Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

28.06.2021

Multi-Objective Optimization in WSN: Opportunities and Challenges

verfasst von: Omkar Singh, Vinay Rishiwal, Rashmi Chaudhry, Mano Yadav

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) plays a significant role in the field of surveillance, monitoring the real time applications. Regardless its strong ability to handle such tasks, it is difficult to maintain a trade-off between the conflicting goals of network lifetime, transmission delay, high coverage and packet loss. Various solutions have been proposed by the researchers to address these issues comprising the solution in real-time network scenarios. This paper delivers a brief analysis of the solutions addressing recent research problems in WSN comprising conflicting goals, i.e. multi-objective optimization (MOO) technique. Firstly, an illustration of key optimization objective in WSNs is given which constitutes existing issues such as power control, rate control ant routing. Then, an elaboration of various objective functions used in MOO with its merits and demerits is also provided. Later, existing approaches for improving optimizing metric, applications performance of existing approaches and proposed architecture have been discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deepa, O., & Suguna, J. (2017). An optimized QoS-based clustering with multipath routing protocol for wireless sensor networks. JKSU-Computer and Information Sciences, 13, 1–12. Deepa, O., & Suguna, J. (2017). An optimized QoS-based clustering with multipath routing protocol for wireless sensor networks. JKSU-Computer and Information Sciences, 13, 1–12.
2.
Zurück zum Zitat Zhou, Z., Xu, J., Zhang, Z., Lei, F., & Fang, W. (2017). Energy-efficient optimization for concurrent compositions of WSN services. IEEE Acess, 17, 1–15. Zhou, Z., Xu, J., Zhang, Z., Lei, F., & Fang, W. (2017). Energy-efficient optimization for concurrent compositions of WSN services. IEEE Acess, 17, 1–15.
3.
Zurück zum Zitat Na, W., & Tianhua, W. (2016). A trusted QoS routing model for wireless sensor networks. In ICCSE (pp. 627–630). Na, W., & Tianhua, W. (2016). A trusted QoS routing model for wireless sensor networks. In ICCSE (pp. 627–630).
4.
Zurück zum Zitat More, A., & Raisinghani, V. (2017). A survey on energy efficient coverage protocols in wireless sensor networks. Journal of King Saud University – Computer and Information Sciences, 29, 428–448.CrossRef More, A., & Raisinghani, V. (2017). A survey on energy efficient coverage protocols in wireless sensor networks. Journal of King Saud University – Computer and Information Sciences, 29, 428–448.CrossRef
5.
Zurück zum Zitat Li, H., & Lin, Z. (2017). Study on location of wireless sensor network node in forest environment. ICICT, 107, 697–704. Li, H., & Lin, Z. (2017). Study on location of wireless sensor network node in forest environment. ICICT, 107, 697–704.
6.
Zurück zum Zitat Arasu, K., & Ganesan, R. (2018). Effective implementation of energy aware routing for wireless sensor network. PMME, 5, 1186–1193. Arasu, K., & Ganesan, R. (2018). Effective implementation of energy aware routing for wireless sensor network. PMME, 5, 1186–1193.
7.
Zurück zum Zitat Migabo, M., Djouani, K., Olwal, T. O., & Kurien, A. M. (2017). A survey on energy efficient network coding for multi-hop routing in wireless sensor networks. FNC, 94, 288–294. Migabo, M., Djouani, K., Olwal, T. O., & Kurien, A. M. (2017). A survey on energy efficient network coding for multi-hop routing in wireless sensor networks. FNC, 94, 288–294.
8.
Zurück zum Zitat Ansane, A. A., & Satao, R. A. (2017). A survey on various multipath routing protocols in wireless sensor networks. CCV, 79, 610–615. Ansane, A. A., & Satao, R. A. (2017). A survey on various multipath routing protocols in wireless sensor networks. CCV, 79, 610–615.
9.
Zurück zum Zitat Patnai, S. (2016). Energy management in wireless sensor network using PEGASIS. ICCC, 92, 207–212. Patnai, S. (2016). Energy management in wireless sensor network using PEGASIS. ICCC, 92, 207–212.
10.
Zurück zum Zitat Mahidhar, R., & Raut, A. (2017). A survey on scheduling schemes with security in wireless sensor networks. ICISP, 78, 756–762. Mahidhar, R., & Raut, A. (2017). A survey on scheduling schemes with security in wireless sensor networks. ICISP, 78, 756–762.
11.
