Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 3/2021

20.05.2021 | Research Paper

Multi-material topology optimization considering isotropic and anisotropic materials combination

verfasst von: Rubens Bohrer, Il Yong Kim

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multi-material topology optimization that is based on homogenization schemes has evolved from the conventional optimization methods to the general multi-material solution methodology. While the former interpolation schemes restrict the solution to the isotropic material with constant Poisson’s ratio, the latter generalizes the application to both isotropic and anisotropic materials, as well as a combination of them. Within density-based multi-material topology optimization, the discrete material optimization scheme is a well-known tool to solve the mixture of isotropic and anisotropic materials; nevertheless, most of its applications are based on open-source finite element codes. An alternative to the discrete material optimization scheme is the element duplication method that relies on the idea of stacking multiple elements and assigning one candidate material to each stacked element, thus avoiding the need-to-know important information from open-source finite element engines to compute the first-order sensitivities. Besides its simple implementation along with commercial finite element solvers, the element duplication procedure diminishes computational efficiency due to the element stacking process. In this paper, a solution for this process is proposed for the multi-material topology optimization problem by considering the mixture of isotropic and anisotropic materials without the need for stacking elements in commercial finite element engines, improving the numerical efficiency of element duplication methods as well as being an alternative to compute the sensitivities in the discrete material optimization scheme. Traditional topology optimization response sensitivities are thoroughly discussed, and several numerical examples are presented demonstrating the effectiveness of the proposed approach. In addition, a new approach to compute displacement sensitivities is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Altair (2019) Altair OptiStruct 2019 user guide. Troy, Michigan Altair (2019) Altair OptiStruct 2019 user guide. Troy, Michigan
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRef
Zurück zum Zitat Bruyneel M (2010) SFP—a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef Bruyneel M (2010) SFP—a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef
Zurück zum Zitat Florea V, Pamwar M, Sangha B, Kim IY (2019a) 3D multi-material and multi-joint topology optimization with tooling accessibility constraints. Struct Multidiscip Optim 60(6):2531–2558CrossRef Florea V, Pamwar M, Sangha B, Kim IY (2019a) 3D multi-material and multi-joint topology optimization with tooling accessibility constraints. Struct Multidiscip Optim 60(6):2531–2558CrossRef
Zurück zum Zitat Florea V, Pamwar M, Sangha B, Kim IY (2019b) Simultaneous single-loop multimaterial and multijoint topology optimization. Int J Numer Methods Eng 121(7):1558–1594MathSciNetCrossRef Florea V, Pamwar M, Sangha B, Kim IY (2019b) Simultaneous single-loop multimaterial and multijoint topology optimization. Int J Numer Methods Eng 121(7):1558–1594MathSciNetCrossRef
Zurück zum Zitat Gibiansky LV, Sigmund O (1999) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(2000):461–498MathSciNetMATH Gibiansky LV, Sigmund O (1999) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(2000):461–498MathSciNetMATH
Zurück zum Zitat Giraldo-Londoño O, Mirabella L, Dalloro L, Paulino GH (2020) Multi-material thermomechanical topology optimization with applications to additive manufacturing: design of main composite part and its support structure. Comput Methods Appl Mech Eng 363:112812. https://doi.org/10.1016/j.cma.2019.112812 Giraldo-Londoño O, Mirabella L, Dalloro L, Paulino GH (2020) Multi-material thermomechanical topology optimization with applications to additive manufacturing: design of main composite part and its support structure. Comput Methods Appl Mech Eng 363:112812. https://​doi.​org/​10.​1016/​j.​cma.​2019.​112812
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655MathSciNetCrossRef Guo X, Zhang W, Zhong W (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655MathSciNetCrossRef
Zurück zum Zitat Li C, Kim IY (2014) Topology, size and shape optimization of an automotive cross car beam. Proc Inst Mech Eng Part D: J Automob Eng 229(10):1361–1378CrossRef Li C, Kim IY (2014) Topology, size and shape optimization of an automotive cross car beam. Proc Inst Mech Eng Part D: J Automob Eng 229(10):1361–1378CrossRef
Zurück zum Zitat Li C, Kim IY (2017) Multi-material topology optimization for automotive design problems. Proc Inst Mech Eng Part D: J Automob Eng 232(14):1950–1969CrossRef Li C, Kim IY (2017) Multi-material topology optimization for automotive design problems. Proc Inst Mech Eng Part D: J Automob Eng 232(14):1950–1969CrossRef
Zurück zum Zitat Li D, Kim IY (2018) Multi-material topology optimization for practical lightweight design. Struct Multidiscip Optim 58(3):1081–1094MathSciNetCrossRef Li D, Kim IY (2018) Multi-material topology optimization for practical lightweight design. Struct Multidiscip Optim 58(3):1081–1094MathSciNetCrossRef
Zurück zum Zitat Li D, Kim IY (2019) Modified element stacking method for multi-material topology optimization with anisotropic materials. Struct Multidiscip Optim 61(2):525–541MathSciNetCrossRef Li D, Kim IY (2019) Modified element stacking method for multi-material topology optimization with anisotropic materials. Struct Multidiscip Optim 61(2):525–541MathSciNetCrossRef
Zurück zum Zitat Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158–167CrossRef Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158–167CrossRef
Zurück zum Zitat Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef
Zurück zum Zitat Regazzoni F, Parolini N, Verani M (2018) Topology optimization of multiple anisotropic materials, with application to self-assembling diblock copolymers. Comput Methods Appl Mech Eng 338:562–596MathSciNetCrossRef Regazzoni F, Parolini N, Verani M (2018) Topology optimization of multiple anisotropic materials, with application to self-assembling diblock copolymers. Comput Methods Appl Mech Eng 338:562–596MathSciNetCrossRef
Zurück zum Zitat Ryan L, Kim IY (2019) A multiobjective topology optimization approach for cost and time minimization in additive manufacturing. Int J Numer Methods Eng 118(7):371–394MathSciNetCrossRef Ryan L, Kim IY (2019) A multiobjective topology optimization approach for cost and time minimization in additive manufacturing. Int J Numer Methods Eng 118(7):371–394MathSciNetCrossRef
Zurück zum Zitat Sabiston G, Kim IY (2019) 3D topology optimization for cost and time minimization in additive manufacturing. Struct Multidiscip Optim 61(2):731–748CrossRef Sabiston G, Kim IY (2019) 3D topology optimization for cost and time minimization in additive manufacturing. Struct Multidiscip Optim 61(2):731–748CrossRef
Zurück zum Zitat Sanders ED, Pereira A, Aguiló MA, Paulino GH (2018) PolyMat: an efficient Matlab code for multi-material topology optimization. Struct Multidiscip Optim 58(6):2727–2759MathSciNetCrossRef Sanders ED, Pereira A, Aguiló MA, Paulino GH (2018) PolyMat: an efficient Matlab code for multi-material topology optimization. Struct Multidiscip Optim 58(6):2727–2759MathSciNetCrossRef
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127CrossRef
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–78CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–78CrossRef
Zurück zum Zitat Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef
Zurück zum Zitat Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRef Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRef Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRef
Zurück zum Zitat Thomsen J (1992) Topology optimization of structures composed of one or two. Struct Optim 5:108–115CrossRef Thomsen J (1992) Topology optimization of structures composed of one or two. Struct Optim 5:108–115CrossRef
Zurück zum Zitat Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Prob Eng 1(1):71–105CrossRef Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Prob Eng 1(1):71–105CrossRef
Zurück zum Zitat Woischwill C, Kim IY (2018) Multimaterial multijoint topology optimization. Int J Numer Methods Eng 115(13):1552–1579MathSciNetCrossRef Woischwill C, Kim IY (2018) Multimaterial multijoint topology optimization. Int J Numer Methods Eng 115(13):1552–1579MathSciNetCrossRef
Zurück zum Zitat Yoon GH, Park YK, Kim YY (2007) Element stacking method for topology optimization with material-dependent boundary and loading. J Mech Mater Struct 2(5):883–895CrossRef Yoon GH, Park YK, Kim YY (2007) Element stacking method for topology optimization with material-dependent boundary and loading. J Mech Mater Struct 2(5):883–895CrossRef
Zurück zum Zitat Yulin M, Xiaoming W (2004) A level set method for structural topology optimization and its applications. Adv Eng Softw 35(7):415–441CrossRef Yulin M, Xiaoming W (2004) A level set method for structural topology optimization and its applications. Adv Eng Softw 35(7):415–441CrossRef
Metadaten
Titel
Multi-material topology optimization considering isotropic and anisotropic materials combination
verfasst von
Rubens Bohrer
Il Yong Kim
Publikationsdatum
20.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 3/2021
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-021-02941-z

Weitere Artikel der Ausgabe 3/2021

Structural and Multidisciplinary Optimization 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.