Skip to main content
Erschienen in: Applied Categorical Structures 2/2021

19.11.2020

Morphisms of Rational Motivic Homotopy Types

verfasst von: Ishai Dan-Cohen, Tomer Schlank

Erschienen in: Applied Categorical Structures | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate several interrelated foundational questions pertaining to the study of motivic dga’s of Dan-Cohen and Schlank (Rational motivic path spaces and Kim’s relative unipotent section conjecture. arXiv:​1703.​10776) and Iwanari (Motivic rational homotopy type. arXiv:​1707.​04070). In particular, we note that morphisms of motivic dga’s can reasonably be thought of as a nonabelian analog of motivic cohomology. Just as abelian motivic cohomology is a homotopy group of a spectrum coming from K-theory, the space of morphisms of motivic dga’s is a certain limit of such spectra; we give an explicit formula for this limit—a possible first step towards explicit computations or dimension bounds. We also consider commutative comonoids in Chow motives, which we call “motivic Chow coalgebras”. We discuss the relationship between motivic Chow coalgebras and motivic dga’s of smooth proper schemes. As a small first application of our results, we show that among schemes which are finite étale over a number field, morphisms of associated motivic dga’s are no different than morphisms of schemes. This may be regarded as a small consequence of a plausible generalization of Kim’s relative unipotent section conjecture, hence as an ounce of evidence for the latter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
While the adjective rational in the term rational point refers to the base, its meaning in the term rational motivic point is different—it refers to the coefficients, and to the effect they have on rationalizing spaces.
 
2
Drawing on the analogy between spectra and abelian groups, an object of a stable monoidal infinity category equipped with a unit morphism and a single binary operation (associative up to coherent higher homotopies) is often called an algebra. Although \({\text {ChM}}(Z,\mathbb {Q})\) is not itself stable, it is a full subcategory of the homotopy category of a stable monoidal infinity category.
 
3
Actually, philosophically, a comonoid in Chow motives should only be called a motivic Chow coalgebra if it comes from geometry in some sense. In the present work, we will only consider comonoids which come from geometry in an obvious sense.
 
4
When X is not proper, one must take the cofiber of the complement inside a compactification; see Proposition 3.6 for the precise statement under stringent assumptions on X.
 
5
In segment 3.5 below, we define \({\mathcal {K}}^{(i)} := \mathbb {Q}(i)[2i]\) and discuss the relationship to K-theory. See Riou [22] for a less tautological definition.
 
6
We place an \(\Omega ^\infty \) between the two limits in order to emphasize the fact that while the inner limit may be taken inside the category of spectra, the \(\Delta \)-shaped diagram of the outer limit contains morphisms which are not morphisms of spectra.
 
7
Indeed, from this point of view, a morphism \( C^*X \rightarrow \mathbb {Q}(0) \) in \({\text {DA}}(Z,\mathbb {Q})\) might be called a “rational linear motivic point”.
 
8
A point which may cause confusion is that the pointed set \(H^1\big ( \pi _1^R(Z), \pi _1^\text {un}(X)^R \big )\) is a cohomology set in the sense of group cohomology (that is, when considered as a functor of \(\pi _1^R(Z)\)), but is covariant as a functor of X.
 
9
We alert the reader to the fact that in topos theory, our \(i^*\) is usually denoted \(i_*\).
 
10
Although the category of motivic dga’s of [8] admits a well-behaved model structure, the language of infinity categories provides an elegant setting and a wealth of ready-made tools for our computations with homotopy limits.
 
11
There are two natural model structures, and as noted by Lurie, here we are free to choose either one.
 
12
There is also a purely motivic explanation. Motivic cohomology is also the cohomology of certain complexes of Zariski sheaves; \(\mathbb {Q}(0)\) corresponds to the constant sheaf \(\mathbb {Q}\) concentrated in degree 0.
 