Zurück zum Zitat Elshrkawey, M., Elsherif, S. M., & Wahed, M. E. (2018). An enhancement approach for reducing the energy consumption in wireless sensor networks. Journal of King Saud University Computer and Information Sciences, 30, 259–267.CrossRef Elshrkawey, M., Elsherif, S. M., & Wahed, M. E. (2018). An enhancement approach for reducing the energy consumption in wireless sensor networks. Journal of King Saud University Computer and Information Sciences, 30, 259–267.CrossRef
12.
Zurück zum Zitat H. Sandor, P. haller and Z Gal, “Performance Analysis of Wireless Sensor Networks”, INTER-ENG, vol. 19, pp. 842–849, 2016. H. Sandor, P. haller and Z Gal, “Performance Analysis of Wireless Sensor Networks”, INTER-ENG, vol. 19, pp. 842–849, 2016.
13.
Zurück zum Zitat Kakhandki, A. L., Hublikar, S., & Kumar, P. (2018). Energy efficient selective hop selection optimization to maximize lifetime of wireless sensor network. Alexandria Engineering Journal, 57, 711–718.CrossRef Kakhandki, A. L., Hublikar, S., & Kumar, P. (2018). Energy efficient selective hop selection optimization to maximize lifetime of wireless sensor network. Alexandria Engineering Journal, 57, 711–718.CrossRef
14.
Zurück zum Zitat Lu, Y., Zhang, T., He, E., & Comşa, I. S. (2018). Self-learning-based data aggregation scheduling policy in wireless sensor networks. Journal of Sensors, 18, 1–12. Lu, Y., Zhang, T., He, E., & Comşa, I. S. (2018). Self-learning-based data aggregation scheduling policy in wireless sensor networks. Journal of Sensors, 18, 1–12.
15.
Zurück zum Zitat Ferrandis, T. D., Blanes, J. S., Climent, S. S., Sempere-Paya, V., & Vera-Pérez, J. (2018). Deploy&Forget wireless sensor networks for itinerant applications. Computer Standards & Interfaces, 56, 27–40.CrossRef Ferrandis, T. D., Blanes, J. S., Climent, S. S., Sempere-Paya, V., & Vera-Pérez, J. (2018). Deploy&Forget wireless sensor networks for itinerant applications. Computer Standards & Interfaces, 56, 27–40.CrossRef
16.
Zurück zum Zitat Tawalbeh, L. A., Hashish, S., & Tawalbeh, H. (2017). Quality of service requirements and challenges in generic WSN infrastructures. SCE, 109, 1116–1121. Tawalbeh, L. A., Hashish, S., & Tawalbeh, H. (2017). Quality of service requirements and challenges in generic WSN infrastructures. SCE, 109, 1116–1121.
17.
Zurück zum Zitat Arora, V. K., Sharma, V., & Sachdeva, M. (2018). On QoS evaluation for ZigBee incorporated wireless sensor network (IEEE 802.15.4) using mobile sensor nodes. Journal of King Saud University Computer and Information Sciences, 13, 1–9. Arora, V. K., Sharma, V., & Sachdeva, M. (2018). On QoS evaluation for ZigBee incorporated wireless sensor network (IEEE 802.15.4) using mobile sensor nodes. Journal of King Saud University Computer and Information Sciences, 13, 1–9.
18.
Zurück zum Zitat Ahlwat, P., & Dave, M. (2018). An attack model based highly secure key management scheme for wireless sensor networks. ICSCC, 125, 201–207. Ahlwat, P., & Dave, M. (2018). An attack model based highly secure key management scheme for wireless sensor networks. ICSCC, 125, 201–207.
19.
Zurück zum Zitat Padmaja, P., & Marutheswar, G. V. (2018). Energy efficient data aggregation in wireless sensor networks. PMME, 5, 388–396. Padmaja, P., & Marutheswar, G. V. (2018). Energy efficient data aggregation in wireless sensor networks. PMME, 5, 388–396.
20.
Zurück zum Zitat Snigth, I., & Gosain, D. (2016). Energy analysis for trajectory based sink mobility in WSN. IMCIP, 54, 118–126. Snigth, I., & Gosain, D. (2016). Energy analysis for trajectory based sink mobility in WSN. IMCIP, 54, 118–126.
21.
Zurück zum Zitat Achour, A., Deru, L., & Deprez, J. C. (2018). Mobility management for wireless sensor networks a state-of-the-art. IUPT, 52, 1101–1107. Achour, A., Deru, L., & Deprez, J. C. (2018). Mobility management for wireless sensor networks a state-of-the-art. IUPT, 52, 1101–1107.
