Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

23.06.2022

Mutual Coupling Reduction in Microstrip Patch Antenna Arrays Using Simple Microstrip Resonator

verfasst von: Saeed Roshani, Hanieh Shahveisi

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper a novel ladder resonator is introduced to reduce mutual coupling effect in the patch antenna array structure. Applied patch antennas are operating at 2.45 GHz frequency, which specially used for MIMO (multiple input multiple output) systems. The edge-to-edge distance between two microstrip patch antennas is 0.05 λ. The proposed ladder resonator impressively blocks the surface current between two patch antennas at the operating frequency, which results in mutual effect reduction. The designed configuration has been analyzed, simulated and measured. Scattering parameters with and without of proposed resonator has been investigated. The result shows that, the proposed configuration increases isolation between two microstrip patch antennas about 44 dB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design. Wiley. Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design. Wiley.
2.
Zurück zum Zitat Ghosh, C. K., & Parui, S. K. (2013). Reduction of mutual coupling between E-shaped microstrip antennas by using a simple microstrip I-section. Microwave and Optical Technology Letters, 55(11), 2544–2549.CrossRef Ghosh, C. K., & Parui, S. K. (2013). Reduction of mutual coupling between E-shaped microstrip antennas by using a simple microstrip I-section. Microwave and Optical Technology Letters, 55(11), 2544–2549.CrossRef
3.
Zurück zum Zitat Haq, M. A., & Koziel, S. (2018). Ground plane alterations for design of high-isolation compact wideband MIMO antenna. IEEE Access, 6, 48978–48983.CrossRef Haq, M. A., & Koziel, S. (2018). Ground plane alterations for design of high-isolation compact wideband MIMO antenna. IEEE Access, 6, 48978–48983.CrossRef
4.
Zurück zum Zitat Abdullah, M., & Koziel, S. (2021). A novel versatile decoupling structure and expedited inverse-model-based re-design procedure for compact single-and dual-band MIMO antennas. IEEE Access, 9, 37656–37667.CrossRef Abdullah, M., & Koziel, S. (2021). A novel versatile decoupling structure and expedited inverse-model-based re-design procedure for compact single-and dual-band MIMO antennas. IEEE Access, 9, 37656–37667.CrossRef
5.
Zurück zum Zitat Ullah, U., Mabrouk, I. B., & Koziel, S. (2020). Enhanced-performance circularly polarized MIMO antenna with polarization/pattern diversity. IEEE Access, 8, 11887–11895.CrossRef Ullah, U., Mabrouk, I. B., & Koziel, S. (2020). Enhanced-performance circularly polarized MIMO antenna with polarization/pattern diversity. IEEE Access, 8, 11887–11895.CrossRef
6.
Zurück zum Zitat Kiani, S. H., Altaf, A., Anjum, M. R., Afridi, S., Arain, Z. A., Anwar, S., Khan, S., Alibakhshikenari, M., Lalbakhsh, A., Khan, M. A., & Abd-Alhameed, R. A. (2021). MIMO antenna system for modern 5G handheld devices with healthcare and high rate delivery. Sensors, 21(21), 7415.CrossRef Kiani, S. H., Altaf, A., Anjum, M. R., Afridi, S., Arain, Z. A., Anwar, S., Khan, S., Alibakhshikenari, M., Lalbakhsh, A., Khan, M. A., & Abd-Alhameed, R. A. (2021). MIMO antenna system for modern 5G handheld devices with healthcare and high rate delivery. Sensors, 21(21), 7415.CrossRef
7.
Zurück zum Zitat Sehrai, D. A., Asif, M., Shoaib, N., Ibrar, M., Jan, S., Alibakhshikenari, M., Lalbakhsh, A., & Limiti, E. (2021). Compact quad-element high-isolation wideband MIMO antenna for mm-wave applications. Electronics, 10(11), 1300.CrossRef Sehrai, D. A., Asif, M., Shoaib, N., Ibrar, M., Jan, S., Alibakhshikenari, M., Lalbakhsh, A., & Limiti, E. (2021). Compact quad-element high-isolation wideband MIMO antenna for mm-wave applications. Electronics, 10(11), 1300.CrossRef
8.
