossRef Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305(2):366–370CrossRef
161.
Zurück zum Zitat Sra AK, Ewers TD, Schaak RE (2005) Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks. Chem Mater 17(4):758–766CrossRef Sra AK, Ewers TD, Schaak RE (2005) Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks. Chem Mater 17(4):758–766CrossRef
162.
Zurück zum Zitat Joseyphus RJ, Kodama D, Matsumoto T et al (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310(2, Part 3):2393–2395CrossRef Joseyphus RJ, Kodama D, Matsumoto T et al (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310(2, Part 3):2393–2395CrossRef
163.
Zurück zum Zitat Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61(14):4625–4633CrossRef Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61(14):4625–4633CrossRef
164.
Zurück zum Zitat Pascal C, Pascal JL, Favier F et al (1999) Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11(1):141–147CrossRef Pascal C, Pascal JL, Favier F et al (1999) Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11(1):141–147CrossRef
165.
Zurück zum Zitat Khan HR, Petrikowski K (2000) Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina. J Magn Magn Mater 215–216:526–528CrossRef Khan HR, Petrikowski K (2000) Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina. J Magn Magn Mater 215–216:526–528CrossRef
166.
Zurück zum Zitat Fürstner A, editor (2008) Active metals: preparation, characterization, applications. John Wiley & Sons Fürstner A, editor (2008) Active metals: preparation, characterization, applications. John Wiley & Sons
167.
Zurück zum Zitat Pecharromán C, González-Carreño T, Iglesias JE (1995) The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys Chem Minerals 22(1):21–29CrossRef Pecharromán C, González-Carreño T, Iglesias JE (1995) The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys Chem Minerals 22(1):21–29CrossRef
168.
Zurück zum Zitat González-Carreño T, Morales MP, Gracia M et al (1993) Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis. Mater Lett 18(3):151–155CrossRef González-Carreño T, Morales MP, Gracia M et al (1993) Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis. Mater Lett 18(3):151–155CrossRef
169.
Zurück zum Zitat Veintemillas-Verdaguer S, Morales MP, Serna CJ (1998) Continuous production of γ-Fe2O3 ultrafine powders by laser pyrolysis. Mater Lett 35(3):227–231CrossRef Veintemillas-Verdaguer S, Morales MP, Serna CJ (1998) Continuous production of γ-Fe2O3 ultrafine powders by laser pyrolysis. Mater Lett 35(3):227–231CrossRef
170.
Zurück zum Zitat Morales MP, Bomati-Miguel O, Pérez de Alejo R et al (2003) Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J Magn Magn Mater 266(1):102–109CrossRef Morales MP, Bomati-Miguel O, Pérez de Alejo R et al (2003) Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J Magn Magn Mater 266(1):102–109CrossRef
171.
Zurück zum Zitat Veintemillas-Verdaguer S, Morales del Puerto M, Bomati-Miguel O et al (2004) Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents. J Phys D: Appl Phys 37(15):2054–2059CrossRef Veintemillas-Verdaguer S, Morales del Puerto M, Bomati-Miguel O et al (2004) Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents. J Phys D: Appl Phys 37(15):2054–2059CrossRef
172.
Zurück zum Zitat Alexandrescu R, Morjan I, Voicu I et al (2005) Combining resonant/non-resonant processes: Nanometer-scale iron-based material preparation via CO2 laser pyrolysis. Appl Surf Sci 248(1):138–146CrossRef Alexandrescu R, Morjan I, Voicu I et al (2005) Combining resonant/non-resonant processes: Nanometer-scale iron-based material preparation via CO2 laser pyrolysis. Appl Surf Sci 248(1):138–146CrossRef
173.
Zurück zum Zitat Julián-López B, Boissière C, Chanéac C et al (2007) Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy. J Mater Chem 17(16):1563–1569CrossRef Julián-López B, Boissière C, Chanéac C et al (2007) Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy. J Mater Chem 17(16):1563–1569CrossRef
174.
Zurück zum Zitat Osuna J, de Caro D, Amiens C et al (1996) Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor. J Phys Chem 100(35):14571–14574CrossRef Osuna J, de Caro D, Amiens C et al (1996) Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor. J Phys Chem 100(35):14571–14574CrossRef
175.
Zurück zum Zitat Verelst M, Ely TO, Amiens C et al (1999) Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticules. Chem Mater 11(10):2702–2708CrossRef Verelst M, Ely TO, Amiens C et al (1999) Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticules. Chem Mater 11(10):2702–2708CrossRef
176.
Zurück zum Zitat Dinega DP, Bawendi MG (1999) A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed 38(12):1788–1791CrossRef Dinega DP, Bawendi MG (1999) A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed 38(12):1788–1791CrossRef
177.
Zurück zum Zitat Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117CrossRef Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117CrossRef
178.
Zurück zum Zitat Puntes VF, Krishnan K, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19(2):145–148CrossRef Puntes VF, Krishnan K, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19(2):145–148CrossRef
179.
Zurück zum Zitat Puntes VF, Krishnan KM, Alivisatos P (2001) Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-Co nanoparticles. Appl Phys Lett 78(15):2187–2189CrossRef Puntes VF, Krishnan KM, Alivisatos P (2001) Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-Co nanoparticles. Appl Phys Lett 78(15):2187–2189CrossRef
180.
Zurück zum Zitat Yin JS, Wang ZL (1997) Ordered self-assembling of tetrahedral oxide nanocrystals. Phys Rev Lett 79(13):2570–2573CrossRef Yin JS, Wang ZL (1997) Ordered self-assembling of tetrahedral oxide nanocrystals. Phys Rev Lett 79(13):2570–2573CrossRef
181.
Zurück zum Zitat Rotstein HG, Tannenbaum R (2002) Cluster coagulation and growth limited by surface interactions with polymers. J Phys Chem B 106(1):146–151CrossRef Rotstein HG, Tannenbaum R (2002) Cluster coagulation and growth limited by surface interactions with polymers. J Phys Chem B 106(1):146–151CrossRef
182.
Zurück zum Zitat Ely TO, Amiens C, Chaudret B et al (1999) Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem Mater 11(3):526–529CrossRef Ely TO, Amiens C, Chaudret B et al (1999) Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem Mater 11(3):526–529CrossRef
183.
Zurück zum Zitat Kataby G, Prozorov T, Koltypin Yu et al (1997) Self-assembled monolayer coatings on amorphous iron and iron oxide nanoparticles: thermal stability and chemical reactivity studies. Langmuir 13(23):6151–6158CrossRef Kataby G, Prozorov T, Koltypin Yu et al (1997) Self-assembled monolayer coatings on amorphous iron and iron oxide nanoparticles: thermal stability and chemical reactivity studies. Langmuir 13(23):6151–6158CrossRef
184.
Zurück zum Zitat Sidorov SN, Bronstein LM, Davankov VA et al (1999) Cobalt nanoparticle formation in the pores of hyper-cross-linked polystyrene: control of nanoparticle growth and morphology. Chem Mater 11(11):3210–3215CrossRef Sidorov SN, Bronstein LM, Davankov VA et al (1999) Cobalt nanoparticle formation in the pores of hyper-cross-linked polystyrene: control of nanoparticle growth and morphology. Chem Mater 11(11):3210–3215CrossRef
185.
Zurück zum Zitat Park SJ, Kim S, Lee S et al (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122(35):8581–8582CrossRef Park SJ, Kim S, Lee S et al (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122(35):8581–8582CrossRef
186.
Zurück zum Zitat Abu Mukh-Qasem R, Gedanken A (2005) Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Colloid Interface Sci 284(2):489–494CrossRef Abu Mukh-Qasem R, Gedanken A (2005) Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Colloid Interface Sci 284(2):489–494CrossRef
187.
Zurück zum Zitat Hee Kim E, Sook Lee H, Kook Kwak B et al (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330CrossRef Hee Kim E, Sook Lee H, Kook Kwak B et al (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330CrossRef
188.
Zurück zum Zitat Suslick KS, Choe SB, Cichowlas AA et al (1991) Sonochemical synthesis of amorphous iron. Nature 353(6343):414–416CrossRef Suslick KS, Choe SB, Cichowlas AA et al (1991) Sonochemical synthesis of amorphous iron. Nature 353(6343):414–416CrossRef
189.
Zurück zum Zitat Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem Mater 8(8):2172–2179CrossRef Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem Mater 8(8):2172–2179CrossRef
190.
Zurück zum Zitat Suslick KS, Fang M, Hyeon T (1996) Sonochemical synthesis of iron colloids. J Am Chem Soc 118(47):11960–11961CrossRef Suslick KS, Fang M, Hyeon T (1996) Sonochemical synthesis of iron colloids. J Am Chem Soc 118(47):11960–11961CrossRef
191.
Zurück zum Zitat Suslick KS, Hyeon T, Fang M et al (1995) Sonochemical synthesis of nanostructured catalysts. Mater Sci Eng, A 204(1):186–192CrossRef Suslick KS, Hyeon T, Fang M et al (1995) Sonochemical synthesis of nanostructured catalysts. Mater Sci Eng, A 204(1):186–192CrossRef
192.
Zurück zum Zitat Bellissent R, Galli G, Hyeon T et al (1996) Magnetic and structural properties of amorphous transition metals and alloys. J Non-Cryst Solids 205–207:656–659CrossRef Bellissent R, Galli G, Hyeon T et al (1996) Magnetic and structural properties of amorphous transition metals and alloys. J Non-Cryst Solids 205–207:656–659CrossRef
193.
Zurück zum Zitat Shafi KVPM, Gedanken A, Goldfarb RB et al (1997) Sonochemical preparation of nanosized amorphous Fe-Ni alloys. J Appl Phys 81(10):6901–6905CrossRef Shafi KVPM, Gedanken A, Goldfarb RB et al (1997) Sonochemical preparation of nanosized amorphous Fe-Ni alloys. J Appl Phys 81(10):6901–6905CrossRef
194.
Zurück zum Zitat Katabi G, Koltypin Yu, Cao X et al (1996) Self-assembled monolayer coatings of iron nanoparticles with thiol derivatives. J Cryst Growth 166(1):760–762CrossRef Katabi G, Koltypin Yu, Cao X et al (1996) Self-assembled monolayer coatings of iron nanoparticles with thiol derivatives. J Cryst Growth 166(1):760–762CrossRef
195.
Zurück zum Zitat Ramesh S, Cohen Y, Aurbach D et al (1998) Atomic force microscopy investigation of the surface topography and adhesion of nickel nanoparticles to submicrospherical silica. Chem Phys Lett 287(3):461–467CrossRef Ramesh S, Cohen Y, Aurbach D et al (1998) Atomic force microscopy investigation of the surface topography and adhesion of nickel nanoparticles to submicrospherical silica. Chem Phys Lett 287(3):461–467CrossRef
196.