22.
Zurück zum Zitat Manikandan, S., & Chinadurai, M. (2021). Effective energy adaptive and consumption in wireless sensor network using distributed source coding and sampling techniques. Wireless Personal Communications, 118, 1393–1404.CrossRef Manikandan, S., & Chinadurai, M. (2021). Effective energy adaptive and consumption in wireless sensor network using distributed source coding and sampling techniques. Wireless Personal Communications, 118, 1393–1404.CrossRef
23.
Zurück zum Zitat Fei, Z., Li, B., Yang, S., Xing, C., Chen, H., & Hanzo, L. (2016). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms and open problems. IEEE Communications Surveys & Tutorials, 111, 1–38. Fei, Z., Li, B., Yang, S., Xing, C., Chen, H., & Hanzo, L. (2016). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms and open problems. IEEE Communications Surveys & Tutorials, 111, 1–38.
24.
Zurück zum Zitat Ebhota, V. C., & Srivasatva, V. M. (2021). Performance analysis of learning rate parameter on prediction of signal power loss for network optimization and better generalization. Wireless Personal Communications, 118, 1111–1128.CrossRef Ebhota, V. C., & Srivasatva, V. M. (2021). Performance analysis of learning rate parameter on prediction of signal power loss for network optimization and better generalization. Wireless Personal Communications, 118, 1111–1128.CrossRef
25.
Zurück zum Zitat Li, H., & Lin, Z. (2018). Study on location of wireless sensor networks in P.Padmaja and G.V.Marutheswar. PMME, 5, 388–396. Li, H., & Lin, Z. (2018). Study on location of wireless sensor networks in P.Padmaja and G.V.Marutheswar. PMME, 5, 388–396.
26.
Zurück zum Zitat Maheshawri, M., & Karthika, R. A. (2021). A novel QoS based secure unequal clustering protocol with intrusion detection system in wireless sensor networks. Wireless Personal Communications, 118, 1535–1557.CrossRef Maheshawri, M., & Karthika, R. A. (2021). A novel QoS based secure unequal clustering protocol with intrusion detection system in wireless sensor networks. Wireless Personal Communications, 118, 1535–1557.CrossRef
27.
Zurück zum Zitat Jiang, A., & Zheng, L. (2018). An effective hybrid routing algorithm in WSN: Ant colony optimization in combination with hop count minimization. MDPI, 28, 1–17. Jiang, A., & Zheng, L. (2018). An effective hybrid routing algorithm in WSN: Ant colony optimization in combination with hop count minimization. MDPI, 28, 1–17.
28.
Zurück zum Zitat Kumar, R., & Venkatesh, I. (2018). SDN-based QOS-aware multipath routing mechanism using openstac. International Journal of Pure and Applied Mathematics, 118(20), 357–364. Kumar, R., & Venkatesh, I. (2018). SDN-based QOS-aware multipath routing mechanism using openstac. International Journal of Pure and Applied Mathematics, 118(20), 357–364.
29.
Zurück zum Zitat Sendra, S., Parra, L., Lloret, J., & Khan, S. (2017). Systems and algorithms for wireless sensor networks based on animal and natural behavior. International Journal of Distributed Sensor Networks, 112, 1–19. Sendra, S., Parra, L., Lloret, J., & Khan, S. (2017). Systems and algorithms for wireless sensor networks based on animal and natural behavior. International Journal of Distributed Sensor Networks, 112, 1–19.
30.
Zurück zum Zitat Umamaheshwari, S. (2021). Hybrid optimization model for energy efficient cloud assisted wireless sensor network. Wireless Personal Communications, 118, 873–885.CrossRef Umamaheshwari, S. (2021). Hybrid optimization model for energy efficient cloud assisted wireless sensor network. Wireless Personal Communications, 118, 873–885.CrossRef
31.
Zurück zum Zitat Lavangya, N., & Shankar, T. (2017). Energy optimization in wireless sensor network using NSGA-II. ARPN, 12(23), 6698–6702. Lavangya, N., & Shankar, T. (2017). Energy optimization in wireless sensor network using NSGA-II. ARPN, 12(23), 6698–6702.
32.
Zurück zum Zitat Maheshwari, P., Sharma, A. K., & Verma, K. (2021). Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization. Ad Hoc Networks, 110, 1–52.CrossRef Maheshwari, P., Sharma, A. K., & Verma, K. (2021). Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization. Ad Hoc Networks, 110, 1–52.CrossRef
33.
