Skip to main content

2019 | OriginalPaper | Buchkapitel

24. Nanofibers for Medical Diagnosis and Therapy

verfasst von : Priyanka Prabhu

Erschienen in: Handbook of Nanofibers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofibers are fibers having dimensions in the nanometric range of few tens to 1000 nm. Advantages of nanofibers include their high surface-area-to-volume ratio resulting in enhanced drug solubility, high porosity, superior mechanical strength, versatile surface functionalization, and similarity to the extracellular matrix which promotes their use as wound dressings. Nanofibers have demonstrated their biomedical prowess in the fields of diagnosis as well as therapy. Nanofibers have been explored as ultrasensitive biosensors for point-of-care diagnosis of cancer, detection of circulating tumor cells in cancer patients, diagnosis of malaria, and detection of urea, glucose, cholesterol, bacteria, etc. Their huge surface area offers large number of binding sites thus endowing them with the capability for ultrasensitive detection. Nanofibers have also exhibited promising potential as drug delivery carriers and as wound dressings. Smart nanofibers which release the drug in response to stimuli such as pH, temperature, magnetic field, ultrasound waves, enzyme, and light have been studied to cater to the need for on-demand drug release systems. Nanofibers for photodynamic therapy have also been reported. Multifunctional nanofibers have also been developed for combined hyperthermia and therapy. Nanofibers may be fabricated using natural or synthetic polymers and using synthetic drugs as well as herbal molecules and extracts. Drug release from nanofibers can be modified based on the choice of polymer and the method of drug loading. Nanofibers have been developed for administration through various routes such as oral, oromucosal, periodontal, transdermal, intravenous, ophthalmic, vaginal, etc. The chapter showcases the potential applications of nanofibers in medical diagnosis and therapy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rošic R, Kocbek P, Pelipenko J, Kristl J, Baumgartner S (2013) Nanofibers and their biomedical use. Acta Pharma 63:295–304CrossRef Rošic R, Kocbek P, Pelipenko J, Kristl J, Baumgartner S (2013) Nanofibers and their biomedical use. Acta Pharma 63:295–304CrossRef
2.
Zurück zum Zitat Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17CrossRef Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17CrossRef
3.
Zurück zum Zitat Goonoo N, Bhaw-Luximon A, Jhurry D (2014) Drug loading and release from electrospun biodegradable nanofibers. J Biomed Nanotechnol 10:2173–2199CrossRef Goonoo N, Bhaw-Luximon A, Jhurry D (2014) Drug loading and release from electrospun biodegradable nanofibers. J Biomed Nanotechnol 10:2173–2199CrossRef
4.
Zurück zum Zitat Gencturk A, Kahraman E, Güngör S, Özhan G, Özsoy Y, Sarac AS (2017) Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artif Cells Nanomed Biotechnol 45:655–664CrossRef Gencturk A, Kahraman E, Güngör S, Özhan G, Özsoy Y, Sarac AS (2017) Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artif Cells Nanomed Biotechnol 45:655–664CrossRef
5.
Zurück zum Zitat Chen DW, Liu SJ (2015) Nanofibers used for delivery of antimicrobial agents. Nanomedicine (London) 10:1959–1971CrossRef Chen DW, Liu SJ (2015) Nanofibers used for delivery of antimicrobial agents. Nanomedicine (London) 10:1959–1971CrossRef
6.
Zurück zum Zitat Monteiro N, Martins M, Martins A, Fonseca NA, Moreira JN, Reis RL, Neves NM (2015) Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater 18:196–205CrossRef Monteiro N, Martins M, Martins A, Fonseca NA, Moreira JN, Reis RL, Neves NM (2015) Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater 18:196–205CrossRef
7.
Zurück zum Zitat Morie A, Garg T, Goyal AK, Rath G (2016) Nanofibers as novel drug carrier – an overview. Artif Cells Nanomed Biotechnol 44:135–143CrossRef Morie A, Garg T, Goyal AK, Rath G (2016) Nanofibers as novel drug carrier – an overview. Artif Cells Nanomed Biotechnol 44:135–143CrossRef
8.