Literatur
1.
Zurück zum Zitat Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Astérisque (314), x+466 (2008), 2007 Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Astérisque (314), x+466 (2008), 2007
2.
Zurück zum Zitat Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II. Astérisque (315) vi+364 (2008), 2007 Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II. Astérisque (315) vi+364 (2008), 2007
3.
Zurück zum Zitat Ayoub, J.: La réalisation étale et les opérations de Grothendieck. Ann. Sci. Éc. Norm. Supér. (4) 47(1), 1–145 (2014)MathSciNetCrossRef Ayoub, J.: La réalisation étale et les opérations de Grothendieck. Ann. Sci. Éc. Norm. Supér. (4) 47(1), 1–145 (2014)MathSciNetCrossRef
4.
Zurück zum Zitat Balakrishnan, J.S., Dan-Cohen, I., Kim, M., Wewers, S.: A non-abelian conjecture of Tate–Shafarevich type for hyperbolic curves. Math. Ann. 372(1–2), 369–428 (2018)MathSciNetCrossRef Balakrishnan, J.S., Dan-Cohen, I., Kim, M., Wewers, S.: A non-abelian conjecture of Tate–Shafarevich type for hyperbolic curves. Math. Ann. 372(1–2), 369–428 (2018)MathSciNetCrossRef
5.
8.
9.
Zurück zum Zitat Deligne, P., Goncharov, A.B.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. (4) 38(1), 1–56 (2005)MathSciNetCrossRef Deligne, P., Goncharov, A.B.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. (4) 38(1), 1–56 (2005)MathSciNetCrossRef
10.
Zurück zum Zitat Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Galois Groups Over \({{\bf Q}}\) (Berkeley, CA, 1987), vol. 16 of Math. Sci. Res. Inst. Publ., pp. 79–297. Springer, New York (1989) Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Galois Groups Over \({{\bf Q}}\) (Berkeley, CA, 1987), vol. 16 of Math. Sci. Res. Inst. Publ., pp. 79–297. Springer, New York (1989)
11.
Zurück zum Zitat Dugger, D.: Replacing model categories with simplicial ones. Trans. Am. Math. Soc. 353(12), 5003–5028 (2001)MathSciNetCrossRef Dugger, D.: Replacing model categories with simplicial ones. Trans. Am. Math. Soc. 353(12), 5003–5028 (2001)MathSciNetCrossRef
13.
14.
16.
Zurück zum Zitat Kim, M.: The motivic fundamental group of \(\mathbb{P}^1\setminus \{0,1,\infty \}\) and the theorem of Siegel. Invent. Math. 161(3), 629–656 (2005)MathSciNetCrossRef Kim, M.: The motivic fundamental group of \(\mathbb{P}^1\setminus \{0,1,\infty \}\) and the theorem of Siegel. Invent. Math. 161(3), 629–656 (2005)MathSciNetCrossRef
17.
Zurück zum Zitat Kim, M.: The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci. 45(1), 89–133 (2009)MathSciNetCrossRef Kim, M.: The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci. 45(1), 89–133 (2009)MathSciNetCrossRef
18.
Zurück zum Zitat Kratzer, C.: \(\lambda \)-structure en \(K\)-théorie algébrique. Comment. Math. Helv. 55(2), 233–254 (1980)MathSciNetCrossRef Kratzer, C.: \(\lambda \)-structure en \(K\)-théorie algébrique. Comment. Math. Helv. 55(2), 233–254 (1980)MathSciNetCrossRef
20.
Zurück zum Zitat Lurie, J.: Higher topos theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton, NJ (2009) Lurie, J.: Higher topos theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton, NJ (2009)
21.
Zurück zum Zitat Morel, F., Voevodsky, V.: \({{\bf A}}^1\)-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90) 45–143 (2001), 1999 Morel, F., Voevodsky, V.: \({{\bf A}}^1\)-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90) 45–143 (2001), 1999
23.
Zurück zum Zitat Schneider, P.: Introduction to the Beĭlinson conjectures. In: Beĭlinson’s Conjectures on Special Values of \(L\)-Functions, vol. 4 of Perspect. Math., pp. 1–35. Academic Press, Boston, MA (1988) Schneider, P.: Introduction to the Beĭlinson conjectures. In: Beĭlinson’s Conjectures on Special Values of \(L\)-Functions, vol. 4 of Perspect. Math., pp. 1–35. Academic Press, Boston, MA (1988)
24.
Zurück zum Zitat Voevodsky, V.: Triangulated categories of motives over a field. In: Cycles, Transfers, and Motivic Homology Theories, vol. 143 of Ann. of Math. Stud., pp. 188–238. Princeton Univ. Press, Princeton, NJ (2000) Voevodsky, V.: Triangulated categories of motives over a field. In: Cycles, Transfers, and Motivic Homology Theories, vol. 143 of Ann. of Math. Stud., pp. 188–238. Princeton Univ. Press, Princeton, NJ (2000)
25.
Zurück zum Zitat Voevodsky, V.: Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic. Int. Math. Res. Not. 7, 351–355 (2002)MathSciNetCrossRef Voevodsky, V.: Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic. Int. Math. Res. Not. 7, 351–355 (2002)MathSciNetCrossRef
Metadaten
Titel
Morphisms of Rational Motivic Homotopy Types
verfasst von
Ishai Dan-Cohen
Tomer Schlank
Publikationsdatum
19.11.2020
Verlag
Springer Netherlands
Erschienen in
Applied Categorical Structures / Ausgabe 2/2021
Print ISSN: 0927-2852
Elektronische ISSN: 1572-9095
DOI
https://doi.org/10.1007/s10485-020-09618-6

Weitere Artikel der Ausgabe 2/2021

Applied Categorical Structures 2/2021 Zur Ausgabe

Premium Partner