Zurück zum Zitat Hammoudeh, M., & Newmanb, R. (2016). Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance. Information Fusion, 113, 1–14. Hammoudeh, M., & Newmanb, R. (2016). Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance. Information Fusion, 113, 1–14.
34.
Zurück zum Zitat Reddy, D. L., Puttamadappa, C., & Suresh, H. N. (2021). Merged glowworm swarm with ant colony optimization for energy efficient clustering and routing in wireless sensor network. Pervasive and Mobile Computing, 71, 13–38.CrossRef Reddy, D. L., Puttamadappa, C., & Suresh, H. N. (2021). Merged glowworm swarm with ant colony optimization for energy efficient clustering and routing in wireless sensor network. Pervasive and Mobile Computing, 71, 13–38.CrossRef
35.
Zurück zum Zitat Yahiaoui, S., Omar, M., Bouabdallah, A., Natalizio, E., & Challal, Y. (2018). An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. International Journal of Electronics and Communications, 83, 193–203.CrossRef Yahiaoui, S., Omar, M., Bouabdallah, A., Natalizio, E., & Challal, Y. (2018). An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. International Journal of Electronics and Communications, 83, 193–203.CrossRef
36.
Zurück zum Zitat Hao, X., Yao, N., Wang, L., & Wang, J. (2020). Joint resource allocation algorithm based on multi-objective optimization for wireless sensor networks. Applied Soft Computing, 94, 1064–1070.CrossRef Hao, X., Yao, N., Wang, L., & Wang, J. (2020). Joint resource allocation algorithm based on multi-objective optimization for wireless sensor networks. Applied Soft Computing, 94, 1064–1070.CrossRef
37.
Zurück zum Zitat Magaiaa, N., Hortab, N., Nevesb, R., Pereira, P. R., & Correia, M. (2016). A multi-objective routing algorithm for wireless multimedia sensor networks. Applied Soft Computing, 145, 1–27. Magaiaa, N., Hortab, N., Nevesb, R., Pereira, P. R., & Correia, M. (2016). A multi-objective routing algorithm for wireless multimedia sensor networks. Applied Soft Computing, 145, 1–27.
38.
Zurück zum Zitat Ghosal, A., Halder, S., & Das, S. K. (2020). Distributed on-demand clustering algorithm for lifetime optimization in wireless sensor networks. Journal of Parallel and Distributed Computing, 141, 129–142.CrossRef Ghosal, A., Halder, S., & Das, S. K. (2020). Distributed on-demand clustering algorithm for lifetime optimization in wireless sensor networks. Journal of Parallel and Distributed Computing, 141, 129–142.CrossRef
39.
Zurück zum Zitat Iqbal, M., Naeem, M., Anpalagan, A., Qadri, N. N., & Imran, M. (2016). Multi-objective optimization in sensor networks: Optimization classification, applications. Computer Networks, 2016, 1–30. Iqbal, M., Naeem, M., Anpalagan, A., Qadri, N. N., & Imran, M. (2016). Multi-objective optimization in sensor networks: Optimization classification, applications. Computer Networks, 2016, 1–30.
40.
Zurück zum Zitat Phoemphon, S., So-In, C., & Leelathakul, N. (2021). Improved distance estimation with node selection localization and particle swarm optimization for obstacle-aware wireless sensor networks. Expert Systems with Applications, 175, 47–73.CrossRef Phoemphon, S., So-In, C., & Leelathakul, N. (2021). Improved distance estimation with node selection localization and particle swarm optimization for obstacle-aware wireless sensor networks. Expert Systems with Applications, 175, 47–73.CrossRef
41.
Zurück zum Zitat Jha, S. K., & Eyong, E. M. (2017). An energy optimization in wireless sensor networks by using genetic algorithm. Telecommunications Systems, 66, 31–39. Jha, S. K., & Eyong, E. M. (2017). An energy optimization in wireless sensor networks by using genetic algorithm. Telecommunications Systems, 66, 31–39.
42.
Zurück zum Zitat Zhang, X., Lu, X., & Zhang, X. (2020). Mobile wireless sensor network lifetime maximization by using evolutionary computing methods. Ad Hoc Networks, 101, 94–102.CrossRef Zhang, X., Lu, X., & Zhang, X. (2020). Mobile wireless sensor network lifetime maximization by using evolutionary computing methods. Ad Hoc Networks, 101, 94–102.CrossRef
43.