Zurück zum Zitat Khan, A. A., Saeed Khan, M., Naqvi, S. A., Ijaz, B., Asif, M., Ali, E. M., Khan, S., Lalbakhsh, A., Alibakhshikenari, M., & Limiti, E. (2021). Printed closely spaced antennas loaded by linear stubs in a MIMO style for portable wireless electronic devices. Electronics, 10(22), 2848.CrossRef Khan, A. A., Saeed Khan, M., Naqvi, S. A., Ijaz, B., Asif, M., Ali, E. M., Khan, S., Lalbakhsh, A., Alibakhshikenari, M., & Limiti, E. (2021). Printed closely spaced antennas loaded by linear stubs in a MIMO style for portable wireless electronic devices. Electronics, 10(22), 2848.CrossRef
9.
Zurück zum Zitat David, R. M., Aw, M. S., Ali, T., & Kumar, P. (2021). A Multiband antenna stacked with novel metamaterial SCSRR and CSSRR for WiMAX/WLAN applications. Micromachines, 12(2), 113.CrossRef David, R. M., Aw, M. S., Ali, T., & Kumar, P. (2021). A Multiband antenna stacked with novel metamaterial SCSRR and CSSRR for WiMAX/WLAN applications. Micromachines, 12(2), 113.CrossRef
10.
Zurück zum Zitat Bait-Suwailam, M. M., Siddiqui, O. F., & Ramahi, O. M. (2010). Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters, 9, 876–878.CrossRef Bait-Suwailam, M. M., Siddiqui, O. F., & Ramahi, O. M. (2010). Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters, 9, 876–878.CrossRef
11.
Zurück zum Zitat Roshani, S. (2017). A Wilkinson power divider with harmonics suppression and size reduction using meandered compact microstrip resonating cells. Frequenz, 71(11–12), 517–522. Roshani, S. (2017). A Wilkinson power divider with harmonics suppression and size reduction using meandered compact microstrip resonating cells. Frequenz, 71(11–12), 517–522.
12.
Zurück zum Zitat OuYang, J., Yang, F., & Wang, Z. M. (2011). Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application. IEEE Antennas and Wireless Propagation Letters, 10, 310–313.CrossRef OuYang, J., Yang, F., & Wang, Z. M. (2011). Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application. IEEE Antennas and Wireless Propagation Letters, 10, 310–313.CrossRef
13.
Zurück zum Zitat Farsi, S., Aliakbarian, H., Schreurs, D., Nauwelaers, B., & Vandenbosch, G. A. (2012). Mutual coupling reduction between planar antennas by using a simple microstrip U-section. IEEE Antennas and Wireless Propagation Letters, 11, 1501–1503.CrossRef Farsi, S., Aliakbarian, H., Schreurs, D., Nauwelaers, B., & Vandenbosch, G. A. (2012). Mutual coupling reduction between planar antennas by using a simple microstrip U-section. IEEE Antennas and Wireless Propagation Letters, 11, 1501–1503.CrossRef
14.
Zurück zum Zitat Alsath, M. G., Kanagasabai, M., & Balasubramanian, B. (2012). Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays. IEEE Antennas and Wireless Propagation Letters, 12, 15–18.CrossRef Alsath, M. G., Kanagasabai, M., & Balasubramanian, B. (2012). Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays. IEEE Antennas and Wireless Propagation Letters, 12, 15–18.CrossRef
15.
Zurück zum Zitat Arun, H., Sarma, A. K., Kanagasabai, M., Velan, S., Raviteja, C., & Alsath, M. G. (2014). Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas. IEEE Antennas and Wireless Propagation Letters, 13, 277–280.CrossRef Arun, H., Sarma, A. K., Kanagasabai, M., Velan, S., Raviteja, C., & Alsath, M. G. (2014). Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas. IEEE Antennas and Wireless Propagation Letters, 13, 277–280.CrossRef
16.
Zurück zum Zitat Chandu, D. S., Karthikeyan, S. S., & Kumar, K. P. (2015). Reduction of mutual coupling in a two element patch antenna array using sub-wavelength resonators. In 2015 Twenty first national conference on communications (NCC) (pp. 1–5). IEEE. Chandu, D. S., Karthikeyan, S. S., & Kumar, K. P. (2015). Reduction of mutual coupling in a two element patch antenna array using sub-wavelength resonators. In 2015 Twenty first national conference on communications (NCC) (pp. 1–5). IEEE.
