Skip to main content
Erschienen in: Neural Computing and Applications 8/2024

11.12.2023 | Original Article

Multi-objective quasi-reflection learning and weight strategy-based moth flame optimization algorithm

verfasst von: Saroj Kumar Sahoo, M. Premkumar, Apu Kumar Saha, Essam H. Houssein, Saurabh Wanjari, Marwa M. Emam

Erschienen in: Neural Computing and Applications | Ausgabe 8/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For the simultaneous optimization of many conflicting objectives, the capability of optimization algorithms must be increased. In this research, a non-dominated sorting (NDS) and crowding distance (CD)-based multi-objective variant of an advanced moth flame optimization (MFO) has been offered. Firstly, a mathematical quasi-reflection-based learning (QRL) strategy and weight strategy (WS) have been added to the classical MFO to alleviate the drawbacks of MFO. Next, this advanced MFO has been extended into multi-objective variant, namely MOQRMFO, with the help of NDS and CD approaches for well-distributed Pareto optimal front. The efficiency of the suggested MOQRMFO algorithm is tested in three phases. In the first phase, five ZDT multi-objective optimization problems (MOOPs) were considered under four performance metrics, namely general distance (GD), inverted general distance (IGD), spacing (S) and spread metric (\({\Delta }\)) and then compared it with competitive multi-objective optimization algorithms. Secondly, six problems from the DTLZ test suite are considered under the above performance metrics to examine the effectiveness of the suggested MOQRMFO algorithm. The MOQRMFO algorithm’s capacity to solve real-world problems has been evaluated by considering four multi-objective real-world engineering design issues in the third phase using several performance metrics. The experimental outcomes show that the MOQRMFO is a better candidate algorithm achieving more than 95% superior results for multi-objective benchmarks and real-life problems in contrast to several other algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ab Rashid MFF, Mohd Rose AN, Nik Mohamed NMZ (2022) Hybrid flow shop scheduling with energy consumption in machine shop using moth flame optimization. In: Recent trends in mechatronics towards industry 4.0: selected articles from iM3F 2020, Malaysia. Springer Singapore, pp 77–86 Ab Rashid MFF, Mohd Rose AN, Nik Mohamed NMZ (2022) Hybrid flow shop scheduling with energy consumption in machine shop using moth flame optimization. In: Recent trends in mechatronics towards industry 4.0: selected articles from iM3F 2020, Malaysia. Springer Singapore, pp 77–86
2.
Zurück zum Zitat Abbass HA, Sarker R, Newton C (2001) PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol 2, pp 971–978 Abbass HA, Sarker R, Newton C (2001) PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol 2, pp 971–978
3.
Zurück zum Zitat Abd Elaziz M, Oliva D (2018) Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Convers Manage 171:1843–1859 Abd Elaziz M, Oliva D (2018) Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Convers Manage 171:1843–1859
4.
Zurück zum Zitat Abd Elaziz M, Oliva D, Xiong S (2017) An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl 90:484–500 Abd Elaziz M, Oliva D, Xiong S (2017) An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl 90:484–500
5.
Zurück zum Zitat Abido MA (2003) A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electric Power Syst Res 65(1):71–81 Abido MA (2003) A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electric Power Syst Res 65(1):71–81
6.
Zurück zum Zitat Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, Mirjalili S (2022) Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Adv Eng Softw 174:103282 Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, Mirjalili S (2022) Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Adv Eng Softw 174:103282
7.
Zurück zum Zitat Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S (2021) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36(10):5887–5958 Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S (2021) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36(10):5887–5958
8.
Zurück zum Zitat Agrawal S, Panigrahi BK, Tiwari MK (2008) Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch. IEEE Trans Evol Comput 12(5):529–541 Agrawal S, Panigrahi BK, Tiwari MK (2008) Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch. IEEE Trans Evol Comput 12(5):529–541
9.
Zurück zum Zitat Agushaka JO, Akinola O, Ezugwu AE, Oyelade ON, Saha AK (2022) Advanced dwarf mongoose optimization for solving CEC 2011 and CEC 2017 benchmark problems. PLoS ONE 17(11):e0275346PubMedPubMedCentral Agushaka JO, Akinola O, Ezugwu AE, Oyelade ON, Saha AK (2022) Advanced dwarf mongoose optimization for solving CEC 2011 and CEC 2017 benchmark problems. PLoS ONE 17(11):e0275346PubMedPubMedCentral
10.
Zurück zum Zitat Ahmadianfar I, Heidari AA, Noshadian S, Chen H, Gandomi AH (2022) Info: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl 195:116516 Ahmadianfar I, Heidari AA, Noshadian S, Chen H, Gandomi AH (2022) Info: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl 195:116516
11.
Zurück zum Zitat Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12 Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12
12.
Zurück zum Zitat Azizi M, Talatahari S, Gandomi AH (2023) Fire hawk optimizer: a novel metaheuristic algorithm. Artif Intell Rev 56(1):287–363 Azizi M, Talatahari S, Gandomi AH (2023) Fire hawk optimizer: a novel metaheuristic algorithm. Artif Intell Rev 56(1):287–363
13.
Zurück zum Zitat Cao ZG, Wang ZC, Zhao L, Fan F, Sun Y (2022) Multi-constraint and multi-objective optimization of free-form reticulated shells using improved optimization algorithm. Eng Struct 250:113442 Cao ZG, Wang ZC, Zhao L, Fan F, Sun Y (2022) Multi-constraint and multi-objective optimization of free-form reticulated shells using improved optimization algorithm. Eng Struct 250:113442
14.
Zurück zum Zitat Chakraborty P, Nama S, Saha AK (2022) A hybrid slime mould algorithm for global optimization. Multimed Tools Appl 82(15):22441–22467 Chakraborty P, Nama S, Saha AK (2022) A hybrid slime mould algorithm for global optimization. Multimed Tools Appl 82(15):22441–22467
15.
Zurück zum Zitat Chakraborty S, Nama S, Saha AK (2022) An improved symbiotic organisms search algorithm for higher dimensional optimization problems. Knowl-Based Syst 236:107779 Chakraborty S, Nama S, Saha AK (2022) An improved symbiotic organisms search algorithm for higher dimensional optimization problems. Knowl-Based Syst 236:107779
16.
Zurück zum Zitat Chakraborty S, Saha AK, Sharma S, Sahoo SK, Pal G (2022) Comparative performance analysis of differential evolution variants on engineering design problems. J Bionic Eng 19(4):1140–1160PubMedPubMedCentral Chakraborty S, Saha AK, Sharma S, Sahoo SK, Pal G (2022) Comparative performance analysis of differential evolution variants on engineering design problems. J Bionic Eng 19(4):1140–1160PubMedPubMedCentral
17.
Zurück zum Zitat Chou JS, Truong DN (2022) Multiobjective forensic-based investigation algorithm for solving structural design problems. Autom Constr 134:104084 Chou JS, Truong DN (2022) Multiobjective forensic-based investigation algorithm for solving structural design problems. Autom Constr 134:104084
18.
Zurück zum Zitat Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279 Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279
19.
Zurück zum Zitat Coello CC (2006) Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput Intell Mag 1(1):28–36 Coello CC (2006) Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput Intell Mag 1(1):28–36
20.
Zurück zum Zitat Da Silveira LA, Soncco-Álvarez JL, de Lima TA, Ayala-Rincón M (2016) Memetic and opposition-based learning genetic algorithms for sorting unsigned genomes by translocations. In: Advances in nature and biologically inspired computing: proceedings of the 7th world congress on nature and biologically inspired computing (NaBIC2015) in Pietermaritzburg, South Africa, held December 01–03, 2015, pp 73–85. Springer International Publishing, Berlin Da Silveira LA, Soncco-Álvarez JL, de Lima TA, Ayala-Rincón M (2016) Memetic and opposition-based learning genetic algorithms for sorting unsigned genomes by translocations. In: Advances in nature and biologically inspired computing: proceedings of the 7th world congress on nature and biologically inspired computing (NaBIC2015) in Pietermaritzburg, South Africa, held December 01–03, 2015, pp 73–85. Springer International Publishing, Berlin
21.
Zurück zum Zitat Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197 Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
22.
Zurück zum Zitat Dinkar SK, Deep K (2018) An efficient opposition based Lévy Flight Antlion optimizer for optimization problems. J Comput Sci 29:119–141 Dinkar SK, Deep K (2018) An efficient opposition based Lévy Flight Antlion optimizer for optimization problems. J Comput Sci 29:119–141
23.
Zurück zum Zitat Dorigo M (1992) Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di Milano Dorigo M (1992) Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di Milano
24.
Zurück zum Zitat Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4, pp 1942–1948 Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4, pp 1942–1948
25.
Zurück zum Zitat Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129(3):210–225 Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129(3):210–225
26.
Zurück zum Zitat Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172 Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172
27.
Zurück zum Zitat Farmer JD, Packard NH, Perelson AS (1986) The immune system, adaptation, and machine learning. Phys D 22(1–3):187–204MathSciNet Farmer JD, Packard NH, Perelson AS (1986) The immune system, adaptation, and machine learning. Phys D 22(1–3):187–204MathSciNet
28.
Zurück zum Zitat Fathollahi-Fard AM, Hajiaghaei-Keshteli M, Tavakkoli-Moghaddam R (2020) Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Comput 24(19):14637–14665 Fathollahi-Fard AM, Hajiaghaei-Keshteli M, Tavakkoli-Moghaddam R (2020) Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Comput 24(19):14637–14665
29.
Zurück zum Zitat Gong D, Sun J, Ji X (2013) Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems. Inf Sci 233:141–161MathSciNet Gong D, Sun J, Ji X (2013) Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems. Inf Sci 233:141–161MathSciNet
30.
Zurück zum Zitat Guha D, Roy PK, Banerjee S (2016) Load frequency control of large-scale power system using quasi-oppositional grey wolf optimization algorithm. Eng Sci Technol Int J 19(4):1693–1713 Guha D, Roy PK, Banerjee S (2016) Load frequency control of large-scale power system using quasi-oppositional grey wolf optimization algorithm. Eng Sci Technol Int J 19(4):1693–1713
31.
Zurück zum Zitat Gurugubelli S, Kallepalli D (2014) Weight and deflection optimization of cantilever beam using a modified non-dominated sorting genetic algorithm. IOSR J Eng 4(3):19–23 Gurugubelli S, Kallepalli D (2014) Weight and deflection optimization of cantilever beam using a modified non-dominated sorting genetic algorithm. IOSR J Eng 4(3):19–23
32.
Zurück zum Zitat Holland John H (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor Holland John H (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor
33.
Zurück zum Zitat Hou G, Gong L, Hu B, Su H, Huang T, Huang C, Fan W, Zhao Y (2022) Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit. Energy 239:121843 Hou G, Gong L, Hu B, Su H, Huang T, Huang C, Fan W, Zhao Y (2022) Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit. Energy 239:121843
34.
Zurück zum Zitat Houssein EH, Mahdy MA, Shebl D, Manzoor A, Sarkar R, Mohamed WM (2022) An efficient slime mould algorithm for solving multi-objective optimization problems. Expert Syst Appl 187:115870 Houssein EH, Mahdy MA, Shebl D, Manzoor A, Sarkar R, Mohamed WM (2022) An efficient slime mould algorithm for solving multi-objective optimization problems. Expert Syst Appl 187:115870
35.
Zurück zum Zitat Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471MathSciNet Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471MathSciNet
36.
Zurück zum Zitat Khan MA, Arshad H, Damaševičius R, Alqahtani A, Alsubai S, Binbusayyis A, Nam Y, Kang B-G (2022). Human gait analysis: a sequential framework of lightweight deep learning and improved moth-flame optimization algorithm. Comput Intell Neurosci 2022 Khan MA, Arshad H, Damaševičius R, Alqahtani A, Alsubai S, Binbusayyis A, Nam Y, Kang B-G (2022). Human gait analysis: a sequential framework of lightweight deep learning and improved moth-flame optimization algorithm. Comput Intell Neurosci 2022
37.
Zurück zum Zitat Knowles J, Corne D (1999) The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 1, pp 98–105. IEEE Knowles J, Corne D (1999) The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 1, pp 98–105. IEEE
38.
Zurück zum Zitat Kumawat IR, Nanda SJ, Maddila RK (2017) Multi-objective whale optimization. In Tencon 2017–2017 IEEE region 10 conference, pp 2747–2752. IEEE Kumawat IR, Nanda SJ, Maddila RK (2017) Multi-objective whale optimization. In Tencon 2017–2017 IEEE region 10 conference, pp 2747–2752. IEEE
40.
Zurück zum Zitat Ma M, Wu J, Shi Y, Yue L, Yang C, Chen X (2022) Chaotic random opposition-based learning and cauchy mutation improved moth-flame optimization algorithm for intelligent route planning of multiple UA_VRGs. IEEE Access 10:49385–49397 Ma M, Wu J, Shi Y, Yue L, Yang C, Chen X (2022) Chaotic random opposition-based learning and cauchy mutation improved moth-flame optimization algorithm for intelligent route planning of multiple UA_VRGs. IEEE Access 10:49385–49397
41.
Zurück zum Zitat Mavrotas G (2009) Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl Math Comput 213(2):455–465MathSciNet Mavrotas G (2009) Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl Math Comput 213(2):455–465MathSciNet
42.
Zurück zum Zitat Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249 Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249
43.
Zurück zum Zitat Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98 Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98
44.
Zurück zum Zitat Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073 Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073
45.
Zurück zum Zitat Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191 Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191
46.
Zurück zum Zitat Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1):79–95 Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1):79–95
47.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
48.
Zurück zum Zitat Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119 Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119
49.
Zurück zum Zitat Nadimi-Shahraki MH, Fatahi A, Zamani H, Mirjalili S, Abualigah L, Abd Elaziz M (2021) Migration-based moth-flame optimization algorithm. Processes 9(12):2276 Nadimi-Shahraki MH, Fatahi A, Zamani H, Mirjalili S, Abualigah L, Abd Elaziz M (2021) Migration-based moth-flame optimization algorithm. Processes 9(12):2276
50.
Zurück zum Zitat Nadimi-Shahraki MH, Moeini E, Taghian S, Mirjalili S (2021) DMFO-CD: a discrete moth-flame optimization algorithm for community detection. Algorithms 14(11):314 Nadimi-Shahraki MH, Moeini E, Taghian S, Mirjalili S (2021) DMFO-CD: a discrete moth-flame optimization algorithm for community detection. Algorithms 14(11):314
51.
Zurück zum Zitat Nama S, Saha A (2018) An ensemble symbiosis organisms search algorithm and its application to real world problems. Decis Sci Lett 7(2):103–118 Nama S, Saha A (2018) An ensemble symbiosis organisms search algorithm and its application to real world problems. Decis Sci Lett 7(2):103–118
52.
Zurück zum Zitat Nama S, Saha AK (2018) A new hybrid differential evolution algorithm with self-adaptation for function optimization. Appl Intell 48:1657–1671 Nama S, Saha AK (2018) A new hybrid differential evolution algorithm with self-adaptation for function optimization. Appl Intell 48:1657–1671
53.
Zurück zum Zitat Nama S, Sharma S, Saha AK, Gandomi AH (2022) A quantum mutation-based backtracking search algorithm. Artif Intell Rev 1–55. Nama S, Sharma S, Saha AK, Gandomi AH (2022) A quantum mutation-based backtracking search algorithm. Artif Intell Rev 1–55.
54.
Zurück zum Zitat Nanda SJ (2016) Multi-objective moth flame optimization. In: 2016 International conference on advances in computing, communications and informatics (ICACCI), pp 2470–2476 Nanda SJ (2016) Multi-objective moth flame optimization. In: 2016 International conference on advances in computing, communications and informatics (ICACCI), pp 2470–2476
55.
Zurück zum Zitat Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67 Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67
56.
Zurück zum Zitat Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, Chen H (2020) MOSMA: Multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9:3229–3248 Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, Chen H (2020) MOSMA: Multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9:3229–3248
57.
Zurück zum Zitat Rahnamayan S, Tizhoosh HR, Salama MM (2007) Quasi-oppositional differential evolution. In: 2007 IEEE congress on evolutionary computation, pp 2229–2236. IEEE. Rahnamayan S, Tizhoosh HR, Salama MM (2007) Quasi-oppositional differential evolution. In: 2007 IEEE congress on evolutionary computation, pp 2229–2236. IEEE.
58.
Zurück zum Zitat Rahnamayan S, Tizhoosh HR, Salama MM (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79 Rahnamayan S, Tizhoosh HR, Salama MM (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79
59.
Zurück zum Zitat Ramachandran R, Satheesh Kumar J, Madasamy B, Veerasamy V (2021) A hybrid MFO-GHNN tuned self-adaptive FOPID controller for ALFC of renewable energy integrated hybrid power system. IET Renew Power Gener 15(7):1582–1595 Ramachandran R, Satheesh Kumar J, Madasamy B, Veerasamy V (2021) A hybrid MFO-GHNN tuned self-adaptive FOPID controller for ALFC of renewable energy integrated hybrid power system. IET Renew Power Gener 15(7):1582–1595
60.
Zurück zum Zitat Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315 Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315
61.
Zurück zum Zitat Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255 Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255
62.
Zurück zum Zitat Ray T, Liew KM (2002) A swarm metaphor for multiobjective design optimization. Eng Optim 34(2):141–153 Ray T, Liew KM (2002) A swarm metaphor for multiobjective design optimization. Eng Optim 34(2):141–153
63.
Zurück zum Zitat Saha AK (2022) Multi-population-based adaptive sine cosine algorithm with modified mutualism strategy for global optimization. Knowl-Based Syst 251:109326 Saha AK (2022) Multi-population-based adaptive sine cosine algorithm with modified mutualism strategy for global optimization. Knowl-Based Syst 251:109326
64.
Zurück zum Zitat Sahoo SK, Saha AK (2022) A hybrid moth flame optimization algorithm for global optimization. J Bionic Eng 19(5):1522–1543 Sahoo SK, Saha AK (2022) A hybrid moth flame optimization algorithm for global optimization. J Bionic Eng 19(5):1522–1543
65.
Zurück zum Zitat Sahoo SK, Saha AK, Ezugwu AE, Agushaka JO, Abuhaija B, Alsoud AR, Abualigah L (2022) Moth flame optimization: theory, modifications, hybridizations, and applications. Arch Comput Methods Eng 30(1):391–426PubMedPubMedCentral Sahoo SK, Saha AK, Ezugwu AE, Agushaka JO, Abuhaija B, Alsoud AR, Abualigah L (2022) Moth flame optimization: theory, modifications, hybridizations, and applications. Arch Comput Methods Eng 30(1):391–426PubMedPubMedCentral
66.
Zurück zum Zitat Sahoo SK, Saha AK, Nama S, Masdari M (2022) An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artif Intell Rev 56(4):2811–2869 Sahoo SK, Saha AK, Nama S, Masdari M (2022) An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artif Intell Rev 56(4):2811–2869
67.
Zurück zum Zitat Sahoo SK, Saha AK, Sharma S, Mirjalili S, Chakraborty S (2022) An enhanced moth flame optimization with mutualism scheme for function optimization. Soft Comput 26(6):2855–2882 Sahoo SK, Saha AK, Sharma S, Mirjalili S, Chakraborty S (2022) An enhanced moth flame optimization with mutualism scheme for function optimization. Soft Comput 26(6):2855–2882
70.
Zurück zum Zitat Sapre S, Mini S (2021) Emulous mechanism based multi-objective moth–flame optimization algorithm. J Parallel Distri Comput 150:15–33 Sapre S, Mini S (2021) Emulous mechanism based multi-objective moth–flame optimization algorithm. J Parallel Distri Comput 150:15–33
71.
Zurück zum Zitat Savsani V, Tawhid MA (2017) Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Eng Appl Artif Intell 63:20–32 Savsani V, Tawhid MA (2017) Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Eng Appl Artif Intell 63:20–32
72.
Zurück zum Zitat Sharma A, Sharma A, Averbukh M, Rajput S, Jately V, Choudhury S, Azzopardi B (2022) Improved moth flame optimization algorithm based on opposition-based learning and Lévy flight distribution for parameter estimation of solar module. Energy Rep 8:6576–6592 Sharma A, Sharma A, Averbukh M, Rajput S, Jately V, Choudhury S, Azzopardi B (2022) Improved moth flame optimization algorithm based on opposition-based learning and Lévy flight distribution for parameter estimation of solar module. Energy Rep 8:6576–6592
73.
Zurück zum Zitat Sharma S, Chakraborty S, Saha AK, Nama S, Sahoo SK (2022) mLBOA: A modified butterfly optimization algorithm with lagrange interpolation for global optimization. J Bionic Eng 19(4):1161–1176 Sharma S, Chakraborty S, Saha AK, Nama S, Sahoo SK (2022) mLBOA: A modified butterfly optimization algorithm with lagrange interpolation for global optimization. J Bionic Eng 19(4):1161–1176
74.
Zurück zum Zitat Sharma S, Bhattacharjee S, Bhattacharya A (2016) Quasi-oppositional swine influenza model based optimization with quarantine for optimal allocation of DG in radial distribution network. Int J Electr Power Energy Syst 74:348–373 Sharma S, Bhattacharjee S, Bhattacharya A (2016) Quasi-oppositional swine influenza model based optimization with quarantine for optimal allocation of DG in radial distribution network. Int J Electr Power Energy Syst 74:348–373
75.
Zurück zum Zitat Sharma S, Khodadadi N, Saha AK, Gharehchopogh FS, Mirjalili S (2023) Non-dominated sorting advanced butterfly optimization algorithm for multi-objective problems. J Bionic Eng 20(2):819–843 Sharma S, Khodadadi N, Saha AK, Gharehchopogh FS, Mirjalili S (2023) Non-dominated sorting advanced butterfly optimization algorithm for multi-objective problems. J Bionic Eng 20(2):819–843
76.
Zurück zum Zitat Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 3, 1945–1950. IEEE Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 3, 1945–1950. IEEE
77.
Zurück zum Zitat Shiva CK, Mukherjee V (2015) A novel quasi-oppositional harmony search algorithm for automatic generation control of power system. Appl Soft Comput 35:749–765 Shiva CK, Mukherjee V (2015) A novel quasi-oppositional harmony search algorithm for automatic generation control of power system. Appl Soft Comput 35:749–765
78.
Zurück zum Zitat Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248 Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248
79.
Zurück zum Zitat Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MathSciNet Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MathSciNet
80.
Zurück zum Zitat Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), vol 1, pp 695–701. IEEE Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), vol 1, pp 695–701. IEEE
81.
Zurück zum Zitat Truong KH, Nallagownden P, Baharudin Z, Vo DN (2019) A Quasi-oppositional-chaotic symbiotic organisms search algorithm for global optimization problems. Appl Soft Comput 77:567–583CrossRef Truong KH, Nallagownden P, Baharudin Z, Vo DN (2019) A Quasi-oppositional-chaotic symbiotic organisms search algorithm for global optimization problems. Appl Soft Comput 77:567–583CrossRef
82.
Zurück zum Zitat Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82 Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82
83.
Zurück zum Zitat Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B (Cybern) 39(6):1362–1381 Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B (Cybern) 39(6):1362–1381
84.
Zurück zum Zitat Zhang Q, Li H (2007) MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731 Zhang Q, Li H (2007) MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731
85.
Zurück zum Zitat Zhang Z, Qin H, Yao L, Liu Y, Jiang Z, Feng Z, Ouyang S (2020) Improved multi-objective moth-flame optimization algorithm based on R-domination for cascade reservoirs operation. J Hydrol 581:124431 Zhang Z, Qin H, Yao L, Liu Y, Jiang Z, Feng Z, Ouyang S (2020) Improved multi-objective moth-flame optimization algorithm based on R-domination for cascade reservoirs operation. J Hydrol 581:124431
86.
Zurück zum Zitat Zhou A, Zhang Q, Jin Y (2009) Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans Evol Comput 13(5):1167–1189 Zhou A, Zhang Q, Jin Y (2009) Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans Evol Comput 13(5):1167–1189
87.
Zurück zum Zitat Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications, vol 63. Shaker, Ithaca Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications, vol 63. Shaker, Ithaca
88.
Zurück zum Zitat Zou F, Wang L, Hei X, Chen D, Wang B (2013) Multi-objective optimization using teaching-learning-based optimization algorithm. Eng Appl Artif Intell 26(4):1291–1300 Zou F, Wang L, Hei X, Chen D, Wang B (2013) Multi-objective optimization using teaching-learning-based optimization algorithm. Eng Appl Artif Intell 26(4):1291–1300
89.
Zurück zum Zitat Zou J, Sun R, Yang S, Zheng J (2021) A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems. Inf Sci 579:89–102MathSciNet Zou J, Sun R, Yang S, Zheng J (2021) A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems. Inf Sci 579:89–102MathSciNet
Metadaten
Titel
Multi-objective quasi-reflection learning and weight strategy-based moth flame optimization algorithm
verfasst von
Saroj Kumar Sahoo
M. Premkumar
Apu Kumar Saha
Essam H. Houssein
Saurabh Wanjari
Marwa M. Emam
Publikationsdatum
11.12.2023
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 8/2024
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-09234-0

Weitere Artikel der Ausgabe 8/2024

Neural Computing and Applications 8/2024 Zur Ausgabe

Premium Partner