Zurück zum Zitat Li, X., Liu, A., Xie, M., Xiong, N. N., Zeng, Z., & Cai, Z. (2018). Adaptive aggregation routing to reduce delay for multi-layer wireless sensor networks. MDPI, 18, 1–28. Li, X., Liu, A., Xie, M., Xiong, N. N., Zeng, Z., & Cai, Z. (2018). Adaptive aggregation routing to reduce delay for multi-layer wireless sensor networks. MDPI, 18, 1–28.
44.
Zurück zum Zitat Younus, M. U., Khan, M. K., Anjum, M. R., Afridi, S., Arain, Z. A., & Jamali, A. A. (2021). Optimizing the lifetime of software defined wireless sensor network via reinforcement learning. IEEE Access, 9, 259–272.CrossRef Younus, M. U., Khan, M. K., Anjum, M. R., Afridi, S., Arain, Z. A., & Jamali, A. A. (2021). Optimizing the lifetime of software defined wireless sensor network via reinforcement learning. IEEE Access, 9, 259–272.CrossRef
45.
Zurück zum Zitat Zaki, M., Al, H., & Gunay, M. (2017). Lifetime maximization by partitioning approach in wireless sensor networks. Journal on Wireless Communications and Networking, 15, 1–29. Zaki, M., Al, H., & Gunay, M. (2017). Lifetime maximization by partitioning approach in wireless sensor networks. Journal on Wireless Communications and Networking, 15, 1–29.
46.
Zurück zum Zitat Tsoumanis, G., Oikonomou, K., Aissa, S., & Stavrakakis, I. (2021). Energy and distance optimization in rechargeable wireless sensor networks. Green Communications and Networking, 5, 378–391.CrossRef Tsoumanis, G., Oikonomou, K., Aissa, S., & Stavrakakis, I. (2021). Energy and distance optimization in rechargeable wireless sensor networks. Green Communications and Networking, 5, 378–391.CrossRef
47.
Zurück zum Zitat Mehari, M. T., De Poorter, E., Couckuyt, I., Deschrijver, D., Vermeeren, G., Plets, D., Joseph, W., Martens, L., Dhaene, T., & Moerman, I. (2016). Efficient identification of a multi-objective pareto front on a wireless experimentation facility. IEEE Transactions on Wireless Communications, 2016, 1–13. Mehari, M. T., De Poorter, E., Couckuyt, I., Deschrijver, D., Vermeeren, G., Plets, D., Joseph, W., Martens, L., Dhaene, T., & Moerman, I. (2016). Efficient identification of a multi-objective pareto front on a wireless experimentation facility. IEEE Transactions on Wireless Communications, 2016, 1–13.
48.
Zurück zum Zitat Kaur, T., & Kumar, D. (2021). MACO-QCR: Multi-objective ACO-based QoS-aware cross-layer routing protocols in WSN. IEEE Sensors Journal, 21, 6775–6783.CrossRef Kaur, T., & Kumar, D. (2021). MACO-QCR: Multi-objective ACO-based QoS-aware cross-layer routing protocols in WSN. IEEE Sensors Journal, 21, 6775–6783.CrossRef
49.
Zurück zum Zitat Prasad, D. R., Naganjaneyulu, P. V., & Prasad, K. S. (2016). Energy efficient clustering in multi-hop wireless sensor networks using differential evolutionary MOPSO. IJETT, 59, 1–15. Prasad, D. R., Naganjaneyulu, P. V., & Prasad, K. S. (2016). Energy efficient clustering in multi-hop wireless sensor networks using differential evolutionary MOPSO. IJETT, 59, 1–15.
50.
Zurück zum Zitat Luo, C., Satpute, M. N., Li, D., Wang, Y., Chen, W., & Wu, W. (2021). Fine-grained trajectory optimization of multiple UAVs for efficient data gathering from WSNs. IEEE/ACM Transactions on Networking, 29, 162–175. Luo, C., Satpute, M. N., Li, D., Wang, Y., Chen, W., & Wu, W. (2021). Fine-grained trajectory optimization of multiple UAVs for efficient data gathering from WSNs. IEEE/ACM Transactions on Networking, 29, 162–175.
51.
Zurück zum Zitat Prusty, A. R., Sethib, S., & Nayakc, A. K. (2017). Multi-objective optimality in energy efficient routing for heterogeneous wireless ad hoc sensor network with clustering. IJIDT, 11, 61–70. Prusty, A. R., Sethib, S., & Nayakc, A. K. (2017). Multi-objective optimality in energy efficient routing for heterogeneous wireless ad hoc sensor network with clustering. IJIDT, 11, 61–70.