17.
Zurück zum Zitat Ghosh, C. K., Pratap, M., Kumar, R., & Pratap, S. (2020). Mutual coupling reduction of microstrip MIMO antenna using microstrip resonator. Wireless Personal Communications, 112(3), 2047–2056.CrossRef Ghosh, C. K., Pratap, M., Kumar, R., & Pratap, S. (2020). Mutual coupling reduction of microstrip MIMO antenna using microstrip resonator. Wireless Personal Communications, 112(3), 2047–2056.CrossRef
18.
Zurück zum Zitat Alsultan, R. G., & Ögücü, Y. G. (2018). Mutual coupling reduction of E-shaped MIMO antenna with matrix of C-shaped resonators. International Journal of Antennas and Propagation, 2018, 1–13.CrossRef Alsultan, R. G., & Ögücü, Y. G. (2018). Mutual coupling reduction of E-shaped MIMO antenna with matrix of C-shaped resonators. International Journal of Antennas and Propagation, 2018, 1–13.CrossRef
19.
Zurück zum Zitat Roshani, M., et al. (2021). Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness. Alexandria Engineering Journal, 60(1), 1955–1966.CrossRef Roshani, M., et al. (2021). Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness. Alexandria Engineering Journal, 60(1), 1955–1966.CrossRef
20.
Zurück zum Zitat Roshani, M., Phan, G., Roshani, G. H., Hanus, R., Nazemi, B., Corniani, E., & Nazemi, E. (2021). Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement, 168, 108427.CrossRef Roshani, M., Phan, G., Roshani, G. H., Hanus, R., Nazemi, B., Corniani, E., & Nazemi, E. (2021). Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement, 168, 108427.CrossRef
21.
Zurück zum Zitat Roshani, M., et al. (2021). Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products. Nuclear Engineering and Technology, 53(4), 1277–1283.CrossRef Roshani, M., et al. (2021). Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products. Nuclear Engineering and Technology, 53(4), 1277–1283.CrossRef
22.
Zurück zum Zitat Amiri, S., et al. (2021). Proposing a nondestructive and intelligent system for simultaneous determining flow regime and void fraction percentage of gas–liquid two phase flows using polychromatic X-ray transmission spectra. Journal of Nondestructive Evaluation, 40(2), 1–2.CrossRef Amiri, S., et al. (2021). Proposing a nondestructive and intelligent system for simultaneous determining flow regime and void fraction percentage of gas–liquid two phase flows using polychromatic X-ray transmission spectra. Journal of Nondestructive Evaluation, 40(2), 1–2.CrossRef
23.
Zurück zum Zitat Taylan, O., et al. (2021). Proposing an intelligent dual-energy radiation-based system for metering scale layer thickness in oil pipelines containing an annular regime of three-phase flow. Mathematics, 9(19), 2391.CrossRef Taylan, O., et al. (2021). Proposing an intelligent dual-energy radiation-based system for metering scale layer thickness in oil pipelines containing an annular regime of three-phase flow. Mathematics, 9(19), 2391.CrossRef
24.
Zurück zum Zitat Roshani, M., et al. (2020). X-ray tube with artificial neural network model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Applied Radiation and Isotopes, 164, 109255.CrossRef Roshani, M., et al. (2020). X-ray tube with artificial neural network model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Applied Radiation and Isotopes, 164, 109255.CrossRef
25.
Zurück zum Zitat Hosseini, S., et al. (2021). Application of wavelet feature extraction and artificial neural networks for improving the performance of gas–liquid two-phase flow meters used in oil and petrochemical industries. Polymers, 13(21), 3647.CrossRef Hosseini, S., et al. (2021). Application of wavelet feature extraction and artificial neural networks for improving the performance of gas–liquid two-phase flow meters used in oil and petrochemical industries. Polymers, 13(21), 3647.CrossRef
26.
Zurück zum Zitat Roshani, G. H., et al. (2021). Feasibility study of using X-ray tube and GMDH for measuring volume fractions of annular and stratified regimes in three-phase flows. Symmetry, 13(4), 613.CrossRef Roshani, G. H., et al. (2021). Feasibility study of using X-ray tube and GMDH for measuring volume fractions of annular and stratified regimes in three-phase flows. Symmetry, 13(4), 613.CrossRef
27.