Zurück zum Zitat Zhang Z, Hu J, Ma PX (2012) Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev 64:1129–1141CrossRef Zhang Z, Hu J, Ma PX (2012) Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev 64:1129–1141CrossRef
9.
Zurück zum Zitat Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21CrossRef Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21CrossRef
10.
Zurück zum Zitat Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412CrossRef Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412CrossRef
11.
Zurück zum Zitat Regan M, Forsman R (2006) The impact of the laboratory on disease management. Dis Manag 9:122–130CrossRef Regan M, Forsman R (2006) The impact of the laboratory on disease management. Dis Manag 9:122–130CrossRef
12.
Zurück zum Zitat Xiao F, Wang L, Duan H (2016) Nanomaterial based electrochemical sensors for in vitro detection of small molecular metabolites. Biotechnol Adv 34:234–249CrossRef Xiao F, Wang L, Duan H (2016) Nanomaterial based electrochemical sensors for in vitro detection of small molecular metabolites. Biotechnol Adv 34:234–249CrossRef
13.
Zurück zum Zitat Mondal K, Ali MA, Agrawal VV, Malhotra BD, Sharma A (2014) Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl Mater Interfaces 6:2516–2527CrossRef Mondal K, Ali MA, Agrawal VV, Malhotra BD, Sharma A (2014) Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl Mater Interfaces 6:2516–2527CrossRef
14.
Zurück zum Zitat Su X, Ren J, Meng X, Ren X, Tang F (2013) A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides. Analyst 138:1459–1466CrossRef Su X, Ren J, Meng X, Ren X, Tang F (2013) A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides. Analyst 138:1459–1466CrossRef
15.
Zurück zum Zitat Senthamizhan A, Balusamy B, Uyar T (2016) Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408:1285–1306CrossRef Senthamizhan A, Balusamy B, Uyar T (2016) Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408:1285–1306CrossRef
16.
Zurück zum Zitat Xu G, Tan Y, Xu T, Yin D, Wang M, Shen M, Chen X, Shi X, Zhu X (2017) Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomater Sci 5:752–761CrossRef Xu G, Tan Y, Xu T, Yin D, Wang M, Shen M, Chen X, Shi X, Zhu X (2017) Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomater Sci 5:752–761CrossRef
17.
Zurück zum Zitat Gomathi P, Ragupathy D, Choi JH, Yeum JH, Lee SC, Kim JC, Lee SH, Ghim HD (2011) Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sensors Actuators B Chem 153:44–49CrossRef Gomathi P, Ragupathy D, Choi JH, Yeum JH, Lee SC, Kim JC, Lee SH, Ghim HD (2011) Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sensors Actuators B Chem 153:44–49CrossRef
18.
Zurück zum Zitat Sapountzi E, Braiek M, Vocanson F, Chateaux J-F, Jaffrezic-Renault N, Lagarde F (2017) Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sensors Actuators B Chem 238:392–401CrossRef Sapountzi E, Braiek M, Vocanson F, Chateaux J-F, Jaffrezic-Renault N, Lagarde F (2017) Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sensors Actuators B Chem 238:392–401CrossRef
19.
Zurück zum Zitat Zhang J, Zhu X, Dong H, Zhang X, Wang W, Chen Z (2013) In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive nonenzymatic sensing of glucose. Electrochim Acta 105:433–438CrossRef Zhang J, Zhu X, Dong H, Zhang X, Wang W, Chen Z (2013) In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive nonenzymatic sensing of glucose. Electrochim Acta 105:433–438CrossRef
20.
Zurück zum Zitat Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548CrossRef Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548CrossRef
21.
Zurück zum Zitat Balaconis MK, Luo Y, Clark HA (2015) Glucose-sensitive nanofiber scaffolds with improved sensing design for physiological conditions. Analyst 140:716–723CrossRef Balaconis MK, Luo Y, Clark HA (2015) Glucose-sensitive nanofiber scaffolds with improved sensing design for physiological conditions. Analyst 140:716–723CrossRef
22.
Zurück zum Zitat Huang S, Ding Y, Liu Y, Su L, Filosa R Jr, Lei Y (2011) Glucose biosensor using glucose oxidase and electrospun Mn2O3-Ag nanofibers. Electroanalysis 23:1912–1920CrossRef Huang S, Ding Y, Liu Y, Su L, Filosa R Jr, Lei Y (2011) Glucose biosensor using glucose oxidase and electrospun Mn2O3-Ag nanofibers. Electroanalysis 23:1912–1920CrossRef
23.
Zurück zum Zitat Wu J, Yin F (2013) Sensitive enzymatic glucose biosensor fabricated by electrospinning composite nanofibers and electrodepositing Prussian blue film. J Electroanal Chem 694:1–5CrossRef Wu J, Yin F (2013) Sensitive enzymatic glucose biosensor fabricated by electrospinning composite nanofibers and electrodepositing Prussian blue film. J Electroanal Chem 694:1–5CrossRef
24.
Zurück zum Zitat Ali MA, Mondal K, Singh C, Malhotra BD, Sharma A (2015) Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 7:7234–7245CrossRef Ali MA, Mondal K, Singh C, Malhotra BD, Sharma A (2015) Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 7:7234–7245CrossRef
25.
Zurück zum Zitat Brince Paul K, Kumar S, Tripathy S, Vanjari SR, Singh V, Singh SG (2016) A highly sensitive self-assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: targeted towards rapid, early diagnosis of malaria. Biosens Bioelectron 80:39–46CrossRef Brince Paul K, Kumar S, Tripathy S, Vanjari SR, Singh V, Singh SG (2016) A highly sensitive self-assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: targeted towards rapid, early diagnosis of malaria. Biosens Bioelectron 80:39–46CrossRef
26.
Zurück zum Zitat Gikunoo E, Abera A, Woldesenbet E (2014) A novel carbon nanofibers grown on glass microballoons immunosensor: a tool for early diagnosis of malaria. Sensors 14:14686–14699CrossRef Gikunoo E, Abera A, Woldesenbet E (2014) A novel carbon nanofibers grown on glass microballoons immunosensor: a tool for early diagnosis of malaria. Sensors 14:14686–14699CrossRef
27.
Zurück zum Zitat Zhao L, Xie S, Song X, Wei J, Zhang Z, Li X (2017) Ratiometric fluorescent response of electrospun fibrous strips for real-time sensing of alkaline phosphatase in serum. Biosens Bioelectron 91:217–224CrossRef Zhao L, Xie S, Song X, Wei J, Zhang Z, Li X (2017) Ratiometric fluorescent response of electrospun fibrous strips for real-time sensing of alkaline phosphatase in serum. Biosens Bioelectron 91:217–224CrossRef
28.
Zurück zum Zitat Wang Y, Ju Z, Cao B, Gao X, Zhu Y, Qiu P, Xu H, Pan P, Bao H, Wang L, Mao C (2015) Ultrasensitive rapid detection of human serum antibody biomarkers by biomarker-capturing viral nanofibers. ACS Nano 9:4475–4483CrossRef Wang Y, Ju Z, Cao B, Gao X, Zhu Y, Qiu P, Xu H, Pan P, Bao H, Wang L, Mao C (2015) Ultrasensitive rapid detection of human serum antibody biomarkers by biomarker-capturing viral nanofibers. ACS Nano 9:4475–4483CrossRef
29.
Zurück zum Zitat Sawicka K, Gouma P, Simon S (2005) Electrospun biocomposite nanofibers for urea biosensing. Sensors Actuators B 108:585–588CrossRef Sawicka K, Gouma P, Simon S (2005) Electrospun biocomposite nanofibers for urea biosensing. Sensors Actuators B 108:585–588CrossRef
30.
Zurück zum Zitat Xue R, Behera P, Xu J, Viapiano MS, Lannutti JJ (2014) Polydimethylsiloxane core–polycaprolactone shell nanofibers as biocompatible, real-time oxygen sensors. Sensors Actuators B Chem 192:697–707CrossRef Xue R, Behera P, Xu J, Viapiano MS, Lannutti JJ (2014) Polydimethylsiloxane core–polycaprolactone shell nanofibers as biocompatible, real-time oxygen sensors. Sensors Actuators B Chem 192:697–707CrossRef
31.
Zurück zum Zitat Sebe I, Szabó P, Kállai-Szabó B, Zelkó R (2015) Incorporating small molecules or biologics into nanofibers for optimized drug release: a review. Int J Pharm 494:516–530CrossRef Sebe I, Szabó P, Kállai-Szabó B, Zelkó R (2015) Incorporating small molecules or biologics into nanofibers for optimized drug release: a review. Int J Pharm 494:516–530CrossRef
32.
Zurück zum Zitat Dwivedi C, Pandey I, Pandey H, Ramteke PW, Pandey AC, Mishra SB, Patil S (2017) Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In: Grumezescu AM (ed) Nano- and microscale drug delivery systems. Elsevier, Amsterdam. pp 147–164CrossRef Dwivedi C, Pandey I, Pandey H, Ramteke PW, Pandey AC, Mishra SB, Patil S (2017) Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In: Grumezescu AM (ed) Nano- and microscale drug delivery systems. Elsevier, Amsterdam. pp 147–164CrossRef
33.
Zurück zum Zitat Paaver U, Heinämäki J, Laidmäe I, Lust A, Kozlova J, Sillaste E, Kirsimäe K, Veski P, Kogermann K (2015) Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. Int J Pharm 479:252–260CrossRef Paaver U, Heinämäki J, Laidmäe I, Lust A, Kozlova J, Sillaste E, Kirsimäe K, Veski P, Kogermann K (2015) Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. Int J Pharm 479:252–260CrossRef
34.
Zurück zum Zitat Sipos E, Szabó ZI, Rédai E, Szabó P, Sebe I, Zelkó R (2016) Preparation and characterization of nanofibrous sheets for enhanced oral dissolution of nebivolol hydrochloride. J Pharm Biomed Anal 129:224–228CrossRef Sipos E, Szabó ZI, Rédai E, Szabó P, Sebe I, Zelkó R (2016) Preparation and characterization of nanofibrous sheets for enhanced oral dissolution of nebivolol hydrochloride. J Pharm Biomed Anal 129:224–228CrossRef
35.
Zurück zum Zitat Li X, Kanjwal MA, Lin L, Chronakis IS (2013) Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf B: Biointerfaces 103:182–188CrossRef Li X, Kanjwal MA, Lin L, Chronakis IS (2013) Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf B: Biointerfaces 103:182–188CrossRef
36.
Zurück zum Zitat Illangakoon UE, Gill H, Shearman GC, Parhizkar M, Mahalingam S, Chatterton NP, Williams GR (2014) Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm 477:369–379CrossRef Illangakoon UE, Gill H, Shearman GC, Parhizkar M, Mahalingam S, Chatterton NP, Williams GR (2014) Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm 477:369–379CrossRef
37.
Zurück zum Zitat Samprasit W, Akkaramongkolporn P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R, Opanasopit P (2015) Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam. Int J Pharm 487:213–222CrossRef Samprasit W, Akkaramongkolporn P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R, Opanasopit P (2015) Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam. Int J Pharm 487:213–222CrossRef
38.
Zurück zum Zitat Nam S, Lee JJ, Lee SY, Jeong JY, Kang WS, Cho HJ (2017) Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy. Int J Pharm 526:225–234CrossRef Nam S, Lee JJ, Lee SY, Jeong JY, Kang WS, Cho HJ (2017) Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy. Int J Pharm 526:225–234CrossRef
39.