52.
Zurück zum Zitat Zhu, Y., Gong, S., Chi, K., Li, Y., & Fang, Y. (2021). Optimizing superframe and data buffer to achieve maximum throughput for 802.15.4-based energy harvesting wireless sensor networks. IEEE Internet of Things Journal, 8, 3689–3704.CrossRef Zhu, Y., Gong, S., Chi, K., Li, Y., & Fang, Y. (2021). Optimizing superframe and data buffer to achieve maximum throughput for 802.15.4-based energy harvesting wireless sensor networks. IEEE Internet of Things Journal, 8, 3689–3704.CrossRef
53.
Zurück zum Zitat Sarkar, A., & Murugan, T. S. (2016). Routing protocols for wireless sensor networks: What the literature says? Alexandria Engineering Journal, 55, 3173–3183.CrossRef Sarkar, A., & Murugan, T. S. (2016). Routing protocols for wireless sensor networks: What the literature says? Alexandria Engineering Journal, 55, 3173–3183.CrossRef
54.
Zurück zum Zitat Rathee, M., Kumar, S., Gandomi, A. H., Dilip, K., Balusamy, B., & Patan, R. (2021). Ant colony optimization based quality of service aware energy balancing secure routing algorithm for wireless sensor networks. IEEE Transactions on Engineering Management, 68, 170–182.CrossRef Rathee, M., Kumar, S., Gandomi, A. H., Dilip, K., Balusamy, B., & Patan, R. (2021). Ant colony optimization based quality of service aware energy balancing secure routing algorithm for wireless sensor networks. IEEE Transactions on Engineering Management, 68, 170–182.CrossRef
55.
Zurück zum Zitat Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., & Azam, M. (2016). Wireless sensor network optimization: Multi-objective paradigm. MDPI, 16, 17573–17609. Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., & Azam, M. (2016). Wireless sensor network optimization: Multi-objective paradigm. MDPI, 16, 17573–17609.
56.
Zurück zum Zitat Srinivasan, R., & Kannan, E. (2018). Energy harvesting based efficient routing scheme for wireless sensor network. Wireless Personal Communications, 101, 1457–1468.CrossRef Srinivasan, R., & Kannan, E. (2018). Energy harvesting based efficient routing scheme for wireless sensor network. Wireless Personal Communications, 101, 1457–1468.CrossRef
57.
Zurück zum Zitat Tan, J., Liu, A., Zhao, M., Shen, H., & Ma, M. (2018). Cross-layer design for reducing delay and maximizing lifetime in industrial wireless sensor networks. Journal on Wireless Communications and Networking, 2018, 1–26. Tan, J., Liu, A., Zhao, M., Shen, H., & Ma, M. (2018). Cross-layer design for reducing delay and maximizing lifetime in industrial wireless sensor networks. Journal on Wireless Communications and Networking, 2018, 1–26.
58.
Zurück zum Zitat Yang, Q., & Yoo, S. (2018). Optimal UAV path planning: Sensing data acquisition over IoT sensor networks using multi-objective bio-inspired algorithms. IJDCN, 118, 1–4. Yang, Q., & Yoo, S. (2018). Optimal UAV path planning: Sensing data acquisition over IoT sensor networks using multi-objective bio-inspired algorithms. IJDCN, 118, 1–4.
59.
Zurück zum Zitat Xua, Y., Dinga, O., & Qub, R. (2018). Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization. Applied Soft Computing, 68, 268–282.CrossRef Xua, Y., Dinga, O., & Qub, R. (2018). Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization. Applied Soft Computing, 68, 268–282.CrossRef
60.
Zurück zum Zitat Chun Li, S., Wang, P., & Lu, M. (2016). Jointly optimized QoS-aware virtualization and routing in software defined networks. Computer Networks, 96, 69–78.CrossRef Chun Li, S., Wang, P., & Lu, M. (2016). Jointly optimized QoS-aware virtualization and routing in software defined networks. Computer Networks, 96, 69–78.CrossRef
61.
Zurück zum Zitat Yogarajan, G., & Revathi, T. (2017). Improved cluster based data gathering using ant lion optimization in wireless sensor networks. Wireless Personal Communications, 2017, 1–21. Yogarajan, G., & Revathi, T. (2017). Improved cluster based data gathering using ant lion optimization in wireless sensor networks. Wireless Personal Communications, 2017, 1–21.