Zurück zum Zitat Roshani, G. H., et al. (2021). Simulation study of utilizing X-ray tube in monitoring systems of liquid petroleum products. Processes, 9(5), 828.CrossRef Roshani, G. H., et al. (2021). Simulation study of utilizing X-ray tube in monitoring systems of liquid petroleum products. Processes, 9(5), 828.CrossRef
28.
Zurück zum Zitat Roshani, S., Jamshidi, M. B., Mohebi, F., & Roshani, S. (2021). Design and modeling of a compact power divider with squared resonators using artificial intelligence. Wireless Personal Communications, 117(3), 2085–2096.CrossRef Roshani, S., Jamshidi, M. B., Mohebi, F., & Roshani, S. (2021). Design and modeling of a compact power divider with squared resonators using artificial intelligence. Wireless Personal Communications, 117(3), 2085–2096.CrossRef
29.
Zurück zum Zitat Jamshidi, M. B., Roshani, S., Talla, J., Peroutka, Z., & Roshani, S. (2020). A novel filter-based power divider for wireless communication in intelligent transportation systems. In 2020 19th IEEE international conference on mechatronics-mechatronika (ME), December 2, 2020 (pp. 1–5). Jamshidi, M. B., Roshani, S., Talla, J., Peroutka, Z., & Roshani, S. (2020). A novel filter-based power divider for wireless communication in intelligent transportation systems. In 2020 19th IEEE international conference on mechatronics-mechatronika (ME), December 2, 2020 (pp. 1–5).
30.
Zurück zum Zitat Jamshidi, M. B., Roshani, S., Talla, J., & Roshani, S. (2020). Using an ANN approach to estimate output power and PAE of A modified class-F power amplifier. In 2020 International Conference on Applied Electronics (AE), September 8, 2020 (pp. 1–6). IEEE. Jamshidi, M. B., Roshani, S., Talla, J., & Roshani, S. (2020). Using an ANN approach to estimate output power and PAE of A modified class-F power amplifier. In 2020 International Conference on Applied Electronics (AE), September 8, 2020 (pp. 1–6). IEEE.
31.
Zurück zum Zitat Jamshidi, M. B., Lalbakhsh, A., Mohamadzade, B., Siahkamari, H., & Mousavi, S. M. (2019). A novel neural-based approach for design of microstrip filters. AEU-International Journal of Electronics and Communications, 110, 152847. Jamshidi, M. B., Lalbakhsh, A., Mohamadzade, B., Siahkamari, H., & Mousavi, S. M. (2019). A novel neural-based approach for design of microstrip filters. AEU-International Journal of Electronics and Communications, 110, 152847.
32.
Zurück zum Zitat Jamshidi, M., et al. (2020). A neuro-based approach to designing a Wilkinson power divider. International Journal of RF and Microwave Computer-Aided Engineering, 30(3), e22091.CrossRef Jamshidi, M., et al. (2020). A neuro-based approach to designing a Wilkinson power divider. International Journal of RF and Microwave Computer-Aided Engineering, 30(3), e22091.CrossRef
33.
Zurück zum Zitat Ozdemir, E., Akgol, O., Ozkan Alkurt, F., Karaaslan, M., Abdulkarim, Y. I., & Deng, L. (2020). Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach. Applied Sciences, 10(1), 378.CrossRef Ozdemir, E., Akgol, O., Ozkan Alkurt, F., Karaaslan, M., Abdulkarim, Y. I., & Deng, L. (2020). Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach. Applied Sciences, 10(1), 378.CrossRef
34.
Zurück zum Zitat Mu’ath, J., Denidni, T. A., & Sebak, A. R. (2014). Millimeter-wave compact EBG structure for mutual coupling reduction applications. IEEE Transactions on Antennas and Propagation, 63(2), 823–828. Mu’ath, J., Denidni, T. A., & Sebak, A. R. (2014). Millimeter-wave compact EBG structure for mutual coupling reduction applications. IEEE Transactions on Antennas and Propagation, 63(2), 823–828.
35.