Zurück zum Zitat Vashisth P, Raghuwanshi N, Srivastava AK, Singh H, Nagar H, Pruthi V (2017) Ofloxacin loaded gellan/PVA nanofibers – synthesis, characterization and evaluation of their gastroretentive/mucoadhesive drug delivery potential. Mater Sci Eng C Mater Biol Appl 71:611–619CrossRef Vashisth P, Raghuwanshi N, Srivastava AK, Singh H, Nagar H, Pruthi V (2017) Ofloxacin loaded gellan/PVA nanofibers – synthesis, characterization and evaluation of their gastroretentive/mucoadhesive drug delivery potential. Mater Sci Eng C Mater Biol Appl 71:611–619CrossRef
40.
Zurück zum Zitat Tonglairoum P, Ngawhirunpat T, Rojanarata T, Panomsuk S, Kaomongkolgit R, Opanasopit P (2015) Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis. Carbohydr Polym 132:173–179CrossRef Tonglairoum P, Ngawhirunpat T, Rojanarata T, Panomsuk S, Kaomongkolgit R, Opanasopit P (2015) Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis. Carbohydr Polym 132:173–179CrossRef
41.
Zurück zum Zitat Choi JS, Han SH, Hyun C, Yoo HS (2016) Buccal adhesive nanofibers containing human growth hormone for oral mucositis. J Biomed Mater Res B Appl Biomater 104:1396–1406CrossRef Choi JS, Han SH, Hyun C, Yoo HS (2016) Buccal adhesive nanofibers containing human growth hormone for oral mucositis. J Biomed Mater Res B Appl Biomater 104:1396–1406CrossRef
42.
Zurück zum Zitat Zamani M, Morshed M, Varshosaz J, Jannesari M (2010) Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm 75:179–185CrossRef Zamani M, Morshed M, Varshosaz J, Jannesari M (2010) Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm 75:179–185CrossRef
43.
Zurück zum Zitat Monteiro AP, Rocha CM, Oliveira MF, Gontijo SM, Agudelo RR, Sinisterra RD, Cortés ME (2017) Nanofibers containing tetracycline/β-cyclodextrin: physico-chemical characterization and antimicrobial evaluation. Carbohydr Polym 156:417–426CrossRef Monteiro AP, Rocha CM, Oliveira MF, Gontijo SM, Agudelo RR, Sinisterra RD, Cortés ME (2017) Nanofibers containing tetracycline/β-cyclodextrin: physico-chemical characterization and antimicrobial evaluation. Carbohydr Polym 156:417–426CrossRef
44.
Zurück zum Zitat Pankajakshan D, Albuquerque MT, Evans JD, Kamocka MM, Gregory RL, Bottino MC (2016) Triple antibiotic polymer nanofibers for intracanal drug delivery: effects on dual species biofilm and cell function. J Endod 42:1490–1495CrossRef Pankajakshan D, Albuquerque MT, Evans JD, Kamocka MM, Gregory RL, Bottino MC (2016) Triple antibiotic polymer nanofibers for intracanal drug delivery: effects on dual species biofilm and cell function. J Endod 42:1490–1495CrossRef
45.
Zurück zum Zitat Samprasit W, Kaomongkolgit R, Sukma M, Rojanarata T, Ngawhirunpat T, Opanasopit P (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940CrossRef Samprasit W, Kaomongkolgit R, Sukma M, Rojanarata T, Ngawhirunpat T, Opanasopit P (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940CrossRef
46.
Zurück zum Zitat Vrbata P, Berka P, Stránská D, Doležal P, Musilová M, Čižinská L (2013) Electrospun drug loaded membranes for sublingual administration of sumatriptan and naproxen. Int J Pharm 457:168–176CrossRef Vrbata P, Berka P, Stránská D, Doležal P, Musilová M, Čižinská L (2013) Electrospun drug loaded membranes for sublingual administration of sumatriptan and naproxen. Int J Pharm 457:168–176CrossRef
47.
Zurück zum Zitat Opanasopit P, Sila-On W, Rojanarata T, Ngawhirunpat T (2013) Fabrication and properties of capsicum extract-loaded PVA and CA nanofiber patches. Pharm Dev Technol 18:1140–1147CrossRef Opanasopit P, Sila-On W, Rojanarata T, Ngawhirunpat T (2013) Fabrication and properties of capsicum extract-loaded PVA and CA nanofiber patches. Pharm Dev Technol 18:1140–1147CrossRef
48.