62.
Zurück zum Zitat Kaur, S., & Mahajan, R. (2018). Hybrid meta-heuristic optimization based energy efficient protocol for wireless sensor networks. Egyptian Informatics Journal, 66, 1–6. Kaur, S., & Mahajan, R. (2018). Hybrid meta-heuristic optimization based energy efficient protocol for wireless sensor networks. Egyptian Informatics Journal, 66, 1–6.
63.
Zurück zum Zitat Yang, T., Xiangyang, X., Peng, L., Tonghui, L., & Leina, P. (2018). A secure routing of wireless sensor networks based on trust evaluation model. ICICT, 131, 1156–1163. Yang, T., Xiangyang, X., Peng, L., Tonghui, L., & Leina, P. (2018). A secure routing of wireless sensor networks based on trust evaluation model. ICICT, 131, 1156–1163.
64.
Zurück zum Zitat Ramluckun, N., & Bassoo, V. (2018). Energy-efficient chain-cluster based intelligent routing technique for wireless sensor networks. Applied Computing and Informatics, 66, 1–12. Ramluckun, N., & Bassoo, V. (2018). Energy-efficient chain-cluster based intelligent routing technique for wireless sensor networks. Applied Computing and Informatics, 66, 1–12.
65.
Zurück zum Zitat Xu, Y., Ding, O., Qu, R., & Li, K. (2018). Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization. Applied Soft Computing, 66, 1–30. Xu, Y., Ding, O., Qu, R., & Li, K. (2018). Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization. Applied Soft Computing, 66, 1–30.
66.
Zurück zum Zitat Shahzad, F., Sheltami, T. R., & Shakshuki, E. M. (2016). Multi-objective optimization for a reliable localization scheme in wireless sensor networks. Journal Communications and Networks, 18(5), 796–805.CrossRef Shahzad, F., Sheltami, T. R., & Shakshuki, E. M. (2016). Multi-objective optimization for a reliable localization scheme in wireless sensor networks. Journal Communications and Networks, 18(5), 796–805.CrossRef
67.
Zurück zum Zitat Alanis, D., Botsinis, P., Babar, Z., Nguyen, H. V., Chandra, D., Ng, S. X., Hanzo, L. (2018). Quantum-aided multi-objective routing optimization using back-tracing-aided dynamic programming. IEEE Transactions on Vehicular Technology, 2018, 1–5. Alanis, D., Botsinis, P., Babar, Z., Nguyen, H. V., Chandra, D., Ng, S. X., Hanzo, L. (2018). Quantum-aided multi-objective routing optimization using back-tracing-aided dynamic programming. IEEE Transactions on Vehicular Technology, 2018, 1–5.
68.
Zurück zum Zitat Onthachi, D., & Jayabal, S. (2017). An optimized QoS-based multipath routing protocol for wireless sensor networks. IJIES, 11(2), 49–56.CrossRef Onthachi, D., & Jayabal, S. (2017). An optimized QoS-based multipath routing protocol for wireless sensor networks. IJIES, 11(2), 49–56.CrossRef
69.
Zurück zum Zitat Zhang, J., & Zhang, X. (2018). “A prototype”, adaptive wireless network multiobjective optimization algorithm based on image synthesis. AIES, 225, 1–23. Zhang, J., & Zhang, X. (2018). “A prototype”, adaptive wireless network multiobjective optimization algorithm based on image synthesis. AIES, 225, 1–23.
70.
Zurück zum Zitat Alwan, H., & Agarwal, A. (2017). MQoSR: A multiobjective QoS routing protocol for wireless sensor networks. ISRN Sensor Networks, 13, 1–3. Alwan, H., & Agarwal, A. (2017). MQoSR: A multiobjective QoS routing protocol for wireless sensor networks. ISRN Sensor Networks, 13, 1–3.
71.
Zurück zum Zitat Arya, R., & Sharma, S. C. (2016). Optimization approach for energy minimization and bandwidth estimation of WSN for data centric protocols. International Journal of System Assurance Engineering and Management, 17, 1–15. Arya, R., & Sharma, S. C. (2016). Optimization approach for energy minimization and bandwidth estimation of WSN for data centric protocols. International Journal of System Assurance Engineering and Management, 17, 1–15.
72.