Zurück zum Zitat Wei, K., Li, J., Wang, L., Xing, Z., & Xu, R. (2016). S-shaped periodic defected ground structures to reduce microstrip antenna array mutual coupling. Electronics Letters, 52(15), 1288–1290.CrossRef Wei, K., Li, J., Wang, L., Xing, Z., & Xu, R. (2016). S-shaped periodic defected ground structures to reduce microstrip antenna array mutual coupling. Electronics Letters, 52(15), 1288–1290.CrossRef
36.
Zurück zum Zitat Wei, K., Li, J. Y., Wang, L., Xing, Z. J., & Xu, R. (2016). Mutual coupling reduction by novel fractal defected ground structure bandgap filter. IEEE Transactions on Antennas and Propagation, 64(10), 4328–4335.MathSciNetMATHCrossRef Wei, K., Li, J. Y., Wang, L., Xing, Z. J., & Xu, R. (2016). Mutual coupling reduction by novel fractal defected ground structure bandgap filter. IEEE Transactions on Antennas and Propagation, 64(10), 4328–4335.MathSciNetMATHCrossRef
37.
Zurück zum Zitat Roshani, S. (2017). A compact microstrip low-pass filter with ultra wide stopband using compact microstrip resonant cells. International Journal of Microwave and Wireless Technologies, 9(5), 1023–1027.CrossRef Roshani, S. (2017). A compact microstrip low-pass filter with ultra wide stopband using compact microstrip resonant cells. International Journal of Microwave and Wireless Technologies, 9(5), 1023–1027.CrossRef
38.
Zurück zum Zitat Roshani, S., Hayati, M., Setayeshi, S., Roshani, S., & Mohamadpour, G. (2016). A miniaturized harmonic suppressed power amplifier integrated with lowpass filter for long term evolution application. Analog Integrated Circuits and Signal Processing, 89(1), 197–204.CrossRef Roshani, S., Hayati, M., Setayeshi, S., Roshani, S., & Mohamadpour, G. (2016). A miniaturized harmonic suppressed power amplifier integrated with lowpass filter for long term evolution application. Analog Integrated Circuits and Signal Processing, 89(1), 197–204.CrossRef
39.
Zurück zum Zitat Pozar, D. M. (2011). Microwave engineering. Wiley. Pozar, D. M. (2011). Microwave engineering. Wiley.
40.
Zurück zum Zitat Mohamadzade, B., & Afsahi, M. (2017). Mutual coupling reduction and gain enhancement in patch array antenna using a planar compact electromagnetic bandgap structure. IET Microwaves, Antennas & Propagation, 11(12), 1719–1725.CrossRef Mohamadzade, B., & Afsahi, M. (2017). Mutual coupling reduction and gain enhancement in patch array antenna using a planar compact electromagnetic bandgap structure. IET Microwaves, Antennas & Propagation, 11(12), 1719–1725.CrossRef
41.
Zurück zum Zitat Qi, H., Yin, X., Liu, L., Rong, Y., & Qian, H. (2015). Improving isolation between closely spaced patch antennas using interdigital lines. IEEE Antennas and Wireless Propagation Letters, 15, 286–289.CrossRef Qi, H., Yin, X., Liu, L., Rong, Y., & Qian, H. (2015). Improving isolation between closely spaced patch antennas using interdigital lines. IEEE Antennas and Wireless Propagation Letters, 15, 286–289.CrossRef
42.
Zurück zum Zitat Naser-Moghadasi, M., Ahmadian, R., Mansouri, Z., Zarrabi, F. B., & Rahimi, M. (2014). Compact EBG structures for reduction of mutual coupling in patch antenna MIMO arrays. Progress In Electromagnetics Research C, 53, 145–154.CrossRef Naser-Moghadasi, M., Ahmadian, R., Mansouri, Z., Zarrabi, F. B., & Rahimi, M. (2014). Compact EBG structures for reduction of mutual coupling in patch antenna MIMO arrays. Progress In Electromagnetics Research C, 53, 145–154.CrossRef
Metadaten
Titel
Mutual Coupling Reduction in Microstrip Patch Antenna Arrays Using Simple Microstrip Resonator
verfasst von
Saeed Roshani
Hanieh Shahveisi
Publikationsdatum
23.06.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09815-7

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe

Neuer Inhalt