Skip to main content
Erschienen in: Intelligent Service Robotics 3/2022

10.05.2022 | Review Article

Multi-scale graph-transformer network for trajectory prediction of the autonomous vehicles

verfasst von: Divya Singh, Rajeev Srivastava

Erschienen in: Intelligent Service Robotics | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The accurate trajectory prediction is a crucial task for the autonomous vehicles that help to plan and fast decision making capability of the system to reach their destination in the complex road scenario with abiding by the traffic rules. For this, autonomous vehicles should have more attention to their goal without affecting the other’s task and maintain their safety from road accidents. With this motivation, we proposed a multi-scale graph-transformer-based attention mechanism that provides the interaction between the road agents with different time instances, because from time to time, few new agents may enter the frame scene, and few may leave the frame scene. Each dynamic obstacles trajectory can be defined as state sequences within an interval of time, where spatial coordinates of dynamic obstacles represented by the each state under the world coordinate frame. We have presented graph-based Multi-scale spatial features with transformer network that achieves significant prediction results compared to other existing methods, and we provide an in-depth analysis of the trained weights for different highways scenarios with transformer and the Long-Short Term Memory. We evaluate our model with three publicly available datasets and achieve state-of-the-art performances as presented in the manuscript. The performance balance is more in favour of our model for sparser datasets compared to the dense datasets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chandra R et al (2020) Forecasting trajectory and behavior of road-agents using spectral clustering in graph-LSTMs. IEEE Robot Autom Lett 5(3):4882–4890CrossRef Chandra R et al (2020) Forecasting trajectory and behavior of road-agents using spectral clustering in graph-LSTMs. IEEE Robot Autom Lett 5(3):4882–4890CrossRef
2.
Zurück zum Zitat Xiong W, Wu L, Alleva F, Droppo J, Huang X, Stolcke A (2018) The microsoft 2017 conversational speech recognition system. In: ICASSP, International conference on acoustics, speech, and signal processing, proceedings vol 2018-April, no. August, pp 5934–5938 Xiong W, Wu L, Alleva F, Droppo J, Huang X, Stolcke A (2018) The microsoft 2017 conversational speech recognition system. In: ICASSP, International conference on acoustics, speech, and signal processing, proceedings vol 2018-April, no. August, pp 5934–5938
3.
Zurück zum Zitat Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL HLT 2019—2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol.—Proc. Conf., vol 1, no Mlm, pp 4171–4186 Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL HLT 2019—2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol.—Proc. Conf., vol 1, no Mlm, pp 4171–4186
4.
Zurück zum Zitat Fragkiadaki K, Levine S, Felsen P, Malik J (2015) Recurrent network models for human dynamics. In: Proceedings of the IEEE international conference on computer vision, vol 2015 Inter, pp 4346–4354 Fragkiadaki K, Levine S, Felsen P, Malik J (2015) Recurrent network models for human dynamics. In: Proceedings of the IEEE international conference on computer vision, vol 2015 Inter, pp 4346–4354
5.
Zurück zum Zitat Vaswani A et al (2017) Attention is all you need. Adv Neural Inf Process Syst 2017:5999–6009 Vaswani A et al (2017) Attention is all you need. Adv Neural Inf Process Syst 2017:5999–6009
6.
Zurück zum Zitat Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. In: Conf. Proc. - EMNLP 2015 Conf. Empir. Methods Nat. Lang. Process., pp 1412–1421 Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. In: Conf. Proc. - EMNLP 2015 Conf. Empir. Methods Nat. Lang. Process., pp 1412–1421
7.
Zurück zum Zitat Plastiras G, Kyrkou C, Theocharides T (2018) Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing. In: ACM international conference proceeding series Plastiras G, Kyrkou C, Theocharides T (2018) Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing. In: ACM international conference proceeding series
8.
Zurück zum Zitat Papageorgiou C, Poggio T (2000) Trainable system for object detection. Int J Comput Vis 38(1):15–33CrossRef Papageorgiou C, Poggio T (2000) Trainable system for object detection. Int J Comput Vis 38(1):15–33CrossRef
9.
