Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 3/2018

17.03.2018 | RESEARCH PAPER

Multifunctional design of heterogeneous cellular structures

verfasst von: Yunlong Tang, Yaoyao Fiona Zhao

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mesoscale cellular structures with different desired physical properties are promising for a broad spectrum of applications. The availability of Additive Manufacturing (AM) technology has significantly relaxed the fabricating limitation of cellular structures. It enables the design of cellular structure with complex cell topologies and relative density distribution. In this paper, a multifunctional design method for heterogeneous cellular structures is proposed. To introduce this method, Function-Performance-Property-Design parameter model is proposed at first. This proposed model can help designers to analyze the complex relations between focused functions and their related design parameters. Based on the proposed F-P-P-D model, the template of compromise Decision Support Problem (DSP) is applied to generate the optimization formulation which can generally consider the performances defined for several different functions. To solve the defined optimization problem, a multifunctional design simulation infrastructure is proposed for the designed heterogeneous cellular structures. Based on this simulation infrastructure, both the value of the objective function and its gradients can be evaluated. Then, Sequential Quadratic Programming (SQP) solver can be applied to solve the defined optimization formulation. The optimal relative density of cellular structures can be achieved and converted to the heterogeneous cellular structures at the end. A case study is provided at the end of this paper. For this case study, two different cell topologies and several different combinations of optimization parameters are used. A brief discussion is made to conclude the effects of cell topologies and other optimization parameters on the optimization results. Generally, the result of this design case validates the efficiency of the proposed design method. This method provides a useful design tool for users to take advantage of heterogeneous cellular structures for multifunctional purposes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Arabnejad S, Pasini D (2013) Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int J Mech Sci 77:249–262CrossRef Arabnejad S, Pasini D (2013) Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int J Mech Sci 77:249–262CrossRef
Zurück zum Zitat Brackett D, Ashcroft I, Hague R (2011) Topology optimization for additive manufacturing. In: 22nd Annual international solid freeform fabrication symposium, p 348-362 Brackett D, Ashcroft I, Hague R (2011) Topology optimization for additive manufacturing. In: 22nd Annual international solid freeform fabrication symposium, p 348-362
Zurück zum Zitat Chen Y, Zhou S, Li Q (2010) Multiobjective topology optimization for finite periodic structures. Comput Struct 88:806–811CrossRef Chen Y, Zhou S, Li Q (2010) Multiobjective topology optimization for finite periodic structures. Comput Struct 88:806–811CrossRef
Zurück zum Zitat Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47:583–597MathSciNetCrossRefMATH Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47:583–597MathSciNetCrossRefMATH
Zurück zum Zitat Fleck N, Deshpande V, Ashby M (2010) Micro-architectured materials: past, present and future. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 2121. The Royal Society, p 2495-2516 Fleck N, Deshpande V, Ashby M (2010) Micro-architectured materials: past, present and future. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 2121. The Royal Society, p 2495-2516
Zurück zum Zitat Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81:081009CrossRef Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81:081009CrossRef
Zurück zum Zitat Hassani B, Hinton E (1998) A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput Struct 69:707–717CrossRefMATH Hassani B, Hinton E (1998) A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput Struct 69:707–717CrossRefMATH
Zurück zum Zitat Huang X, Radman A, Xie Y (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50:1861–1870CrossRef Huang X, Radman A, Xie Y (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50:1861–1870CrossRef
Zurück zum Zitat Kang H, Lin C-Y, Hollister SJ (2010) Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscip Optim 42:633–644CrossRef Kang H, Lin C-Y, Hollister SJ (2010) Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscip Optim 42:633–644CrossRef
Zurück zum Zitat Kou D, Yu J (2010) Multi-objective optimum design for strength and heat insulation of metal foam with dual–size cellular structure. Acta Metall Sinica 104-110 Kou D, Yu J (2010) Multi-objective optimum design for strength and heat insulation of metal foam with dual–size cellular structure. Acta Metall Sinica 104-110