Zurück zum Zitat Cao, B., Zhao, J., Yang, P., Lv, Z., Liu, X., & Min, G. (2018). 3D multi-objective deployment of an industrial wireless sensor network for maritime applications utilizing a distributed parallel algorithm. Transactions on Industrial Informatics, 66, 1–10. Cao, B., Zhao, J., Yang, P., Lv, Z., Liu, X., & Min, G. (2018). 3D multi-objective deployment of an industrial wireless sensor network for maritime applications utilizing a distributed parallel algorithm. Transactions on Industrial Informatics, 66, 1–10.
73.
Zurück zum Zitat Céspedes-Mota, A., Castañón, G., Martínez-Herrera, A. F., & Cárdenas-Barrón, L. E. (2018). Multiobjective optimization for a wireless ad hoc sensor distribution on shaped-bounded areas. Mathematical Problems in Engineering, 2018, 1–23.MathSciNetMATHCrossRef Céspedes-Mota, A., Castañón, G., Martínez-Herrera, A. F., & Cárdenas-Barrón, L. E. (2018). Multiobjective optimization for a wireless ad hoc sensor distribution on shaped-bounded areas. Mathematical Problems in Engineering, 2018, 1–23.MathSciNetMATHCrossRef
74.
Zurück zum Zitat Ge, Y., Wang, S., & Ma, J. (2018). Optimization on TEEN routing protocol in cognitive wireless sensor network. Journal on Wireless Communications and Networking, 2018, 1–9. Ge, Y., Wang, S., & Ma, J. (2018). Optimization on TEEN routing protocol in cognitive wireless sensor network. Journal on Wireless Communications and Networking, 2018, 1–9.
75.
Zurück zum Zitat Hajizadeh, N., Jahanbazi, P., & Javidan, R. (2018). Controlled deployment in wireless sensor networks based on a novel multi objective bee swarm optimization algorithm. CSIE, 66(1–7), 2018. Hajizadeh, N., Jahanbazi, P., & Javidan, R. (2018). Controlled deployment in wireless sensor networks based on a novel multi objective bee swarm optimization algorithm. CSIE, 66(1–7), 2018.
76.
Zurück zum Zitat Han, R., Gao, Y., & Wu, C. (2018). An effective multi-objective optimization algorithm for spectrum allocations in the cognitive-radio-based internet of things. Geneal of Latex Class File, 66, 1–10. Han, R., Gao, Y., & Wu, C. (2018). An effective multi-objective optimization algorithm for spectrum allocations in the cognitive-radio-based internet of things. Geneal of Latex Class File, 66, 1–10.
77.
Zurück zum Zitat Kang, Z., Zeng, H., & Hu, H. (2017). Multi-objective optimized connectivity restoring of disjoint segments using mobile data collectors in wireless sensor network. EURASIP, 117, 1–22. Kang, Z., Zeng, H., & Hu, H. (2017). Multi-objective optimized connectivity restoring of disjoint segments using mobile data collectors in wireless sensor network. EURASIP, 117, 1–22.
78.
Zurück zum Zitat Khabiri, M., & Ghaffari, A. (2017). Energy-aware clustering-based routing in wireless sensor networks using cuckoo optimization algorithm. Wireless Personal Communications, 217, 1–23. Khabiri, M., & Ghaffari, A. (2017). Energy-aware clustering-based routing in wireless sensor networks using cuckoo optimization algorithm. Wireless Personal Communications, 217, 1–23.
79.
Zurück zum Zitat Lozano-Garzona, C., Camelob, M., Vilab, P., & Donoso, Y. (2016). A multi-objective routing algorithm for wireless mesh network in a smart cities environment. Journal of Networks, 430, 60–69. Lozano-Garzona, C., Camelob, M., Vilab, P., & Donoso, Y. (2016). A multi-objective routing algorithm for wireless mesh network in a smart cities environment. Journal of Networks, 430, 60–69.
80.
Zurück zum Zitat Ma, X., Dong, H., Liu, X., Jia, L., Xie, G., & Bian, Z. (2018). An optimal communications protocol for maximizing lifetime of railway infrastructure wireless monitoring network. IEEE Transactions on Industrial Informatics, 66, 1–11. Ma, X., Dong, H., Liu, X., Jia, L., Xie, G., & Bian, Z. (2018). An optimal communications protocol for maximizing lifetime of railway infrastructure wireless monitoring network. IEEE Transactions on Industrial Informatics, 66, 1–11.
Metadaten
Titel
Multi-Objective Optimization in WSN: Opportunities and Challenges
verfasst von
Omkar Singh
Vinay Rishiwal
Rashmi Chaudhry
Mano Yadav
Publikationsdatum
28.06.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08627-5

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt