Skip to main content
Erschienen in: Mechanics of Composite Materials 1/2023

16.03.2023

Multi-Objective Optimization of Geometrical Parameters of Composite Sandwich Panels with an Aluminum Honeycomb Core for an Improved Energy Absorption

verfasst von: A. Pandey, A. K. Upadhyay, K. K. Shukla

Erschienen in: Mechanics of Composite Materials | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The low-velocity impact response of aluminum honeycomb sandwich panels with composite face sheets is investigated using an LS-DYNA-based finite-element simulation. The finite-element model incorporates the damage, delamination, and failure capabilities, and a verification analysis of the results found. Suitable prediction models for the specific energy absorption and peak load at different values of geometrical parameters of the panels are developed using the response surface methodology. The effects of face sheet thickness, cell size, cell height, and cell thickness on the specific energy absorption and peak load are investigated. A multi-objective optimization of the panels is carried out for the maximum specific energy absorption and the minimum peak load.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat A. G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, and M. Langseth, “A numerical model for bird strike of aluminium foam-based sandwich panels,” Int. J. Impact Eng., 32, No. 7, 1127-1144, (2006).CrossRef A. G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, and M. Langseth, “A numerical model for bird strike of aluminium foam-based sandwich panels,” Int. J. Impact Eng., 32, No. 7, 1127-1144, (2006).CrossRef
2.
Zurück zum Zitat K. Malekzadeh Fard, S. M. R. Khalili, S. H. Forooghy, and M. Hosseini, “Low velocity transverse impact response of a composite sandwich plate subjected to a rigid blunted cylindrical impactor,” Compos., Part B, 63, 111-122, (2014). K. Malekzadeh Fard, S. M. R. Khalili, S. H. Forooghy, and M. Hosseini, “Low velocity transverse impact response of a composite sandwich plate subjected to a rigid blunted cylindrical impactor,” Compos., Part B, 63, 111-122, (2014).
3.
Zurück zum Zitat M. Garrido, J. F. A. Madeira, M. Proença, and J. R. Correia, “Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation,” Construction and Building Mater., 198, 465-478 (2019).CrossRef M. Garrido, J. F. A. Madeira, M. Proença, and J. R. Correia, “Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation,” Construction and Building Mater., 198, 465-478 (2019).CrossRef
4.
Zurück zum Zitat V. Birman and G. A. Kardomateas, “Review of current trends in research and applications of sandwich structures,” Compos., Part B, 142, 221-240 (2018).CrossRef V. Birman and G. A. Kardomateas, “Review of current trends in research and applications of sandwich structures,” Compos., Part B, 142, 221-240 (2018).CrossRef
5.
Zurück zum Zitat M. S. Hoo Fatt and D. Sirivolu, “Marine composite sandwich plates under air and water blasts,” Marine Struct., 56, 163-185 (2017). M. S. Hoo Fatt and D. Sirivolu, “Marine composite sandwich plates under air and water blasts,” Marine Struct., 56, 163-185 (2017).
6.
Zurück zum Zitat M. Li, Z. Deng, R. Liu, and H. Guo, “Crashworthiness design optimisation of metal honeycomb energy absorber used in lunar lander,” Int. J. Crashworthiness, 16, 411-419, (2011).CrossRef M. Li, Z. Deng, R. Liu, and H. Guo, “Crashworthiness design optimisation of metal honeycomb energy absorber used in lunar lander,” Int. J. Crashworthiness, 16, 411-419, (2011).CrossRef
7.
Zurück zum Zitat J. Paz, J. Díaz, L. Romera, and M. Costas, “Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures,” Compos. Struct., 133, 499-507 (2015).CrossRef J. Paz, J. Díaz, L. Romera, and M. Costas, “Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures,” Compos. Struct., 133, 499-507 (2015).CrossRef
8.
Zurück zum Zitat S. X. Wang, L. Z. Wu, and L. Ma, “Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates,” Materials and Design, 31, 118-125 (2010).CrossRef S. X. Wang, L. Z. Wu, and L. Ma, “Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates,” Materials and Design, 31, 118-125 (2010).CrossRef
9.
Zurück zum Zitat A. Dogan and V. Arikan, “Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites,” Compos., Part B, 127, 63-69 (2017).CrossRef A. Dogan and V. Arikan, “Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites,” Compos., Part B, 127, 63-69 (2017).CrossRef
10.
Zurück zum Zitat C. C. Foo, G. B. Chai, and L. K. Seah, “A model to predict low-velocity impact response and damage in sandwich composites,” Compos. Sci. Technol., 68, 1348-1356 (2008).CrossRef C. C. Foo, G. B. Chai, and L. K. Seah, “A model to predict low-velocity impact response and damage in sandwich composites,” Compos. Sci. Technol., 68, 1348-1356 (2008).CrossRef
11.
Zurück zum Zitat E. J. Herup and A. N. Palazotto, “Low-velocity impact damage initiation in graphite/epoxy/Nomex honeycomb-sandwich plates,” Compos. Sci. Technol., 57, 1581-1598 (1998).CrossRef E. J. Herup and A. N. Palazotto, “Low-velocity impact damage initiation in graphite/epoxy/Nomex honeycomb-sandwich plates,” Compos. Sci. Technol., 57, 1581-1598 (1998).CrossRef
12.
Zurück zum Zitat T. Anderson and E. Madenci, “Experimental investigation of low-velocity impact characteristics of sandwich composites,” Compos. Struct., 50, 239-247 (2000).CrossRef T. Anderson and E. Madenci, “Experimental investigation of low-velocity impact characteristics of sandwich composites,” Compos. Struct., 50, 239-247 (2000).CrossRef
13.
Zurück zum Zitat M. Akil Hazizan and W. J. Cantwell, “The low velocity impact response of an aluminium honeycomb sandwich structure,” Compos., Part B, 34, 679-687 (2003). M. Akil Hazizan and W. J. Cantwell, “The low velocity impact response of an aluminium honeycomb sandwich structure,” Compos., Part B, 34, 679-687 (2003).
14.
Zurück zum Zitat W. He, L. Yao, X. Meng, G. Sun, D. Xie, and J. Liu, “Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets,” Thin-Walled Struct., 137, 411-432, (2019).CrossRef W. He, L. Yao, X. Meng, G. Sun, D. Xie, and J. Liu, “Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets,” Thin-Walled Struct., 137, 411-432, (2019).CrossRef
15.
Zurück zum Zitat İ. Özen, K. Çava, H. Gedikli, Ü. Alver, and M. Aslan, “Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores,” Thin-Walled Struct., 156, 106989, (2020).CrossRef İ. Özen, K. Çava, H. Gedikli, Ü. Alver, and M. Aslan, “Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores,” Thin-Walled Struct., 156, 106989, (2020).CrossRef
16.
Zurück zum Zitat H. Sun, F. Li, K. Shen, and K. Li, “Energy absorption of carbon-fiber-reinforced composite laminates under low-velocity impacts,” Mech. Compos. Mater., 56, 389-396, (2020).CrossRef H. Sun, F. Li, K. Shen, and K. Li, “Energy absorption of carbon-fiber-reinforced composite laminates under low-velocity impacts,” Mech. Compos. Mater., 56, 389-396, (2020).CrossRef
17.
Zurück zum Zitat T. Özben and H. Şen, “Damage behavior of hybrid composite plates exposed to impacts at different energy levels,” Mech. Compos. Mater., 56, 361-366 (2020).CrossRef T. Özben and H. Şen, “Damage behavior of hybrid composite plates exposed to impacts at different energy levels,” Mech. Compos. Mater., 56, 361-366 (2020).CrossRef
18.
Zurück zum Zitat C. Menna, A. Zinno, D. Asprone, and A. Prota, “Numerical assessment of the impact behavior of honeycomb sandwich structures,” Compos. Struct., 106, 326-339 (2013).CrossRef C. Menna, A. Zinno, D. Asprone, and A. Prota, “Numerical assessment of the impact behavior of honeycomb sandwich structures,” Compos. Struct., 106, 326-339 (2013).CrossRef
19.
Zurück zum Zitat A. Kurşun, M. Şenel, H. M. Enginsoy, and E. Bayraktar, “Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling,” Compos., Part B, 86, 143-151 (2016).CrossRef A. Kurşun, M. Şenel, H. M. Enginsoy, and E. Bayraktar, “Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling,” Compos., Part B, 86, 143-151 (2016).CrossRef
20.
Zurück zum Zitat Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, “Low-velocity impact response of composite sandwich structures: Modelling and experiment,” Compos. Struct., 168, 322-334 (2017).CrossRef Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, “Low-velocity impact response of composite sandwich structures: Modelling and experiment,” Compos. Struct., 168, 322-334 (2017).CrossRef
21.
Zurück zum Zitat S. Hou, Q. Li, S. Long, X. Yang, and W. Li, “Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria,” Finite Elements in Analysis and Design, 43 555-565 (2007).CrossRef S. Hou, Q. Li, S. Long, X. Yang, and W. Li, “Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria,” Finite Elements in Analysis and Design, 43 555-565 (2007).CrossRef
22.
Zurück zum Zitat J. Hallquist, LS-DYNA® Theory Manual (2006). J. Hallquist, LS-DYNA® Theory Manual (2006).
23.
Zurück zum Zitat S. Boria, “Sensitivity analysis of material model parameters to reproduce crushing of composite tubes,” J. Mater. Eng. Performance, 28, 3267-3280 (2019).CrossRef S. Boria, “Sensitivity analysis of material model parameters to reproduce crushing of composite tubes,” J. Mater. Eng. Performance, 28, 3267-3280 (2019).CrossRef
24.
Zurück zum Zitat D. Zeleniakiene, V. Leisis, and P. Griskevicius, “A numerical study to analyse the strength and stiffness of hollow cylindrical structures comprising sandwich fibre reinforced plastic composites,” J. Compos. Mater., 49, 3515-3525 (2015).CrossRef D. Zeleniakiene, V. Leisis, and P. Griskevicius, “A numerical study to analyse the strength and stiffness of hollow cylindrical structures comprising sandwich fibre reinforced plastic composites,” J. Compos. Mater., 49, 3515-3525 (2015).CrossRef
25.
Zurück zum Zitat R. G. Wang, L. Zhang, J. Zhang, W. B. Liu, and X. D. He, “Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method,” Computational Mater. Sci., 50, No. 1, 20-31, (2010).CrossRef R. G. Wang, L. Zhang, J. Zhang, W. B. Liu, and X. D. He, “Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method,” Computational Mater. Sci., 50, No. 1, 20-31, (2010).CrossRef
26.
Zurück zum Zitat M. Lobdell, B. Croop, and H. Lobo, “Comparison of crash models for ductile plastics,” 10th European LS-DYNA Conf. (2015). M. Lobdell, B. Croop, and H. Lobo, “Comparison of crash models for ductile plastics,” 10th European LS-DYNA Conf. (2015).
27.
Zurück zum Zitat P. F. Liu, Z. P. Gu, X. Q. Peng, and J. Y. Zheng, “Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression,” Compos. Struct., 131, 975-986, (2015).CrossRef P. F. Liu, Z. P. Gu, X. Q. Peng, and J. Y. Zheng, “Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression,” Compos. Struct., 131, 975-986, (2015).CrossRef
28.
Zurück zum Zitat K. Song, C. Davila, and C. Rose, “Guidelines and parameter selection for the simulation of progressive delamination,” 2008 ABAQUS User’s Conf., (2008). K. Song, C. Davila, and C. Rose, “Guidelines and parameter selection for the simulation of progressive delamination,” 2008 ABAQUS User’s Conf., (2008).
29.
Zurück zum Zitat B. Castanie, C. Bouvet, and M. Ginot, “Review of composite sandwich structure in aeronautic applications,” Compos., Part C, 1, 100004, (2020). B. Castanie, C. Bouvet, and M. Ginot, “Review of composite sandwich structure in aeronautic applications,” Compos., Part C, 1, 100004, (2020).
30.
Zurück zum Zitat G. Sun, D. Chen, X. Huo, G. Zheng, and Q. Li, “Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels,” Compos. Struct., 184, 110-124 (2018).CrossRef G. Sun, D. Chen, X. Huo, G. Zheng, and Q. Li, “Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels,” Compos. Struct., 184, 110-124 (2018).CrossRef
31.
Zurück zum Zitat G. Sun, X. Huo, D. Chen, and Q. Li, “Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression,” Mater. Design, 133, 154-168 (2017).CrossRef G. Sun, X. Huo, D. Chen, and Q. Li, “Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression,” Mater. Design, 133, 154-168 (2017).CrossRef
32.
Zurück zum Zitat W. He, S. Lu, K. Yi, S. Wang, G. Sun, and Z. Hu, “Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact,” International J. Mech. Sci., 161-162, 105026 (2019).CrossRef W. He, S. Lu, K. Yi, S. Wang, G. Sun, and Z. Hu, “Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact,” International J. Mech. Sci., 161-162, 105026 (2019).CrossRef
33.
Zurück zum Zitat Y. Chen, K. Fu, S. Hou, X. Han, and L. Ye, “Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings,” Compos., Part B, 142, 159-170, (2018).CrossRef Y. Chen, K. Fu, S. Hou, X. Han, and L. Ye, “Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings,” Compos., Part B, 142, 159-170, (2018).CrossRef
Metadaten
Titel
Multi-Objective Optimization of Geometrical Parameters of Composite Sandwich Panels with an Aluminum Honeycomb Core for an Improved Energy Absorption
verfasst von
A. Pandey
A. K. Upadhyay
K. K. Shukla
Publikationsdatum
16.03.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 1/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10080-3

Weitere Artikel der Ausgabe 1/2023

Mechanics of Composite Materials 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.