Zurück zum Zitat Lu T (1998) Heat transfer efficiency of metal honeycombs. Int J Heat Mass Transf 42:2031–2040CrossRefMATH Lu T (1998) Heat transfer efficiency of metal honeycombs. Int J Heat Mass Transf 42:2031–2040CrossRefMATH
Zurück zum Zitat Mistree F, Hughes OF, Bras B (1993) Compromise decision support problem and the adaptive linear programming algorithm. Prog Astronaut Aeronaut 150:251–251 Mistree F, Hughes OF, Bras B (1993) Compromise decision support problem and the adaptive linear programming algorithm. Prog Astronaut Aeronaut 150:251–251
Zurück zum Zitat Nguyen J, Park SI, Rosen D (2013) Heuristic optimization method for cellular structure design of light weight components. Int J Precis Eng Man 14:1071–1078CrossRef Nguyen J, Park SI, Rosen D (2013) Heuristic optimization method for cellular structure design of light weight components. Int J Precis Eng Man 14:1071–1078CrossRef
Zurück zum Zitat Otto KN (1992) A formal representational theory for engineering design. California Institute of Technology Otto KN (1992) A formal representational theory for engineering design. California Institute of Technology
Zurück zum Zitat Qian X (2017) Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Int J Numer Methods Eng Qian X (2017) Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Int J Numer Methods Eng
Zurück zum Zitat Rosen DW (2007) Computer-aided design for additive manufacturing of cellular structures. Comput-Aided Des Applic 4:585–594CrossRef Rosen DW (2007) Computer-aided design for additive manufacturing of cellular structures. Comput-Aided Des Applic 4:585–594CrossRef
Zurück zum Zitat Schumacher C, Bickel B, Rys J, Marschner S, Daraio C, Gross M (2015) Microstructures to control elasticity in 3D printing. ACM Trans Graphics (TOG) 34:136CrossRef Schumacher C, Bickel B, Rys J, Marschner S, Daraio C, Gross M (2015) Microstructures to control elasticity in 3D printing. ACM Trans Graphics (TOG) 34:136CrossRef
Zurück zum Zitat Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329MathSciNetCrossRefMATH Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329MathSciNetCrossRefMATH
Zurück zum Zitat Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368CrossRef Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368CrossRef
Zurück zum Zitat Sundararajan VG (2011) Topology optimization for additive manufacturing of customized meso-structures using homogenization and parametric smoothing functions. The University of Texas at Austin Sundararajan VG (2011) Topology optimization for additive manufacturing of customized meso-structures using homogenization and parametric smoothing functions. The University of Texas at Austin
Zurück zum Zitat Tang Y, Yang S, Zhao YF (2016) Sustainable design for additive manufacturing through functionality integration and part consolidation. In: Muthu SS, Savalani MM (eds) Handbook of sustainability in additive manufacturing: volume 1. Springer Singapore, Singapore, pp 101–144. https://doi.org/10.1007/978-981-10-0549-7_6 CrossRef Tang Y, Yang S, Zhao YF (2016) Sustainable design for additive manufacturing through functionality integration and part consolidation. In: Muthu SS, Savalani MM (eds) Handbook of sustainability in additive manufacturing: volume 1. Springer Singapore, Singapore, pp 101–144. https://​doi.​org/​10.​1007/​978-981-10-0549-7_​6 CrossRef
Zurück zum Zitat Tang Y, Zhao YF (2014) Design method for lattice-skin structure fabricated by additive manufacturing. In: ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, p V02BT02A030-V002BT002A030 Tang Y, Zhao YF (2014) Design method for lattice-skin structure fabricated by additive manufacturing. In: ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, p V02BT02A030-V002BT002A030
Zurück zum Zitat Yan J, Cheng G-d, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidiscip Des Optim 2:259–266CrossRef Yan J, Cheng G-d, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidiscip Des Optim 2:259–266CrossRef
Zurück zum Zitat Yan X, Huang X, Zha Y, Xie Y (2014b) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110CrossRef Yan X, Huang X, Zha Y, Xie Y (2014b) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110CrossRef
Zurück zum Zitat Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. J Mater Sci 43:5157–5167CrossRef Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. J Mater Sci 43:5157–5167CrossRef
Metadaten
Titel
Multifunctional design of heterogeneous cellular structures
verfasst von
Yunlong Tang
Yaoyao Fiona Zhao
Publikationsdatum
17.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 3/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-1956-9

Weitere Artikel der Ausgabe 3/2018

Structural and Multidisciplinary Optimization 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.