Zurück zum Zitat Lin J, Koch L, Kurowski M, Gehrt JJ, Abel D, Zweigel R (2020) Environment perception and object tracking for autonomous vehicles in a harbor scenario. In: 2020 IEEE 23rd Int. Conf. Intell. Transp. Syst. ITSC 2020, no. 4 Lin J, Koch L, Kurowski M, Gehrt JJ, Abel D, Zweigel R (2020) Environment perception and object tracking for autonomous vehicles in a harbor scenario. In: 2020 IEEE 23rd Int. Conf. Intell. Transp. Syst. ITSC 2020, no. 4
10.
Zurück zum Zitat Rangesh A, Trivedi MM (2019) No blind spots: full-surround multi-object tracking for autonomous vehicles using cameras and LiDARs. IEEE Trans Intell Veh 4(4):588–599CrossRef Rangesh A, Trivedi MM (2019) No blind spots: full-surround multi-object tracking for autonomous vehicles using cameras and LiDARs. IEEE Trans Intell Veh 4(4):588–599CrossRef
11.
Zurück zum Zitat Zhang P, Ouyang W, Zhang P, Xue J, Zheng N (2019) SR-LSTM: State refinement for lstm towards pedestrian trajectory prediction. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 2019-June, pp 12077–12086 Zhang P, Ouyang W, Zhang P, Xue J, Zheng N (2019) SR-LSTM: State refinement for lstm towards pedestrian trajectory prediction. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 2019-June, pp 12077–12086
12.
Zurück zum Zitat Ivanovic B, Pavone M (2019) The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of the IEEE international conference on computer vision, vol 2019-Octob, pp 2375–2384 Ivanovic B, Pavone M (2019) The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of the IEEE international conference on computer vision, vol 2019-Octob, pp 2375–2384
13.
Zurück zum Zitat Fisac JF, Bronstein E, Stefansson E, Sadigh D, Sastry SS, Dragan AD (2019) Hierarchical game-theoretic planning for autonomous vehicles. In: Proceedings of international conference on robotics and automation, vol 2019-May, pp 9590–9596 Fisac JF, Bronstein E, Stefansson E, Sadigh D, Sastry SS, Dragan AD (2019) Hierarchical game-theoretic planning for autonomous vehicles. In: Proceedings of international conference on robotics and automation, vol 2019-May, pp 9590–9596
14.
Zurück zum Zitat Liu C, Lee S, Varnhagen S, Tseng HE (2017) Path planning for autonomous vehicles using model predictive control. IEEE Intell Veh Symp Proc 5:174–179 Liu C, Lee S, Varnhagen S, Tseng HE (2017) Path planning for autonomous vehicles using model predictive control. IEEE Intell Veh Symp Proc 5:174–179
15.
Zurück zum Zitat Wu M et al (2020) Visual tracking with multiview trajectory prediction. IEEE Trans Image Process 29:8355–8367CrossRef Wu M et al (2020) Visual tracking with multiview trajectory prediction. IEEE Trans Image Process 29:8355–8367CrossRef
16.
Zurück zum Zitat Huynh M, Alaghband G (2019) Trajectory prediction by coupling scene-LSTM with human movement LSTM. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 11844 LNCS, pp 244–259 Huynh M, Alaghband G (2019) Trajectory prediction by coupling scene-LSTM with human movement LSTM. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 11844 LNCS, pp 244–259
17.
Zurück zum Zitat Dönmez E, Kocamaz AF (2020) Design of mobile robot control infrastructure based on decision trees and adaptive potential area methods. Iran J Sci Technol Trans Electr Eng 44(1):431–448CrossRef Dönmez E, Kocamaz AF (2020) Design of mobile robot control infrastructure based on decision trees and adaptive potential area methods. Iran J Sci Technol Trans Electr Eng 44(1):431–448CrossRef
18.
Zurück zum Zitat Dirik M, Kocamaz AF, Dönmez E (2020) Visual servoing based control methods for nonholonomic mobile robot. J Eng Res 8(2):95–113 Dirik M, Kocamaz AF, Dönmez E (2020) Visual servoing based control methods for nonholonomic mobile robot. J Eng Res 8(2):95–113
19.
Zurück zum Zitat Okumuş F, Dönmez E, Kocamaz AF (2020) A cloudware architecture for collaboration of multiple agvs in indoor logistics: case study in fabric manufacturing enterprises. Electron 9(12):1–24CrossRef Okumuş F, Dönmez E, Kocamaz AF (2020) A cloudware architecture for collaboration of multiple agvs in indoor logistics: case study in fabric manufacturing enterprises. Electron 9(12):1–24CrossRef
20.
Zurück zum Zitat Dönmez E, Kocamaz AF, Dirik M (2018) A vision-based real-time mobile robot controller design based on Gaussian function for indoor environment. Arab J Sci Eng 43(12):7127–7142CrossRef Dönmez E, Kocamaz AF, Dirik M (2018) A vision-based real-time mobile robot controller design based on Gaussian function for indoor environment. Arab J Sci Eng 43(12):7127–7142CrossRef
21.
Zurück zum Zitat Gupta A, Johnson J, Fei-Fei L, Savarese S, Alahi A (2018) Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 2255–2264 Gupta A, Johnson J, Fei-Fei L, Savarese S, Alahi A (2018) Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 2255–2264
22.
Zurück zum Zitat Yu C, Ma X, Ren J, Zhao H, Yi S (2020) Spatio-temporal graph transformer networks for pedestrian trajectory prediction Yu C, Ma X, Ren J, Zhao H, Yi S (2020) Spatio-temporal graph transformer networks for pedestrian trajectory prediction
23.
Zurück zum Zitat Lee D, Gu Y, Hoang J, Marchetti-Bowick M (2019) Joint interaction and trajectory prediction for autonomous driving using graph neural networks, no. NeurIPS Lee D, Gu Y, Hoang J, Marchetti-Bowick M (2019) Joint interaction and trajectory prediction for autonomous driving using graph neural networks, no. NeurIPS
24.
Zurück zum Zitat Sun J, Jiang Q, Lu C (2020) Recursive social behavior graph for trajectory prediction, pp 660–669 Sun J, Jiang Q, Lu C (2020) Recursive social behavior graph for trajectory prediction, pp 660–669
25.
Zurück zum Zitat Morzy M (2007) Mining frequent trajectories of moving objects for location prediction. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 4571 LNAI, pp 667–680 Morzy M (2007) Mining frequent trajectories of moving objects for location prediction. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 4571 LNAI, pp 667–680
26.
Zurück zum Zitat Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) WhereNext: a location predictor on trajectory pattern mining. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 637–645 Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) WhereNext: a location predictor on trajectory pattern mining. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 637–645
27.
Zurück zum Zitat Won JI, Kim SW, Baek JH, Lee J (2009) Trajectory clustering in road network environment. In: 2009 IEEE Symp. Comput. Intell. Data Mining, CIDM 2009 - Proc., pp 299–305 Won JI, Kim SW, Baek JH, Lee J (2009) Trajectory clustering in road network environment. In: 2009 IEEE Symp. Comput. Intell. Data Mining, CIDM 2009 - Proc., pp 299–305
28.
Zurück zum Zitat Roh GP, Hwang SW (2010) NNCluster: an efficient clustering algorithm for road network trajectories. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 5982 LNCS, no. PART 2, pp 47–61 Roh GP, Hwang SW (2010) NNCluster: an efficient clustering algorithm for road network trajectories. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 5982 LNCS, no. PART 2, pp 47–61
29.
Zurück zum Zitat Han B, Liu L, Omiecinski E (2015) Road-network aware trajectory clustering: Integrating locality, flow, and density. IEEE Trans Mob Comput 14(2):416–429CrossRef Han B, Liu L, Omiecinski E (2015) Road-network aware trajectory clustering: Integrating locality, flow, and density. IEEE Trans Mob Comput 14(2):416–429CrossRef
30.
Zurück zum Zitat Chen M, Liu Y, Yu X (2015) Predicting next locations with object clustering and trajectory clustering. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 9078, pp 344–356 Chen M, Liu Y, Yu X (2015) Predicting next locations with object clustering and trajectory clustering. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 9078, pp 344–356
31.
Zurück zum Zitat Ashbrook D, Starner T (2003) Using GPS to learn significant locations and predict movement across multiple users. Pers Ubiquitous Comput 7(5):275–286CrossRef Ashbrook D, Starner T (2003) Using GPS to learn significant locations and predict movement across multiple users. Pers Ubiquitous Comput 7(5):275–286CrossRef
32.
Zurück zum Zitat Lv Q, Qiao Y, Ansari N, Liu J, Yang J (2017) Individual mobility prediction at points of interest. IEEE Trans Veh Technol 66(6):5204–5216CrossRef Lv Q, Qiao Y, Ansari N, Liu J, Yang J (2017) Individual mobility prediction at points of interest. IEEE Trans Veh Technol 66(6):5204–5216CrossRef
33.
Zurück zum Zitat Ishikawa Y. From Indexed Spatio-Temporal Datasets. Development, pp 9–16 Ishikawa Y. From Indexed Spatio-Temporal Datasets. Development, pp 9–16
34.
Zurück zum Zitat Gambs S, Killijian MO, Del Prado Cortez MN (2012) Next place prediction using mobility Markov chains. In: Proc. 1st Work. Meas. Privacy, Mobility, MPM’12, pp 0–5 Gambs S, Killijian MO, Del Prado Cortez MN (2012) Next place prediction using mobility Markov chains. In: Proc. 1st Work. Meas. Privacy, Mobility, MPM’12, pp 0–5
35.
Zurück zum Zitat Chandra R, Bhattacharya U, Bera A, Di Manocha R (2019) Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 2019, pp 8475–8484 Chandra R, Bhattacharya U, Bera A, Di Manocha R (2019) Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 2019, pp 8475–8484
36.
Zurück zum Zitat Carrasco S, Llorca DF, Sotelo MÁ (2021) SCOUT: Socially-COnsistent and UndersTandable graph attention network for trajectory prediction of vehicles and VRUs Carrasco S, Llorca DF, Sotelo MÁ (2021) SCOUT: Socially-COnsistent and UndersTandable graph attention network for trajectory prediction of vehicles and VRUs
37.
Zurück zum Zitat Gao J et al (2020) VectorNet: encoding HD maps and agent dynamics from vectorized representation. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 11522–11530 Gao J et al (2020) VectorNet: encoding HD maps and agent dynamics from vectorized representation. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 11522–11530
38.
Zurück zum Zitat Kim B et al (2021) LaPred: lane-aware prediction of multi-modal future trajectories of dynamic agents Kim B et al (2021) LaPred: lane-aware prediction of multi-modal future trajectories of dynamic agents
39.
Zurück zum Zitat Park SH et al (2020) Diverse and admissible trajectory forecasting through multimodal context understanding, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 12356 LNCS, pp 282–298 Park SH et al (2020) Diverse and admissible trajectory forecasting through multimodal context understanding, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 12356 LNCS, pp 282–298
40.
Zurück zum Zitat Fang L, Jiang Q, Shi J, Zhou B (2020) TPNet: trajectory proposal network for motion prediction. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 6796–6805 Fang L, Jiang Q, Shi J, Zhou B (2020) TPNet: trajectory proposal network for motion prediction. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 6796–6805
41.
Zurück zum Zitat Luo C, Sun L, Dabiri D, Yuille A (2020) Probabilistic multi-modal trajectory prediction with lane attention for autonomous vehicles. IEEE Int Conf Intell Robot Syst 56:2370–2376 Luo C, Sun L, Dabiri D, Yuille A (2020) Probabilistic multi-modal trajectory prediction with lane attention for autonomous vehicles. IEEE Int Conf Intell Robot Syst 56:2370–2376
42.
Zurück zum Zitat He H, Dai H, Wang N (2020) UST: unifying spatio-temporal context for trajectory prediction in autonomous driving. IEEE Int Conf Intell Robot Syst 56:5962–5969 He H, Dai H, Wang N (2020) UST: unifying spatio-temporal context for trajectory prediction in autonomous driving. IEEE Int Conf Intell Robot Syst 56:5962–5969
43.
Zurück zum Zitat Wang J et al (2021) “F-NET: fusion neural network for vehicle trajectory prediction in autonomous driving, vol 1. Peking University, Beijing, pp 4095–4099 Wang J et al (2021) “F-NET: fusion neural network for vehicle trajectory prediction in autonomous driving, vol 1. Peking University, Beijing, pp 4095–4099
44.
Zurück zum Zitat Becker S, Hug R, Hübner W, Arens M (2018) An evaluation of trajectory prediction approaches and notes on the TrajNet Benchmark Becker S, Hug R, Hübner W, Arens M (2018) An evaluation of trajectory prediction approaches and notes on the TrajNet Benchmark
45.
Zurück zum Zitat Becker S, Hug R, Hübner W, Arens M (2019) RED: a simple but effective baseline predictor for the TrajNet benchmark. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 11131 LNCS, pp 138–153 Becker S, Hug R, Hübner W, Arens M (2019) RED: a simple but effective baseline predictor for the TrajNet benchmark. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 11131 LNCS, pp 138–153
46.
Zurück zum Zitat Scholler C, Aravantinos V, Lay F, Knoll A (2020) What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robot Autom Lett 5(2):1696–1703CrossRef Scholler C, Aravantinos V, Lay F, Knoll A (2020) What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robot Autom Lett 5(2):1696–1703CrossRef
47.
Zurück zum Zitat Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spectral graph theory. Appl Comput Harmon Anal 30(2):129–150MathSciNetCrossRef Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spectral graph theory. Appl Comput Harmon Anal 30(2):129–150MathSciNetCrossRef
48.
49.
Zurück zum Zitat Ma Y, Zhu X, Zhang S, Yang R, Wang W, Manocha D (2009) TrafficPredict: trajectory prediction for heterogeneous traffic-agents, no. Kalman 1960 Ma Y, Zhu X, Zhang S, Yang R, Wang W, Manocha D (2009) TrafficPredict: trajectory prediction for heterogeneous traffic-agents, no. Kalman 1960
50.
Zurück zum Zitat Chen L (2020) One thousand and one hours: self-driving motion prediction dataset, no. CoRL 2020, pp 1–10 Chen L (2020) One thousand and one hours: self-driving motion prediction dataset, no. CoRL 2020, pp 1–10
51.
Zurück zum Zitat Chang M et al. Argoverse : 3D tracking and forecasting with rich maps Chang M et al. Argoverse : 3D tracking and forecasting with rich maps
52.
Zurück zum Zitat Li X, Ying X, Chuah MC (2019) GRIP++: enhanced graph-based interaction-aware trajectory prediction for autonomous driving Li X, Ying X, Chuah MC (2019) GRIP++: enhanced graph-based interaction-aware trajectory prediction for autonomous driving
53.
Zurück zum Zitat Li X, Ying X, Chuah MC (2019) GRIP: graph-based interaction-aware trajectory prediction, pp 3960–3966 Li X, Ying X, Chuah MC (2019) GRIP: graph-based interaction-aware trajectory prediction, pp 3960–3966
54.
Zurück zum Zitat Julka S, Sowrirajan V, Schloetterer J, Granitzer M (2021) Conditional generative adversarial networks for speed control in trajectory simulation Julka S, Sowrirajan V, Schloetterer J, Granitzer M (2021) Conditional generative adversarial networks for speed control in trajectory simulation
55.
Zurück zum Zitat Kim G, Kim D, Ahn Y, Huh K (2021) Hybrid approach for vehicle trajectory prediction using weighted integration of multiple models. IEEE Access 56:1 Kim G, Kim D, Ahn Y, Huh K (2021) Hybrid approach for vehicle trajectory prediction using weighted integration of multiple models. IEEE Access 56:1
Metadaten
Titel
Multi-scale graph-transformer network for trajectory prediction of the autonomous vehicles
verfasst von
Divya Singh
Rajeev Srivastava
Publikationsdatum
10.05.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Intelligent Service Robotics / Ausgabe 3/2022
Print ISSN: 1861-2776
Elektronische ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-022-00422-w

Weitere Artikel der Ausgabe 3/2022

Intelligent Service Robotics 3/2022 Zur Ausgabe

Neuer Inhalt