Zurück zum Zitat Gibson CP, Putzer KJ (1995) Synthesis and characterization of anisometric cobalt nanoclusters. Science 267(5202):1338–1340CrossRef Gibson CP, Putzer KJ (1995) Synthesis and characterization of anisometric cobalt nanoclusters. Science 267(5202):1338–1340CrossRef
197.
Zurück zum Zitat Koltypin Yu, Katabi G, Cao X et al (1996) Sonochemical preparation of amorphous nickel. J Non-Cryst Solids 201(1):159–162CrossRef Koltypin Yu, Katabi G, Cao X et al (1996) Sonochemical preparation of amorphous nickel. J Non-Cryst Solids 201(1):159–162CrossRef
198.
Zurück zum Zitat Shafi KVPM, Gedanken A, Prozorov R (1998) Sonochemical preparation and characterization of nanosized amorphous Co–Ni alloy powders. J Mater Chem 8(3):769–773CrossRef Shafi KVPM, Gedanken A, Prozorov R (1998) Sonochemical preparation and characterization of nanosized amorphous Co–Ni alloy powders. J Mater Chem 8(3):769–773CrossRef
199.
Zurück zum Zitat Kataby G, Koltypin Y, Rothe J et al (1998) The adsorption of monolayer coatings on iron nanoparticles: Mössbauer spectroscopy and XANES results. Thin Solid Films 333(1):41–49CrossRef Kataby G, Koltypin Y, Rothe J et al (1998) The adsorption of monolayer coatings on iron nanoparticles: Mössbauer spectroscopy and XANES results. Thin Solid Films 333(1):41–49CrossRef
200.
Zurück zum Zitat Shafi KVPM, Koltypin Y, Gedanken A et al (1997) Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J Phys Chem B 101(33):6409–6414CrossRef Shafi KVPM, Koltypin Y, Gedanken A et al (1997) Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J Phys Chem B 101(33):6409–6414CrossRef
201.
Zurück zum Zitat Shafi KVPM, Ulman A, Yan X et al (2001) Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17(16):5093–5097CrossRef Shafi KVPM, Ulman A, Yan X et al (2001) Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17(16):5093–5097CrossRef
202.
Zurück zum Zitat Kumar RV, Koltypin Y, Cohen YS et al (2000) Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J Mater Chem 10(5):1125–1129CrossRef Kumar RV, Koltypin Y, Cohen YS et al (2000) Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J Mater Chem 10(5):1125–1129CrossRef
203.
Zurück zum Zitat Kumar RV, Diamant Y, Gedanken A (2000) Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater 12(8):2301–2305CrossRef Kumar RV, Diamant Y, Gedanken A (2000) Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater 12(8):2301–2305CrossRef
204.
Zurück zum Zitat Vijayakumar R, Koltypin Yu, Felner I et al (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286(1):101–105CrossRef Vijayakumar R, Koltypin Yu, Felner I et al (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286(1):101–105CrossRef
205.
Zurück zum Zitat Paul KG, Frigo TB, Groman JY et al (2004) Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. Bioconjug Chem 15(2):394–401CrossRef Paul KG, Frigo TB, Groman JY et al (2004) Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. Bioconjug Chem 15(2):394–401CrossRef
206.
Zurück zum Zitat Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228(2):480–487CrossRef Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228(2):480–487CrossRef
207.
Zurück zum Zitat Juang JH, Wang JJ, Shen CR et al (2010) Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles. Transpl Proc 42(6):2104–2108CrossRef Juang JH, Wang JJ, Shen CR et al (2010) Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles. Transpl Proc 42(6):2104–2108CrossRef
208.
Zurück zum Zitat Bautista MC, Bomati-Miguel O, Zhao X et al (2004) Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology 15(4):S154–S159CrossRef Bautista MC, Bomati-Miguel O, Zhao X et al (2004) Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology 15(4):S154–S159CrossRef
209.
Zurück zum Zitat Ahmad T, Bae H, Rhee I et al (2012) Particle size dependence of relaxivity for silica-coated iron oxide nanoparticles. Curr Appl Phys 12(3):969–974CrossRef Ahmad T, Bae H, Rhee I et al (2012) Particle size dependence of relaxivity for silica-coated iron oxide nanoparticles. Curr Appl Phys 12(3):969–974CrossRef
210.
Zurück zum Zitat Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148CrossRef Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148CrossRef
211.
Zurück zum Zitat Elfick APD, Green SM, McCaskie AW et al (2004) Opsonization of polyethylene wear particles regulates macrophage and osteoblast responses in vitro. J Biomed Mater Res Part B: Appl Biomater 71B(2):244–251CrossRef Elfick APD, Green SM, McCaskie AW et al (2004) Opsonization of polyethylene wear particles regulates macrophage and osteoblast responses in vitro. J Biomed Mater Res Part B: Appl Biomater 71B(2):244–251CrossRef
212.
Zurück zum Zitat Saba TM, Di Luzio NR (1965) Kupffer cell phagocytosis and metabolism of a variety of particles as a function of opsonization. J Reticuloendothel Soc 2(5):437–453 Saba TM, Di Luzio NR (1965) Kupffer cell phagocytosis and metabolism of a variety of particles as a function of opsonization. J Reticuloendothel Soc 2(5):437–453
213.
Zurück zum Zitat Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef
214.
Zurück zum Zitat Aruffo A, Stamenkovic I, Melnick M et al (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61(7):1303–1313CrossRef Aruffo A, Stamenkovic I, Melnick M et al (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61(7):1303–1313CrossRef
215.
Zurück zum Zitat Assaraf YG, Brozovic A, Gonçalves AC et al (2019) The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updates 46:100645CrossRef Assaraf YG, Brozovic A, Gonçalves AC et al (2019) The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updates 46:100645CrossRef
216.
Zurück zum Zitat Barbault-Foucher S, Gref R, Russo P et al (2002) Design of poly-ε-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J Control Release 83(3):365–375CrossRef Barbault-Foucher S, Gref R, Russo P et al (2002) Design of poly-ε-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J Control Release 83(3):365–375CrossRef
217.
Zurück zum Zitat Vismara E, Bongio C, Coletti A et al (2017) Albumin and hyaluronic acid-coated superparamagnetic iron oxide nanoparticles loaded with paclitaxel for biomedical applications. Molecules 22(7):1030CrossRef Vismara E, Bongio C, Coletti A et al (2017) Albumin and hyaluronic acid-coated superparamagnetic iron oxide nanoparticles loaded with paclitaxel for biomedical applications. Molecules 22(7):1030CrossRef
218.
Zurück zum Zitat Kim DK, Zhang Y, Kehr J et al (2001) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225(1–2):256–261CrossRef Kim DK, Zhang Y, Kehr J et al (2001) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225(1–2):256–261CrossRef
219.
Zurück zum Zitat Tamaura Y, Takahashi K, Kodera Y et al (1986) Chemical modification of lipase with ferromagnetic modifier ? A Ferromagnetic-modified lipase. Biotechnol Lett 8(12):877–880CrossRef Tamaura Y, Takahashi K, Kodera Y et al (1986) Chemical modification of lipase with ferromagnetic modifier ? A Ferromagnetic-modified lipase. Biotechnol Lett 8(12):877–880CrossRef
220.
Zurück zum Zitat Shultz MD, Calvin S, Fatouros PP et al (2007) Enhanced ferrite nanoparticles as MRI contrast agents. J Magn Magn Mater 311(1):464–468CrossRef Shultz MD, Calvin S, Fatouros PP et al (2007) Enhanced ferrite nanoparticles as MRI contrast agents. J Magn Magn Mater 311(1):464–468CrossRef
221.
Zurück zum Zitat Albornoz C, Jacobo SE (2006) Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn Magn Mater 305(1):12–15CrossRef Albornoz C, Jacobo SE (2006) Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn Magn Mater 305(1):12–15CrossRef
222.
Zurück zum Zitat Yokoi H, Kantoh T (1993) Thermal decomposition of the iron(III) hydroxide and magnetite composites of poly(vinyl alcohol). Preparation of magnetite and metallic iron particles. BCSJ 66(5):1536–1541CrossRef Yokoi H, Kantoh T (1993) Thermal decomposition of the iron(III) hydroxide and magnetite composites of poly(vinyl alcohol). Preparation of magnetite and metallic iron particles. BCSJ 66(5):1536–1541CrossRef
223.
Zurück zum Zitat Sairam M, Naidu BVK, Nataraj SK et al (2006) Poly(vinyl alcohol)-iron oxide nanocomposite membranes for pervaporation dehydration of isopropanol, 1,4-dioxane and tetrahydrofuran. J Membr Sci 283(1–2):65–73CrossRef Sairam M, Naidu BVK, Nataraj SK et al (2006) Poly(vinyl alcohol)-iron oxide nanocomposite membranes for pervaporation dehydration of isopropanol, 1,4-dioxane and tetrahydrofuran. J Membr Sci 283(1–2):65–73CrossRef
224.
Zurück zum Zitat Schöpf B, Neuberger T, Schulze K et al (2005) Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep. J Magn Magn Mater 293(1):411–418CrossRef Schöpf B, Neuberger T, Schulze K et al (2005) Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep. J Magn Magn Mater 293(1):411–418CrossRef
225.
Zurück zum Zitat Finotelli PV, Morales MA, Rocha-Leão MH et al (2004) Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications. Mater Sci Eng, C 24(5):625–629CrossRef Finotelli PV, Morales MA, Rocha-Leão MH et al (2004) Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications. Mater Sci Eng, C 24(5):625–629CrossRef
226.
Zurück zum Zitat Butterworth MD, Illum L, Davis SS (2001) Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloids Surf, A 179(1):93–102CrossRef Butterworth MD, Illum L, Davis SS (2001) Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloids Surf, A 179(1):93–102CrossRef
227.
Zurück zum Zitat Kohler N, Fryxell GE, Zhang M (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126(23):7206–7211CrossRef Kohler N, Fryxell GE, Zhang M (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126(23):7206–7211CrossRef
228.
Zurück zum Zitat Velusamy P, Chia-Hung S, Shritama A et al (2016) Synthesis of oleic acid coated iron oxide nanoparticles and its role in anti-biofilm activity against clinical isolates of bacterial pathogens. J Taiwan Inst Chem Eng 59:450–456CrossRef Velusamy P, Chia-Hung S, Shritama A et al (2016) Synthesis of oleic acid coated iron oxide nanoparticles and its role in anti-biofilm activity against clinical isolates of bacterial pathogens. J Taiwan Inst Chem Eng 59:450–456CrossRef
229.
Zurück zum Zitat Chang PR, Yu J, Ma X et al (2011) Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohyd Polym 83(2):640–644CrossRef Chang PR, Yu J, Ma X et al (2011) Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohyd Polym 83(2):640–644CrossRef
230.
Zurück zum Zitat Gaihre B, Khil MS, Lee DR et al (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 365(1):180–189CrossRef Gaihre B, Khil MS, Lee DR et al (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 365(1):180–189CrossRef
231.
Zurück zum Zitat Naha PC, Liu Y, Hwang G et al (2019) Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 13(5):4960–4971CrossRef Naha PC, Liu Y, Hwang G et al (2019) Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 13(5):4960–4971CrossRef
232.
Zurück zum Zitat Tyukova IS, Safronov AP, Kotel’nikova AP et al (2014) Electrostatic and steric mechanisms of iron oxide nanoparticle sol stabilization by chitosan. Polym Sci Ser A 56(4):498–504CrossRef Tyukova IS, Safronov AP, Kotel’nikova AP et al (2014) Electrostatic and steric mechanisms of iron oxide nanoparticle sol stabilization by chitosan. Polym Sci Ser A 56(4):498–504CrossRef
233.
Zurück zum Zitat Khandhar AP, Keselman P, Kemp SJ et al (2017) Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 9(3):1299–1306CrossRef Khandhar AP, Keselman P, Kemp SJ et al (2017) Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 9(3):1299–1306CrossRef
234.
Zurück zum Zitat Walker M, Will I, Pratt A et al (2020) Magnetically triggered release of entrapped bioactive proteins from thermally responsive polymer-coated iron oxide nanoparticles for stem-cell proliferation. ACS Appl Nano Mater 3(6):5008–5013CrossRef Walker M, Will I, Pratt A et al (2020) Magnetically triggered release of entrapped bioactive proteins from thermally responsive polymer-coated iron oxide nanoparticles for stem-cell proliferation. ACS Appl Nano Mater 3(6):5008–5013CrossRef
235.
Zurück zum Zitat Arsianti M, Lim M, Marquis CP et al (2010) Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir 26(10):7314–7326CrossRef Arsianti M, Lim M, Marquis CP et al (2010) Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir 26(10):7314–7326CrossRef
236.
Zurück zum Zitat Zhang M, O’Connor CJ (2007) Synthesis and characterization of PMMA coated magnetite nanocomposites by emulsion polymerization. MRS Online Proceedings Library (OPL) MRS Online Proceedings Library (OPL) (1032):1032–I14 Zhang M, O’Connor CJ (2007) Synthesis and characterization of PMMA coated magnetite nanocomposites by emulsion polymerization. MRS Online Proceedings Library (OPL) MRS Online Proceedings Library (OPL) (1032):1032–I14
237.
Zurück zum Zitat Padwal P, Bandyopadhyaya R, Mehra S (2014) Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir 30(50):15266–15276CrossRef Padwal P, Bandyopadhyaya R, Mehra S (2014) Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir 30(50):15266–15276CrossRef
238.
Zurück zum Zitat Zhang Y, Du B, Wu Y et al (2022) Fe3O4@PDA@PEI core-shell microspheres as a novel magnetic sorbent for the rapid and broad-spectrum separation of bacteria in liquid phase. Materials 15(6):2039CrossRef Zhang Y, Du B, Wu Y et al (2022) Fe3O4@PDA@PEI core-shell microspheres as a novel magnetic sorbent for the rapid and broad-spectrum separation of bacteria in liquid phase. Materials 15(6):2039CrossRef
239.
Zurück zum Zitat Li GY, Jiang YR, Huang KL et al (2008) Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Compounds 466(1):451–456CrossRef Li GY, Jiang YR, Huang KL et al (2008) Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Compounds 466(1):451–456CrossRef
240.
Zurück zum Zitat Amini-Fazl MS, Mohammadi R, Kheiri K (2019) 5-Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. Int J Biol Macromol 132:506–513CrossRef Amini-Fazl MS, Mohammadi R, Kheiri K (2019) 5-Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. Int J Biol Macromol 132:506–513CrossRef
241.
Zurück zum Zitat Bixner O, Kurzhals S, Virk M et al (2016) Triggered release from thermoresponsive polymersomes with superparamagnetic membranes. Materials 9(1):29CrossRef Bixner O, Kurzhals S, Virk M et al (2016) Triggered release from thermoresponsive polymersomes with superparamagnetic membranes. Materials 9(1):29CrossRef
242.
Zurück zum Zitat Shin JR, An GS, Choi SC (2021) Influence of carboxylic modification using polyacrylic acid on characteristics of Fe3O4 nanoparticles with cluster structure. Processes 9(10):1795CrossRef Shin JR, An GS, Choi SC (2021) Influence of carboxylic modification using polyacrylic acid on characteristics of Fe3O4 nanoparticles with cluster structure. Processes 9(10):1795CrossRef
243.
Zurück zum Zitat Sarkar S, Guibal E, Quignard F et al (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res 14(2):715CrossRef Sarkar S, Guibal E, Quignard F et al (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res 14(2):715CrossRef
244.
Zurück zum Zitat Seabra AB, Paula AJ, de Lima R et al (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27(2):159–168CrossRef Seabra AB, Paula AJ, de Lima R et al (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27(2):159–168CrossRef
245.
Zurück zum Zitat Bian Y, Bian ZY, Zhang JX et al (2015) Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl Surf Sci 329:269–275CrossRef Bian Y, Bian ZY, Zhang JX et al (2015) Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl Surf Sci 329:269–275CrossRef
246.
Zurück zum Zitat Gao P, Liu M, Tian J et al (2016) Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization. Appl Surf Sci 378:22–29CrossRef Gao P, Liu M, Tian J et al (2016) Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization. Appl Surf Sci 378:22–29CrossRef
247.
Zurück zum Zitat Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef
248.
Zurück zum Zitat Wang G, Shen X, Wang B et al (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47(5):1359–1364CrossRef Wang G, Shen X, Wang B et al (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47(5):1359–1364CrossRef
249.
Zurück zum Zitat Ayazi H, Akhavan O, Raoufi M et al (2020) Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf, B 186:110712CrossRef Ayazi H, Akhavan O, Raoufi M et al (2020) Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf, B 186:110712CrossRef
250.
Zurück zum Zitat Depan D, Shah J, Misra RDK (2011) Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng, C 31(7):1305–1312CrossRef Depan D, Shah J, Misra RDK (2011) Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng, C 31(7):1305–1312CrossRef
251.
Zurück zum Zitat Ma D, Lin J, Chen Y et al (2012) In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets. Carbon 50(8):3001–3007CrossRef Ma D, Lin J, Chen Y et al (2012) In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets. Carbon 50(8):3001–3007CrossRef
252.
Zurück zum Zitat Konios D, Stylianakis MM, Stratakis E et al (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108–112CrossRef Konios D, Stylianakis MM, Stratakis E et al (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108–112CrossRef
253.
Zurück zum Zitat Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736CrossRef Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736CrossRef
254.
Zurück zum Zitat Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025CrossRef Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025CrossRef
255.
Zurück zum Zitat Wang Z, Liu CJ (2015) Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11:277–293CrossRef Wang Z, Liu CJ (2015) Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11:277–293CrossRef
256.
Zurück zum Zitat Li X, Zhu H, Feng J et al (2013) One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 60:488–497CrossRef Li X, Zhu H, Feng J et al (2013) One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 60:488–497CrossRef
257.
Zurück zum Zitat Baaziz W, Truong-Phuoc L, Duong-Viet C et al (2014) Few layer graphene decorated with homogeneous magnetic Fe3O4 nanoparticles with tunable covering densities. J Mater Chem A 2(8):2690CrossRef Baaziz W, Truong-Phuoc L, Duong-Viet C et al (2014) Few layer graphene decorated with homogeneous magnetic Fe3O4 nanoparticles with tunable covering densities. J Mater Chem A 2(8):2690CrossRef
258.
Zurück zum Zitat Pileni MP, Duxin N (2000) Micelle technology for magnetic nanosized alloys and composites. ChemTech 30(2):25–33 Pileni MP, Duxin N (2000) Micelle technology for magnetic nanosized alloys and composites. ChemTech 30(2):25–33
259.
Zurück zum Zitat Wagle DV, Rondinone AJ, Woodward JD et al (2017) Polyol synthesis of magnetite nanocrystals in a thermostable ionic liquid. Cryst Growth Des 17(4):1558–1567CrossRef Wagle DV, Rondinone AJ, Woodward JD et al (2017) Polyol synthesis of magnetite nanocrystals in a thermostable ionic liquid. Cryst Growth Des 17(4):1558–1567CrossRef
260.
Zurück zum Zitat Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci 3(1):66–73CrossRef Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci 3(1):66–73CrossRef
261.
Zurück zum Zitat Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97(27):6961–6973CrossRef Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97(27):6961–6973CrossRef
262.
Zurück zum Zitat Alcalá MD, Real C (2006) Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ionics 177(9):955–960CrossRef Alcalá MD, Real C (2006) Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ionics 177(9):955–960CrossRef
263.
Zurück zum Zitat Gushikem Y, Rosatto SS (2001) Metal oxide thin films grafted on silica gel surfaces: recent advances on the analytical application of these materials. J Braz Chem Soc 12(6):695–705CrossRef Gushikem Y, Rosatto SS (2001) Metal oxide thin films grafted on silica gel surfaces: recent advances on the analytical application of these materials. J Braz Chem Soc 12(6):695–705CrossRef
264.
Zurück zum Zitat Woo K, Hong J, Ahn JP (2005) Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine. J Magn Magn Mater 293(1):177–181CrossRef Woo K, Hong J, Ahn JP (2005) Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine. J Magn Magn Mater 293(1):177–181CrossRef
265.
Zurück zum Zitat van Ewijk GA, Vroege GJ, Philipse AP (1999) Convenient preparation methods for magnetic colloids. J Magn Magn Mater 201(1):31–33CrossRef van Ewijk GA, Vroege GJ, Philipse AP (1999) Convenient preparation methods for magnetic colloids. J Magn Magn Mater 201(1):31–33CrossRef
266.
Zurück zum Zitat Ma D, Guan J, Dénommée S et al (2006) Multifunctional nano-architecture for biomedical applications. Chem Mater 18(7):1920–1927CrossRef Ma D, Guan J, Dénommée S et al (2006) Multifunctional nano-architecture for biomedical applications. Chem Mater 18(7):1920–1927CrossRef
267.
Zurück zum Zitat Lesnikovich AI, Shunkevich TM, Naumenko VN et al (1990) Dispersity of magnetite in magnetic liquids and the interaction with a surfactant. J Magn Magn Mater 85(1):14–16CrossRef Lesnikovich AI, Shunkevich TM, Naumenko VN et al (1990) Dispersity of magnetite in magnetic liquids and the interaction with a surfactant. J Magn Magn Mater 85(1):14–16CrossRef
268.
Zurück zum Zitat Sun Y, Duan L, Guo Z et al (2005) An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J Magn Magn Mater 285(1):65–70CrossRef Sun Y, Duan L, Guo Z et al (2005) An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J Magn Magn Mater 285(1):65–70CrossRef
269.
Zurück zum Zitat Im SH, Herricks T, Lee YT et al (2005) Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chem Phys Lett 401(1):19–23CrossRef Im SH, Herricks T, Lee YT et al (2005) Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chem Phys Lett 401(1):19–23CrossRef
270.
Zurück zum Zitat Xie L, Jiang R, Zhu F et al (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406(2):377–399CrossRef Xie L, Jiang R, Zhu F et al (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406(2):377–399CrossRef
271.
Zurück zum Zitat Yang HH, Zhang SQ, Chen XL et al (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76(5):1316–1321CrossRef Yang HH, Zhang SQ, Chen XL et al (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76(5):1316–1321CrossRef
272.
Zurück zum Zitat Lyon JL, Fleming DA, Stone MB et al (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4(4):719–723CrossRef Lyon JL, Fleming DA, Stone MB et al (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4(4):719–723CrossRef
273.
Zurück zum Zitat Lin J, Zhou W, Kumbhar A et al (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31CrossRef Lin J, Zhou W, Kumbhar A et al (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31CrossRef
274.
Zurück zum Zitat Kim J, Park S, Lee JE et al (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem 118(46):7918–7922CrossRef Kim J, Park S, Lee JE et al (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem 118(46):7918–7922CrossRef
275.
Zurück zum Zitat Mekonnen TW, Birhan YS, Andrgie AT et al (2019) Encapsulation of gadolinium ferrite nanoparticle in generation 45 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field. Colloids and Surfaces B: Biointerfaces 184:110531CrossRef Mekonnen TW, Birhan YS, Andrgie AT et al (2019) Encapsulation of gadolinium ferrite nanoparticle in generation 45 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field. Colloids and Surfaces B: Biointerfaces 184:110531CrossRef
276.
Zurück zum Zitat Morawski AM, Winter PM, Crowder KC et al (2004) Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51(3):480–486CrossRef Morawski AM, Winter PM, Crowder KC et al (2004) Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51(3):480–486CrossRef
277.
Zurück zum Zitat Shepherd PG, Popplewell J, Charles SW (1970) A method of producing ferrofluid with gadolinium particles. J Phys D: Appl Phys 3(12):1985–1986CrossRef Shepherd PG, Popplewell J, Charles SW (1970) A method of producing ferrofluid with gadolinium particles. J Phys D: Appl Phys 3(12):1985–1986CrossRef
278.
Zurück zum Zitat Xu HK, Sorensen CM, Klabunde KJ et al (1992) Aerosol synthesis of gadolinium iron garnet particles. J Mater Res 7(3):712–716CrossRef Xu HK, Sorensen CM, Klabunde KJ et al (1992) Aerosol synthesis of gadolinium iron garnet particles. J Mater Res 7(3):712–716CrossRef
279.
Zurück zum Zitat Arora HC, Jensen MP, Yuan Y et al (2012) Nanocarriers enhance doxorubicin uptake in drug-resistant ovarian cancer cells. Can Res 72(3):769–778CrossRef Arora HC, Jensen MP, Yuan Y et al (2012) Nanocarriers enhance doxorubicin uptake in drug-resistant ovarian cancer cells. Can Res 72(3):769–778CrossRef
280.
Zurück zum Zitat Fang C, Kievit FM, Veiseh O et al (2012) Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J Control Release 162(1):233–241CrossRef Fang C, Kievit FM, Veiseh O et al (2012) Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J Control Release 162(1):233–241CrossRef
281.
Zurück zum Zitat Munnier E, Cohen-Jonathan S, Linassier C et al (2008) Novel method of doxorubicin–SPION reversible association for magnetic drug targeting. Int J Pharm 363(1–2):170–176CrossRef Munnier E, Cohen-Jonathan S, Linassier C et al (2008) Novel method of doxorubicin–SPION reversible association for magnetic drug targeting. Int J Pharm 363(1–2):170–176CrossRef
282.
Zurück zum Zitat Majeed MI, Lu Q, Yan W et al (2013) Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates. J Mater Chem B 1(22):2874CrossRef Majeed MI, Lu Q, Yan W et al (2013) Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates. J Mater Chem B 1(22):2874CrossRef
283.
Zurück zum Zitat Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng, C 30(3):484–490CrossRef Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng, C 30(3):484–490CrossRef
284.
Zurück zum Zitat An GS, Chae DH, Hur JU et al (2018) Hollow-structured Fe3O4@SiO2 nanoparticles: novel synthesis and enhanced adsorbents for purification of plasmid DNA. Ceram Int 44(15):18791–18795CrossRef An GS, Chae DH, Hur JU et al (2018) Hollow-structured Fe3O4@SiO2 nanoparticles: novel synthesis and enhanced adsorbents for purification of plasmid DNA. Ceram Int 44(15):18791–18795CrossRef
285.
Zurück zum Zitat Lee HY, Lee SH, Xu C et al (2008) Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 19(16):165101CrossRef Lee HY, Lee SH, Xu C et al (2008) Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 19(16):165101CrossRef
286.
Zurück zum Zitat Kopanja L, Kralj S, Zunic D et al (2016) Core–shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis. Ceram Int 42(9):10976–10984CrossRef Kopanja L, Kralj S, Zunic D et al (2016) Core–shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis. Ceram Int 42(9):10976–10984CrossRef
287.
Zurück zum Zitat Kumar A, Sharma G, Naushad M et al (2015) SPION/β-cyclodextrin core–shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem Eng J 280:175–187CrossRef Kumar A, Sharma G, Naushad M et al (2015) SPION/β-cyclodextrin core–shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem Eng J 280:175–187CrossRef
288.
Zurück zum Zitat Wanna Y, Porntheerapat S, Pratontep S, Pui-ngam R et al (2016) Preparation and characterization of PEG bis(amine) grafted PMMA/SPION composite nanoparticles. Adv Mater Lett 7(3):176–80CrossRef Wanna Y, Porntheerapat S, Pratontep S, Pui-ngam R et al (2016) Preparation and characterization of PEG bis(amine) grafted PMMA/SPION composite nanoparticles. Adv Mater Lett 7(3):176–80CrossRef
289.
Zurück zum Zitat Sharma G, Kumar A, Chauhan C et al (2017) Pectin-crosslinked-guar gum/SPION nanocomposite hydrogel for adsorption of m-cresol and o-chlorophenol. Sustain Chem Pharm 6:96–106CrossRef Sharma G, Kumar A, Chauhan C et al (2017) Pectin-crosslinked-guar gum/SPION nanocomposite hydrogel for adsorption of m-cresol and o-chlorophenol. Sustain Chem Pharm 6:96–106CrossRef
290.
Zurück zum Zitat López J, González-Bahamón LF, Prado J et al (2012) Study of magnetic and structural properties of ferrofluids based on cobalt–zinc ferrite nanoparticles. J Magn Magn Mater 324(4):394–402CrossRef López J, González-Bahamón LF, Prado J et al (2012) Study of magnetic and structural properties of ferrofluids based on cobalt–zinc ferrite nanoparticles. J Magn Magn Mater 324(4):394–402CrossRef
291.
Zurück zum Zitat Vaidyanathan G, Sendhilnathan S, Arulmurugan R (2007) Structural and magnetic properties of Co1−xZnxFe2O4 nanoparticles by co-precipitation method. J Magn Magn Mater 313(2):293–299CrossRef Vaidyanathan G, Sendhilnathan S, Arulmurugan R (2007) Structural and magnetic properties of Co1−xZnxFe2O4 nanoparticles by co-precipitation method. J Magn Magn Mater 313(2):293–299CrossRef
292.
Zurück zum Zitat Tajabadi M, Khosroshahi ME, Bonakdar S (2013) An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids Surf, A 431:18–26CrossRef Tajabadi M, Khosroshahi ME, Bonakdar S (2013) An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids Surf, A 431:18–26CrossRef
293.
Zurück zum Zitat Sodipo BK, Aziz AA (2014) A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane. Beilstein J Nanotechnol 5:1472–1476CrossRef Sodipo BK, Aziz AA (2014) A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane. Beilstein J Nanotechnol 5:1472–1476CrossRef
294.
Zurück zum Zitat Unsoy G, Khodadust R, Yalcin S et al (2014) Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250CrossRef Unsoy G, Khodadust R, Yalcin S et al (2014) Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250CrossRef
295.
Zurück zum Zitat Ao L, Wang B, Liu P et al (2014) A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery. Nanoscale 6(18):10710CrossRef Ao L, Wang B, Liu P et al (2014) A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery. Nanoscale 6(18):10710CrossRef
296.
Zurück zum Zitat Cheng J, Zheng Z, Tang W et al (2022) A new strategy for stem cells therapy for erectile dysfunction: adipose-derived stem cells transfect Neuregulin-1 gene through superparamagnetic iron oxide nanoparticles. Investig Clin Urol 63(3):359–367CrossRef Cheng J, Zheng Z, Tang W et al (2022) A new strategy for stem cells therapy for erectile dysfunction: adipose-derived stem cells transfect Neuregulin-1 gene through superparamagnetic iron oxide nanoparticles. Investig Clin Urol 63(3):359–367CrossRef
297.
Zurück zum Zitat Wang C, Zhang Z, Chen B et al (2018) Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J Colloid Interface Sci 516:332–341CrossRef Wang C, Zhang Z, Chen B et al (2018) Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J Colloid Interface Sci 516:332–341CrossRef
298.
Zurück zum Zitat Wang C, Huang J, Zhang Y et al (2021) Construction and evaluation of red blood cells-based drug delivery system for chemo-photothermal therapy. Colloids Surf, B 204:111789CrossRef Wang C, Huang J, Zhang Y et al (2021) Construction and evaluation of red blood cells-based drug delivery system for chemo-photothermal therapy. Colloids Surf, B 204:111789CrossRef
299.
Zurück zum Zitat Papadimitriou S, Bikiaris D (2009) Novel self-assembled core–shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release. J Control Release 138(2):177–184CrossRef Papadimitriou S, Bikiaris D (2009) Novel self-assembled core–shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release. J Control Release 138(2):177–184CrossRef
300.
Zurück zum Zitat Gautier J, Munnier E, Paillard A et al (2012) A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm 423(1):16–25CrossRef Gautier J, Munnier E, Paillard A et al (2012) A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm 423(1):16–25CrossRef
301.
Zurück zum Zitat Zhang Q, Li W, Kong T et al (2013) Tailoring the interlayer interaction between doxorubicin-loaded graphene oxide nanosheets by controlling the drug content. Carbon 51:164–172CrossRef Zhang Q, Li W, Kong T et al (2013) Tailoring the interlayer interaction between doxorubicin-loaded graphene oxide nanosheets by controlling the drug content. Carbon 51:164–172CrossRef
302.
Zurück zum Zitat Chen L, Xue Y, Xia X et al (2015) A redox stimuli-responsive superparamagnetic nanogel with chemically anchored DOX for enhanced anticancer efficacy and low systemic adverse effects. J Mater Chem B 3(46):8949–8962CrossRef Chen L, Xue Y, Xia X et al (2015) A redox stimuli-responsive superparamagnetic nanogel with chemically anchored DOX for enhanced anticancer efficacy and low systemic adverse effects. J Mater Chem B 3(46):8949–8962CrossRef
303.
Zurück zum Zitat Liu Z, Sun X, Nakayama-Ratchford N et al (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56CrossRef Liu Z, Sun X, Nakayama-Ratchford N et al (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56CrossRef
304.
Zurück zum Zitat Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef
305.
Zurück zum Zitat Liu L, Luo XB, Ding L et al (2019) Application of nanotechnology in the removal of heavy metal from water. Nanomaterials for the removal of pollutants and resource reutilization. Elsevier 83–147 Liu L, Luo XB, Ding L et al (2019) Application of nanotechnology in the removal of heavy metal from water. Nanomaterials for the removal of pollutants and resource reutilization. Elsevier 83–147
306.
Zurück zum Zitat Ai L, Zhang C, Liao F et al (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290CrossRef Ai L, Zhang C, Liao F et al (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290CrossRef
307.
Zurück zum Zitat Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403CrossRef Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403CrossRef
308.
Zurück zum Zitat Başar CA (2006) Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J Hazard Mater 135(1):232–241CrossRef Başar CA (2006) Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J Hazard Mater 135(1):232–241CrossRef
309.
Zurück zum Zitat Bayazit ŞS (2014) Magnetic multi-wall carbon nanotubes for methyl orange removal from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Sep Sci Technol 49(9):1389–1400CrossRef Bayazit ŞS (2014) Magnetic multi-wall carbon nanotubes for methyl orange removal from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Sep Sci Technol 49(9):1389–1400CrossRef
310.
Zurück zum Zitat Ghaedi M, Haghdoust S, Kokhdan SN et al (2012) Comparison of activated carbon, multiwalled carbon nanotubes, and cadmium hydroxide nanowire loaded on activated carbon as adsorbents for kinetic and equilibrium study of removal of safranine O. Spectrosc Lett 45(7):500–510CrossRef Ghaedi M, Haghdoust S, Kokhdan SN et al (2012) Comparison of activated carbon, multiwalled carbon nanotubes, and cadmium hydroxide nanowire loaded on activated carbon as adsorbents for kinetic and equilibrium study of removal of safranine O. Spectrosc Lett 45(7):500–510CrossRef
311.
Zurück zum Zitat Zhou X (2020) Correction to the calculation of Polanyi potential from Dubinnin-Rudushkevich equation. J Hazard Mater 384:121101CrossRef Zhou X (2020) Correction to the calculation of Polanyi potential from Dubinnin-Rudushkevich equation. J Hazard Mater 384:121101CrossRef
312.
Zurück zum Zitat Hsieh CT, Teng H (2000) Langmuir and Dubinin-Radushkevich analyses on equilibrium adsorption of activated carbon fabrics in aqueous solutions. J Chem Technol Biotechnol 75(11):1066–1072CrossRef Hsieh CT, Teng H (2000) Langmuir and Dubinin-Radushkevich analyses on equilibrium adsorption of activated carbon fabrics in aqueous solutions. J Chem Technol Biotechnol 75(11):1066–1072CrossRef
313.
Zurück zum Zitat Chabani M, Amrane A, Bensmaili A (2006) Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chem Eng J 125(2):111–117CrossRef Chabani M, Amrane A, Bensmaili A (2006) Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chem Eng J 125(2):111–117CrossRef
314.
Zurück zum Zitat Özcan A, Özcan AS, Tunali S et al (2005) Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum. J Hazard Mater 124(1):200–208CrossRef Özcan A, Özcan AS, Tunali S et al (2005) Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum. J Hazard Mater 124(1):200–208CrossRef
315.
Zurück zum Zitat Helfferich FG (1995) Ion exchange. Courier Corporation 642 Helfferich FG (1995) Ion exchange. Courier Corporation 642
316.
Zurück zum Zitat Onyango MS, Kojima Y, Aoyi O et al (2004) Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Interface Sci 279(2):341–350CrossRef Onyango MS, Kojima Y, Aoyi O et al (2004) Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Interface Sci 279(2):341–350CrossRef
317.
Zurück zum Zitat Sheha RR, Metwally E (2007) Equilibrium isotherm modeling of cesium adsorption onto magnetic materials. J Hazard Mater 143(1):354–361CrossRef Sheha RR, Metwally E (2007) Equilibrium isotherm modeling of cesium adsorption onto magnetic materials. J Hazard Mater 143(1):354–361CrossRef
318.
Zurück zum Zitat Amin NK (2009) Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J Hazard Mater 165(1):52–62CrossRef Amin NK (2009) Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J Hazard Mater 165(1):52–62CrossRef
319.
Zurück zum Zitat Ghaedi M, Sadeghian B, Pebdani AA et al (2012) Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J 187:133–141CrossRef Ghaedi M, Sadeghian B, Pebdani AA et al (2012) Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J 187:133–141CrossRef
320.
Zurück zum Zitat Ertugay M, Certel M, Gurses A (2000) Moisture adsorption isotherms of Tarhana at 25 oC and 35 oC and the investigation of fitness of various isotherm equations to moisture sorption data of Tarhana. J Sci Food Agric 80(14):2001–2004CrossRef Ertugay M, Certel M, Gurses A (2000) Moisture adsorption isotherms of Tarhana at 25 oC and 35 oC and the investigation of fitness of various isotherm equations to moisture sorption data of Tarhana. J Sci Food Agric 80(14):2001–2004CrossRef
321.
Zurück zum Zitat Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–59CrossRef Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–59CrossRef
322.
Zurück zum Zitat Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44(2):265–268CrossRef Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44(2):265–268CrossRef
323.
Zurück zum Zitat Yao Y, Xu F, Chen M et al (2010) Adsorption behavior of methylene blue on carbon nanotubes. Biores Technol 101(9):3040–3046CrossRef Yao Y, Xu F, Chen M et al (2010) Adsorption behavior of methylene blue on carbon nanotubes. Biores Technol 101(9):3040–3046CrossRef
324.
Zurück zum Zitat Sharma P, Kaur R, Baskar C et al (2010) Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 259(1):249–257CrossRef Sharma P, Kaur R, Baskar C et al (2010) Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 259(1):249–257CrossRef
325.
Zurück zum Zitat Karaer H, Kaya İ (2016) Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous Mesoporous Mater 232:26–38CrossRef Karaer H, Kaya İ (2016) Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous Mesoporous Mater 232:26–38CrossRef
326.
Zurück zum Zitat Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics 1. J Am Chem Soc 69(11):2836–48CrossRef Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics 1. J Am Chem Soc 69(11):2836–48CrossRef
327.
Zurück zum Zitat Hameed BH, El-Khaiary MI (2008) Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. J Hazard Mater 159(2):574–579CrossRef Hameed BH, El-Khaiary MI (2008) Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. J Hazard Mater 159(2):574–579CrossRef
328.
Zurück zum Zitat Srivastava V, Weng CH, Singh VK et al (2011) Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J Chem Eng Data 56(4):1414–1422CrossRef Srivastava V, Weng CH, Singh VK et al (2011) Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J Chem Eng Data 56(4):1414–1422CrossRef
329.
Zurück zum Zitat Hasan M, Ahmad AL, Hameed BH (2008) Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chem Eng J 136(2):164–172CrossRef Hasan M, Ahmad AL, Hameed BH (2008) Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chem Eng J 136(2):164–172CrossRef
330.
Zurück zum Zitat Zhang H, Xue Y, Huang J et al (2015) Tailor-made magnetic nanocarriers with pH-induced charge reversal and pH-responsiveness to guide subcellular release of doxorubicin. J Mater Sci 50(6):2429–2442CrossRef Zhang H, Xue Y, Huang J et al (2015) Tailor-made magnetic nanocarriers with pH-induced charge reversal and pH-responsiveness to guide subcellular release of doxorubicin. J Mater Sci 50(6):2429–2442CrossRef
331.
Zurück zum Zitat He X, Wu X, Cai X et al (2012) Functionalization of magnetic nanoparticles with dendritic–linear–brush-like triblock copolymers and their drug release properties. Langmuir 28(32):11929–11938CrossRef He X, Wu X, Cai X et al (2012) Functionalization of magnetic nanoparticles with dendritic–linear–brush-like triblock copolymers and their drug release properties. Langmuir 28(32):11929–11938CrossRef
332.
Zurück zum Zitat Zhu L, Wang D, Wei X et al (2013) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 169(3):228–238CrossRef Zhu L, Wang D, Wei X et al (2013) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 169(3):228–238CrossRef
333.
Zurück zum Zitat Guo X, Xue L, Lv W et al (2015) Facile synthesis of magnetic carboxymethylcellulose nanocarriers for pH-responsive delivery of doxorubicin. New J Chem 39(9):7340–7347CrossRef Guo X, Xue L, Lv W et al (2015) Facile synthesis of magnetic carboxymethylcellulose nanocarriers for pH-responsive delivery of doxorubicin. New J Chem 39(9):7340–7347CrossRef
334.
Zurück zum Zitat Chang Y, Liu N, Chen L et al (2012) Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery. J Mater Chem 22(19):9594–9601CrossRef Chang Y, Liu N, Chen L et al (2012) Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery. J Mater Chem 22(19):9594–9601CrossRef
335.
Zurück zum Zitat Mu B, Liu P, Dong Y et al (2010) Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release. J Polym Sci, Part A: Polym Chem 48(14):3135–3144CrossRef Mu B, Liu P, Dong Y et al (2010) Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release. J Polym Sci, Part A: Polym Chem 48(14):3135–3144CrossRef
336.
Zurück zum Zitat Du P, Zeng J, Mu B et al (2013) Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release. Mol Pharmaceutics 10(5):1705–1715CrossRef Du P, Zeng J, Mu B et al (2013) Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release. Mol Pharmaceutics 10(5):1705–1715CrossRef
337.
Zurück zum Zitat Yang HY, Jang MS, Gao GH et al (2016) pH-Responsive biodegradable polymeric micelles with anchors to interface magnetic nanoparticles for MR imaging in detection of cerebral ischemic area. Nanoscale 8(25):12588–12598CrossRef Yang HY, Jang MS, Gao GH et al (2016) pH-Responsive biodegradable polymeric micelles with anchors to interface magnetic nanoparticles for MR imaging in detection of cerebral ischemic area. Nanoscale 8(25):12588–12598CrossRef
338.
Zurück zum Zitat Li X, Zeng D, Ke P et al (2020) Synthesis and characterization of magnetic chitosan microspheres for drug delivery. RSC Adv 10(12):7163–7169CrossRef Li X, Zeng D, Ke P et al (2020) Synthesis and characterization of magnetic chitosan microspheres for drug delivery. RSC Adv 10(12):7163–7169CrossRef
339.
Zurück zum Zitat Marcelo G, Muñoz-Bonilla A, Rodríguez-Hernández J et al (2013) Hybrid materials achieved by polypeptide grafted magnetite nanoparticles through a dopamine biomimetic surface anchored initiator. Polym Chem 4(3):558–567CrossRef Marcelo G, Muñoz-Bonilla A, Rodríguez-Hernández J et al (2013) Hybrid materials achieved by polypeptide grafted magnetite nanoparticles through a dopamine biomimetic surface anchored initiator. Polym Chem 4(3):558–567CrossRef
340.
Zurück zum Zitat Gamcsik MP, Kasibhatla MS, Teeter SD et al (2012) Glutathione levels in human tumors. Biomarkers 17(8):671–691CrossRef Gamcsik MP, Kasibhatla MS, Teeter SD et al (2012) Glutathione levels in human tumors. Biomarkers 17(8):671–691CrossRef
341.
Zurück zum Zitat Tang Z, Zhang L, Wang Y et al (2016) Redox-responsive star-shaped magnetic micelles with active-targeted and magnetic-guided functions for cancer therapy. Acta Biomater 42:232–246CrossRef Tang Z, Zhang L, Wang Y et al (2016) Redox-responsive star-shaped magnetic micelles with active-targeted and magnetic-guided functions for cancer therapy. Acta Biomater 42:232–246CrossRef
342.
Zurück zum Zitat Matsumoto A, Cabral H, Sato N et al (2010) Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew Chem 122(32):5626–5629CrossRef Matsumoto A, Cabral H, Sato N et al (2010) Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew Chem 122(32):5626–5629CrossRef
343.
Zurück zum Zitat Ding M, Zeng X, He X et al (2014) Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery. Biomacromol 15(8):2896–2906CrossRef Ding M, Zeng X, He X et al (2014) Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery. Biomacromol 15(8):2896–2906CrossRef
344.
Zurück zum Zitat Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42(7):2555–2567CrossRef Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42(7):2555–2567CrossRef
345.
Zurück zum Zitat Xu F, Zhao T, Wang S et al (2016) Preparation of magnetic and pH-responsive chitosan microcapsules via sonochemical method. J Microencapsul 33(2):191–198CrossRef Xu F, Zhao T, Wang S et al (2016) Preparation of magnetic and pH-responsive chitosan microcapsules via sonochemical method. J Microencapsul 33(2):191–198CrossRef
346.
Zurück zum Zitat Xu F, Zhao T, Yang T et al (2016) Fabrication of folic acid functionalized pH-responsive and thermosensitive magnetic chitosan microcapsules via a simple sonochemical method. Colloids Surf, A 490:22–29CrossRef Xu F, Zhao T, Yang T et al (2016) Fabrication of folic acid functionalized pH-responsive and thermosensitive magnetic chitosan microcapsules via a simple sonochemical method. Colloids Surf, A 490:22–29CrossRef
347.
Zurück zum Zitat Cui X, Guan X, Zhong S et al (2017) Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release. Ultrason Sonochem 38:145–153CrossRef Cui X, Guan X, Zhong S et al (2017) Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release. Ultrason Sonochem 38:145–153CrossRef
348.
Zurück zum Zitat Yang HY, Jang MS, Li Y et al (2017) Multifunctional and redox-responsive self-assembled magnetic nanovectors for protein delivery and dual-modal imaging. ACS Appl Mater Interfaces 9(22):19184–19192CrossRef Yang HY, Jang MS, Li Y et al (2017) Multifunctional and redox-responsive self-assembled magnetic nanovectors for protein delivery and dual-modal imaging. ACS Appl Mater Interfaces 9(22):19184–19192CrossRef
349.
Zurück zum Zitat Huang RY, Chiang PH, Hsiao WC et al (2015) Redox-sensitive polymer/SPIO nanocomplexes for efficient magnetofection and MR imaging of human cancer cells. Langmuir 31(23):6523–6531CrossRef Huang RY, Chiang PH, Hsiao WC et al (2015) Redox-sensitive polymer/SPIO nanocomplexes for efficient magnetofection and MR imaging of human cancer cells. Langmuir 31(23):6523–6531CrossRef
350.
Zurück zum Zitat Peng S, Wang QY, Xiao X et al (2020) Redox-responsive polyethyleneimine-coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. Polym Int 69(2):206–214CrossRef Peng S, Wang QY, Xiao X et al (2020) Redox-responsive polyethyleneimine-coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. Polym Int 69(2):206–214CrossRef
351.
Zurück zum Zitat Nelson AR, Fingleton B, Rothenberg ML et al (2000) Matrix metalloproteinases: biologic activity and clinical implications. JCO 18(5):1135–1135CrossRef Nelson AR, Fingleton B, Rothenberg ML et al (2000) Matrix metalloproteinases: biologic activity and clinical implications. JCO 18(5):1135–1135CrossRef
352.
Zurück zum Zitat Stern R (2008) Hyaluronidases in cancer biology. In Hyaluronan in cancer biology. Academic Press 207–220 Stern R (2008) Hyaluronidases in cancer biology. In Hyaluronan in cancer biology.  Academic Press 207–220
353.
Zurück zum Zitat Götte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Can Res 66(21):10233–10237CrossRef Götte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Can Res 66(21):10233–10237CrossRef
354.
Zurück zum Zitat Deng L, Wang G, Ren J et al (2012) Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles. RSC Adv 2(33):12909–12914CrossRef Deng L, Wang G, Ren J et al (2012) Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles. RSC Adv 2(33):12909–12914CrossRef
355.
Zurück zum Zitat Kang T, Li F, Baik S et al (2017) Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 136:98–114CrossRef Kang T, Li F, Baik S et al (2017) Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 136:98–114CrossRef
356.
Zurück zum Zitat Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287(6):627–643CrossRef Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287(6):627–643CrossRef
357.
Zurück zum Zitat Chen S, Li Y, Guo C et al (2007) Temperature-responsive magnetite/PEO−PPO−PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 23(25):12669–12676CrossRef Chen S, Li Y, Guo C et al (2007) Temperature-responsive magnetite/PEO−PPO−PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 23(25):12669–12676CrossRef
358.
Zurück zum Zitat Wadajkar AS, Menon JU, Tsai YS et al (2013) Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials 34(14):3618–3625CrossRef Wadajkar AS, Menon JU, Tsai YS et al (2013) Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials 34(14):3618–3625CrossRef
359.
Zurück zum Zitat Heidarinasab A, Ahmad Panahi H, Faramarzi M et al (2016) Synthesis of thermosensitive magnetic nanocarrier for controlled sorafenib delivery. Mater Sci Eng, C 67:42–50CrossRef Heidarinasab A, Ahmad Panahi H, Faramarzi M et al (2016) Synthesis of thermosensitive magnetic nanocarrier for controlled sorafenib delivery. Mater Sci Eng, C 67:42–50CrossRef
360.
Zurück zum Zitat Peralta ME, Jadhav SA, Magnacca G et al (2019) Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J Colloid Interface Sci 544:198–205CrossRef Peralta ME, Jadhav SA, Magnacca G et al (2019) Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J Colloid Interface Sci 544:198–205CrossRef
361.
Zurück zum Zitat Ferjaoui Z, Jamal Al Dine E, Kulmukhamedova A et al (2019) Doxorubicin-loaded thermoresponsive superparamagnetic nanocarriers for controlled drug delivery and magnetic hyperthermia applications. ACS Appl Mater Interfaces 11(34):30610–30620CrossRef Ferjaoui Z, Jamal Al Dine E, Kulmukhamedova A et al (2019) Doxorubicin-loaded thermoresponsive superparamagnetic nanocarriers for controlled drug delivery and magnetic hyperthermia applications. ACS Appl Mater Interfaces 11(34):30610–30620CrossRef
362.
Zurück zum Zitat Aqil A, Vasseur S, Duguet E et al (2008) Magnetic nanoparticles coated by temperature responsive copolymers for hyperthermia. J Mater Chem 18(28):3352–3360CrossRef Aqil A, Vasseur S, Duguet E et al (2008) Magnetic nanoparticles coated by temperature responsive copolymers for hyperthermia. J Mater Chem 18(28):3352–3360CrossRef
363.
Zurück zum Zitat Talelli M, Rijcken CJF, Lammers T et al (2009) Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir 25(4):2060–2067CrossRef Talelli M, Rijcken CJF, Lammers T et al (2009) Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir 25(4):2060–2067CrossRef
364.
Zurück zum Zitat Mai BT, Balakrishnan PB, Barthel MJ et al (2019) Thermoresponsive iron oxide nanocubes for an effective clinical translation of magnetic hyperthermia and heat-mediated chemotherapy. ACS Appl Mater Interfaces 11(6):5727–5739CrossRef Mai BT, Balakrishnan PB, Barthel MJ et al (2019) Thermoresponsive iron oxide nanocubes for an effective clinical translation of magnetic hyperthermia and heat-mediated chemotherapy. ACS Appl Mater Interfaces 11(6):5727–5739CrossRef
365.
Zurück zum Zitat Borlido L, Moura L, Azevedo AM et al (2013) Stimuli-responsive magnetic nanoparticles for monoclonal antibody purification. Biotechnol J 8(6):709–717CrossRef Borlido L, Moura L, Azevedo AM et al (2013) Stimuli-responsive magnetic nanoparticles for monoclonal antibody purification. Biotechnol J 8(6):709–717CrossRef
366.
Zurück zum Zitat Shamim N, Hong L, Hidajat K et al (2006) Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of Bovine Serum Albumin. J Colloid Interface Sci 304(1):1–8CrossRef Shamim N, Hong L, Hidajat K et al (2006) Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of Bovine Serum Albumin. J Colloid Interface Sci 304(1):1–8CrossRef
367.
Zurück zum Zitat Paulus AS, Heinzler R, Ooi HW et al (2015) Temperature-switchable agglomeration of magnetic particles designed for continuous separation processes in biotechnology. ACS Appl Mater Interfaces 7(26):14279–14287CrossRef Paulus AS, Heinzler R, Ooi HW et al (2015) Temperature-switchable agglomeration of magnetic particles designed for continuous separation processes in biotechnology. ACS Appl Mater Interfaces 7(26):14279–14287CrossRef
368.
Zurück zum Zitat Nagaoka H, Sato Y, Xie X et al (2011) Coupling stimuli-responsive magnetic nanoparticles with antibody–antigen detection in immunoassays. Anal Chem 83(24):9197–9200CrossRef Nagaoka H, Sato Y, Xie X et al (2011) Coupling stimuli-responsive magnetic nanoparticles with antibody–antigen detection in immunoassays. Anal Chem 83(24):9197–9200CrossRef
369.
Zurück zum Zitat Jauregui R, Srinivasan S, Vojtech LN et al (2018) Temperature-responsive magnetic nanoparticles for enabling affinity separation of extracellular vesicles. ACS Appl Mater Interfaces 10(40):33847–33856CrossRef Jauregui R, Srinivasan S, Vojtech LN et al (2018) Temperature-responsive magnetic nanoparticles for enabling affinity separation of extracellular vesicles. ACS Appl Mater Interfaces 10(40):33847–33856CrossRef
370.
Zurück zum Zitat Krishnan BP, Prieto-López LO, Hoefgen S et al (2020) Thermomagneto-responsive smart biocatalysts for malonyl-coenzyme a aynthesis. ACS Appl Mater Interfaces 12(18):20982–20990CrossRef Krishnan BP, Prieto-López LO, Hoefgen S et al (2020) Thermomagneto-responsive smart biocatalysts for malonyl-coenzyme a aynthesis. ACS Appl Mater Interfaces 12(18):20982–20990CrossRef
371.
Zurück zum Zitat Zhu K, Deng Z, Liu G et al (2017) Photoregulated cross-linking of superparamagnetic iron oxide nanoparticle (SPION) loaded hybrid nanovectors with synergistic drug release and magnetic resonance (MR) imaging enhancement. Macromolecules 50(3):1113–1125CrossRef Zhu K, Deng Z, Liu G et al (2017) Photoregulated cross-linking of superparamagnetic iron oxide nanoparticle (SPION) loaded hybrid nanovectors with synergistic drug release and magnetic resonance (MR) imaging enhancement. Macromolecules 50(3):1113–1125CrossRef
372.
Zurück zum Zitat Phan TTV, Bharathiraja S, Nguyen VT et al (2017) Polypyrrole–methylene blue nanoparticles as a single multifunctional nanoplatform for near-infrared photo-induced therapy and photoacoustic imaging. RSC Adv 7(56):35027–35037CrossRef Phan TTV, Bharathiraja S, Nguyen VT et al (2017) Polypyrrole–methylene blue nanoparticles as a single multifunctional nanoplatform for near-infrared photo-induced therapy and photoacoustic imaging. RSC Adv 7(56):35027–35037CrossRef
373.
Zurück zum Zitat Sahoo B, Devi KSP, Banerjee R et al (2013) Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces 5(9):3884–3893CrossRef Sahoo B, Devi KSP, Banerjee R et al (2013) Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces 5(9):3884–3893CrossRef
374.
Zurück zum Zitat Sundaresan V, Menon JU, Rahimi M et al (2014) Dual-responsive polymer-coated iron oxide nanoparticles for drug delivery and imaging applications. Int J Pharm 466(1):1–7CrossRef Sundaresan V, Menon JU, Rahimi M et al (2014) Dual-responsive polymer-coated iron oxide nanoparticles for drug delivery and imaging applications. Int J Pharm 466(1):1–7CrossRef
375.
Zurück zum Zitat Panahi HA, Tavanaei Y, Moniri E et al (2014) Synthesis and characterization of poly[N-isopropylacrylamide-co-1-(N, N-bis-carboxymethyl)amino-3-allylglycerol] grafted to magnetic nano-particles for the extraction and determination of fluvoxamine in biological and pharmaceutical samples. J Chromatogr A 1345:37–42CrossRef Panahi HA, Tavanaei Y, Moniri E et al (2014) Synthesis and characterization of poly[N-isopropylacrylamide-co-1-(N, N-bis-carboxymethyl)amino-3-allylglycerol] grafted to magnetic nano-particles for the extraction and determination of fluvoxamine in biological and pharmaceutical samples. J Chromatogr A 1345:37–42CrossRef
376.
Zurück zum Zitat Bhattacharya D, Behera B, Kumar Sahu S et al (2016) Design of dual stimuli responsive polymer modified magnetic nanoparticles for targeted anti-cancer drug delivery and enhanced MR imaging. New J Chem 40(1):545–557CrossRef Bhattacharya D, Behera B, Kumar Sahu S et al (2016) Design of dual stimuli responsive polymer modified magnetic nanoparticles for targeted anti-cancer drug delivery and enhanced MR imaging. New J Chem 40(1):545–557CrossRef
377.
Zurück zum Zitat DuttaParidaMaiti SSC et al (2016) Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. J Colloid Interface Sci 467:70–80CrossRef DuttaParidaMaiti SSC et al (2016) Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. J Colloid Interface Sci 467:70–80CrossRef
378.
Zurück zum Zitat Hervault A, Dunn AE, Lim M et al (2016) Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8(24):12152–61CrossRef Hervault A, Dunn AE, Lim M et al (2016) Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8(24):12152–61CrossRef
379.
Zurück zum Zitat Ghamkhari A, Ghorbani M, Aghbolaghi S (2018) A perfect stimuli-responsive magnetic nanocomposite for intracellular delivery of doxorubicin. Artific Cells, Nanomedid3e, and Biotechnology 46(sup3):S911–S921CrossRef Ghamkhari A, Ghorbani M, Aghbolaghi S (2018) A perfect stimuli-responsive magnetic nanocomposite for intracellular delivery of doxorubicin. Artific Cells, Nanomedid3e, and Biotechnology 46(sup3):S911–S921CrossRef
380.
Zurück zum Zitat Majewski AP, Schallon A, Jérôme V et al (2012) Dual-responsive magnetic core–shell nanoparticles for nonviral gene delivery and cell separation. Biomacromol 13(3):857–866CrossRef Majewski AP, Schallon A, Jérôme V et al (2012) Dual-responsive magnetic core–shell nanoparticles for nonviral gene delivery and cell separation. Biomacromol 13(3):857–866CrossRef
381.
Zurück zum Zitat Zhou X, Wang L, Xu Y et al (2018) A pH and magnetic dual-response hydrogel for synergistic chemo-magnetic hyperthermia tumor therapy. RSC Adv 8(18):9812–9821CrossRef Zhou X, Wang L, Xu Y et al (2018) A pH and magnetic dual-response hydrogel for synergistic chemo-magnetic hyperthermia tumor therapy. RSC Adv 8(18):9812–9821CrossRef
382.
Zurück zum Zitat Ling D, ParkPark WSJ et al (2014) Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 136(15):5647–5655CrossRef Ling D, ParkPark WSJ et al (2014) Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 136(15):5647–5655CrossRef
383.
Zurück zum Zitat Zou H, Yuan W (2014) Temperature- and redox-responsive magnetic complex micelles for controlled drug release. J Mater Chem B 3(2):260–269CrossRef Zou H, Yuan W (2014) Temperature- and redox-responsive magnetic complex micelles for controlled drug release. J Mater Chem B 3(2):260–269CrossRef
384.
Zurück zum Zitat Zeng J, Du P, Liu L et al (2015) Superparamagnetic reduction/pH/temperature multistimuli-responsive nanoparticles for targeted and controlled antitumor drug delivery. Mol Pharmaceutics 12(12):4188–4199CrossRef Zeng J, Du P, Liu L et al (2015) Superparamagnetic reduction/pH/temperature multistimuli-responsive nanoparticles for targeted and controlled antitumor drug delivery. Mol Pharmaceutics 12(12):4188–4199CrossRef
385.
Zurück zum Zitat Vyas D, Lopez-Hisijos N, Gandhi S et al (2015) Doxorubicin-hyaluronan conjugated super-paramagnetic iron oxide nanoparticles (DOX-HA-SPION) enhanced cytoplasmic uptake of doxorubicin and modulated apoptosis, IL-6 release and NF-kappaB activity in human MDA-MB-231 breast cancer cells. Journal of nanoscience and nanotechnology 15(9):6413–22CrossRef Vyas D, Lopez-Hisijos N, Gandhi S et al (2015) Doxorubicin-hyaluronan conjugated super-paramagnetic iron oxide nanoparticles (DOX-HA-SPION) enhanced cytoplasmic uptake of doxorubicin and modulated apoptosis, IL-6 release and NF-kappaB activity in human MDA-MB-231 breast cancer cells. Journal of nanoscience and nanotechnology 15(9):6413–22CrossRef
386.
Zurück zum Zitat Nosrati R, Abnous K, Alibolandi M et al (2021) Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci Rep 11(1):13065CrossRef Nosrati R, Abnous K, Alibolandi M et al (2021) Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci Rep 11(1):13065CrossRef
387.
Zurück zum Zitat Yar Y, Khodadust R, Akkoc Y et al (2018) Development of tailored SPION-PNIPAM nanoparticles by ATRP for dually responsive doxorubicin delivery and MR imaging. J Mater Chem B 6(2):289–300CrossRef Yar Y, Khodadust R, Akkoc Y et al (2018) Development of tailored SPION-PNIPAM nanoparticles by ATRP for dually responsive doxorubicin delivery and MR imaging. J Mater Chem B 6(2):289–300CrossRef
388.
Zurück zum Zitat Xue W, Liu XL, Ma H et al (2018) AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J Mater Chem B 6(15):2289–2303CrossRef Xue W, Liu XL, Ma H et al (2018) AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J Mater Chem B 6(15):2289–2303CrossRef
389.
Zurück zum Zitat Yang HM, Oh BC, Kim JH et al (2011) Multifunctional poly(aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Colloids Surf, A 391(1–3):208–215CrossRef Yang HM, Oh BC, Kim JH et al (2011) Multifunctional poly(aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Colloids Surf, A 391(1–3):208–215CrossRef
390.
Zurück zum Zitat Chen J, Shi M, Liu P et al (2014) Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery. Biomaterials 35(4):1240–1248CrossRef Chen J, Shi M, Liu P et al (2014) Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery. Biomaterials 35(4):1240–1248CrossRef
391.
Zurück zum Zitat Huang L, Ao L, Wang W et al (2015) Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery. Chemical Communications 51(18):3923–3926CrossRef Huang L, Ao L, Wang W et al (2015) Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery. Chemical Communications 51(18):3923–3926CrossRef
392.
Zurück zum Zitat Peng N, Wu B, Wang L et al (2016) High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Biomater Sci 4(12):1802–1813CrossRef Peng N, Wu B, Wang L et al (2016) High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Biomater Sci 4(12):1802–1813CrossRef
393.
Zurück zum Zitat Rudge SR, Kurtz TL, Vessely CR et al (2000) Preparation, characterization, and performance of magnetic iron–carbon composite microparticles for chemotherapy. Biomaterials 21(14):1411–1420CrossRef Rudge SR, Kurtz TL, Vessely CR et al (2000) Preparation, characterization, and performance of magnetic iron–carbon composite microparticles for chemotherapy. Biomaterials 21(14):1411–1420CrossRef
394.
Zurück zum Zitat Jain TK, Morales MA, Sahoo SK et al (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharmaceutics 2(3):194–205CrossRef Jain TK, Morales MA, Sahoo SK et al (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharmaceutics 2(3):194–205CrossRef
395.
Zurück zum Zitat Ma WF, Wu KY, Tang J et al (2012) Magnetic drug carrier with a smart pH-responsive polymer network shell for controlled delivery of doxorubicin. J Mater Chem 22(30):15206CrossRef Ma WF, Wu KY, Tang J et al (2012) Magnetic drug carrier with a smart pH-responsive polymer network shell for controlled delivery of doxorubicin. J Mater Chem 22(30):15206CrossRef
396.
Zurück zum Zitat Chiang WH, Huang WC, Chang CW et al (2013) Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J Control Release 168(3):280–288CrossRef Chiang WH, Huang WC, Chang CW et al (2013) Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J Control Release 168(3):280–288CrossRef
397.
Zurück zum Zitat Yang X, Wang Y, Huang X et al (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21(10):3448–3454CrossRef Yang X, Wang Y, Huang X et al (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21(10):3448–3454CrossRef
398.
Zurück zum Zitat Guo Q, Jia, Yuan et al (2012) Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. International journal of nanomedicine 1697–1708 Guo Q, Jia, Yuan et al (2012) Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. International journal of nanomedicine 1697–1708
399.
Zurück zum Zitat Zhu Y, Ikoma T, Hanagata N et al (2010) Rattle-type Fe 3 O 4 @SiO 2 hollow mesoporous spheres as carriers for drug delivery. Small 6(3):471–478CrossRef Zhu Y, Ikoma T, Hanagata N et al (2010) Rattle-type Fe 3 O 4 @SiO 2 hollow mesoporous spheres as carriers for drug delivery. Small 6(3):471–478CrossRef
400.
Zurück zum Zitat Natu MV, de Sousa HC, Gil MH (2010) Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers. Int J Pharm 397(1–2):50–58CrossRef Natu MV, de Sousa HC, Gil MH (2010) Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers. Int J Pharm 397(1–2):50–58CrossRef
401.
Zurück zum Zitat Lin Z, Gao W, Hu H et al (2014) Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: high drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Control Release 174:161–170CrossRef Lin Z, Gao W, Hu H et al (2014) Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: high drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Control Release 174:161–170CrossRef
402.
Zurück zum Zitat Benita S, Barkai A, Pathak YV (1990) Effect of drug loading extent on the in vitro release kinetic behaviour of nifedipine from polyacrylate microspheres. J Control Release 12(3):213–222CrossRef Benita S, Barkai A, Pathak YV (1990) Effect of drug loading extent on the in vitro release kinetic behaviour of nifedipine from polyacrylate microspheres. J Control Release 12(3):213–222CrossRef
403.
Zurück zum Zitat Decuzzi P, Ferrari M (2007) The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28(18):2915–2922CrossRef Decuzzi P, Ferrari M (2007) The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28(18):2915–2922CrossRef
404.
Zurück zum Zitat van Sluis R, Bhujwalla ZM, Raghunand N et al (1999) In vivo imaging of extracellular pH using1H MRSI. Magn Reson Med 41(4):743–750CrossRef van Sluis R, Bhujwalla ZM, Raghunand N et al (1999) In vivo imaging of extracellular pH using1H MRSI. Magn Reson Med 41(4):743–750CrossRef
405.
Zurück zum Zitat Engin K, Leeper DB, Cater JR et al (1995) Extracellular pH distribution in human tumours. Int J Hyperth 11(2):211–216CrossRef Engin K, Leeper DB, Cater JR et al (1995) Extracellular pH distribution in human tumours. Int J Hyperth 11(2):211–216CrossRef
406.
Zurück zum Zitat DuDu JZXJ, Mao CQ et al (2011) Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133(44):17560–17563CrossRef DuDu JZXJ, Mao CQ et al (2011) Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133(44):17560–17563CrossRef
407.
Zurück zum Zitat Sankaranarayanan J, Mahmoud EA, Kim G et al (2010) Multiresponse strategies to modulate burst degradation and release from nanoparticles. ACS Nano 4(10):5930–5936CrossRef Sankaranarayanan J, Mahmoud EA, Kim G et al (2010) Multiresponse strategies to modulate burst degradation and release from nanoparticles. ACS Nano 4(10):5930–5936CrossRef
408.
Zurück zum Zitat Chen J, Qiu X, Ouyang J et al (2011) pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Biomacromol 12(10):3601–3611CrossRef Chen J, Qiu X, Ouyang J et al (2011) pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Biomacromol 12(10):3601–3611CrossRef
409.
Zurück zum Zitat Park JS, Han TH, Lee KY et al (2006) N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release 115(1):37–45CrossRef Park JS, Han TH, Lee KY et al (2006) N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release 115(1):37–45CrossRef
410.
Zurück zum Zitat Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55(1):663–700CrossRef Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55(1):663–700CrossRef
411.
Zurück zum Zitat Sahu SK, Mallick SK, Santra S et al (2010) In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci: Mater Med 21(5):1587–1597 Sahu SK, Mallick SK, Santra S et al (2010) In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci: Mater Med 21(5):1587–1597
412.
Zurück zum Zitat El-Dakdouki MH, Xia J, Zhu DC et al (2014) Assessing the in vivo efficacy of doxorubicin loaded hyaluronan nanoparticles. ACS Appl Mater Interfaces 6(1):697–705CrossRef El-Dakdouki MH, Xia J, Zhu DC et al (2014) Assessing the in vivo efficacy of doxorubicin loaded hyaluronan nanoparticles. ACS Appl Mater Interfaces 6(1):697–705CrossRef
413.
Zurück zum Zitat Iranpour S, Bahrami AR, Nekooei S et al (2021) Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J Nanobiotechnol 19(1):314CrossRef Iranpour S, Bahrami AR, Nekooei S et al (2021) Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J Nanobiotechnol 19(1):314CrossRef
414.
Zurück zum Zitat Bagheri E, Alibolandi M, Abnous K et al (2021) Targeted delivery and controlled release of doxorubicin to cancer cells by smart ATP-responsive Y-shaped DNA structure-capped mesoporous silica nanoparticles. J Mater Chem B 9(5):1351–1363CrossRef Bagheri E, Alibolandi M, Abnous K et al (2021) Targeted delivery and controlled release of doxorubicin to cancer cells by smart ATP-responsive Y-shaped DNA structure-capped mesoporous silica nanoparticles. J Mater Chem B 9(5):1351–1363CrossRef
415.
Zurück zum Zitat Gautier J, Allard-Vannier E, Munnier E et al (2013) Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Release 169(1):48–61CrossRef Gautier J, Allard-Vannier E, Munnier E et al (2013) Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Release 169(1):48–61CrossRef
416.
Zurück zum Zitat El-Dakdouki MH, Zhu DC, El-Boubbou K et al (2012) Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromol 13(4):1144–1151CrossRef El-Dakdouki MH, Zhu DC, El-Boubbou K et al (2012) Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromol 13(4):1144–1151CrossRef
417.
Zurück zum Zitat Mahmoudi M, Simchi A, Imani M et al (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112(46):14470–14481CrossRef Mahmoudi M, Simchi A, Imani M et al (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112(46):14470–14481CrossRef
418.
Zurück zum Zitat Yu M, Huang S, Yu KJ et al (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. IJMS 13(5):5554–5570CrossRef Yu M, Huang S, Yu KJ et al (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. IJMS 13(5):5554–5570CrossRef
419.
Zurück zum Zitat Unger EC (2003) How can superparamagnetic iron oxides be used to monitor disease and treatment? Radiology 229(3):615–616CrossRef Unger EC (2003) How can superparamagnetic iron oxides be used to monitor disease and treatment? Radiology 229(3):615–616CrossRef
420.
Zurück zum Zitat Cole AJ, David AE, Wang J et al (2011) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32(8):2183–2193CrossRef Cole AJ, David AE, Wang J et al (2011) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32(8):2183–2193CrossRef
421.
Zurück zum Zitat Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627CrossRef Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627CrossRef
422.
Zurück zum Zitat Hu SH, Liu TY, Liu DM et al (2007) Nano-ferrosponges for controlled drug release. J Control Release 121(3):181–189CrossRef Hu SH, Liu TY, Liu DM et al (2007) Nano-ferrosponges for controlled drug release. J Control Release 121(3):181–189CrossRef
Metadaten
Titel
Modifying superparamagnetic iron oxides nanoparticles for doxorubicin delivery carriers: a review
verfasst von
Linh Doan
Loc T. Nguyen
Ngan T. N. Nguyen
Publikationsdatum
01.04.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2023
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-023-05716-3

Weitere Artikel der Ausgabe 4/2023

Journal of Nanoparticle Research 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.