Zurück zum Zitat Song J, Fan X, Shen Q (2016) Daidzein-loaded nanostructured lipid carriers-PLGA nanofibers for transdermal delivery. Int J Pharm 501:245–252CrossRef Song J, Fan X, Shen Q (2016) Daidzein-loaded nanostructured lipid carriers-PLGA nanofibers for transdermal delivery. Int J Pharm 501:245–252CrossRef
49.
Zurück zum Zitat Mendes AC, Gorzelanny C, Halter N, Schneider SW, Chronakis IS (2016) Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int J Pharm 510:48–56CrossRef Mendes AC, Gorzelanny C, Halter N, Schneider SW, Chronakis IS (2016) Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int J Pharm 510:48–56CrossRef
50.
Zurück zum Zitat Wu XM, Branford-White CJ, Yu DG, Chatterton NP, Zhu LM (2011) Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids Surf B: Biointerfaces 82:247–252CrossRef Wu XM, Branford-White CJ, Yu DG, Chatterton NP, Zhu LM (2011) Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids Surf B: Biointerfaces 82:247–252CrossRef
51.
Zurück zum Zitat Xu H, Lu X, Li J, Ding D, Wang H, Li X, Xie W (2017) Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers. Int J Pharm 526:217–224CrossRef Xu H, Lu X, Li J, Ding D, Wang H, Li X, Xie W (2017) Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers. Int J Pharm 526:217–224CrossRef
52.
Zurück zum Zitat Lalatsa A, Schätzlein AG, Garrett NL, Moger J, Briggs M, Godfrey L, Iannitelli A, Freeman J, Uchegbu IF (2015) Chitosan amphiphile coating of peptide nanofibres reduces liver uptake and delivers the peptide to the brain on intravenous administration. J Control Release 197:87–96CrossRef Lalatsa A, Schätzlein AG, Garrett NL, Moger J, Briggs M, Godfrey L, Iannitelli A, Freeman J, Uchegbu IF (2015) Chitosan amphiphile coating of peptide nanofibres reduces liver uptake and delivers the peptide to the brain on intravenous administration. J Control Release 197:87–96CrossRef
54.
Zurück zum Zitat Senturk B, Cubuk MO, Ozmen MC, Aydin B, Guler MO, Tekinay AB (2016) Inhibition of VEGF mediated corneal neovascularization by anti-angiogenic peptide nanofibers. Biomaterials 107:124–132CrossRef Senturk B, Cubuk MO, Ozmen MC, Aydin B, Guler MO, Tekinay AB (2016) Inhibition of VEGF mediated corneal neovascularization by anti-angiogenic peptide nanofibers. Biomaterials 107:124–132CrossRef
55.
Zurück zum Zitat Cejkova J, Cejka C, Trosan P, Zajicova A, Sykova E, Holan V (2016) Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers-an alternative mode of therapy. Exp Eye Res 147:128–137CrossRef Cejkova J, Cejka C, Trosan P, Zajicova A, Sykova E, Holan V (2016) Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers-an alternative mode of therapy. Exp Eye Res 147:128–137CrossRef
56.
Zurück zum Zitat Zong S, Wang X, Yang Y, Wu W, Li H, Ma Y, Lin W, Sun T, Huang Y, Xie Z, Yue Y, Liu S, Jing X (2015) The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice. Eur J Pharm Biopharm 93:127–135CrossRef Zong S, Wang X, Yang Y, Wu W, Li H, Ma Y, Lin W, Sun T, Huang Y, Xie Z, Yue Y, Liu S, Jing X (2015) The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice. Eur J Pharm Biopharm 93:127–135CrossRef
57.
Zurück zum Zitat Meng J, Agrahari V, Ezoulin MJ, Zhang C, Purohit SS, Molteni A, Dim D, Oyler NA, Youan BC (2016) Tenofovir containing thiolated chitosan core/shell nanofibers: in vitro and in vivo evaluations. Mol Pharm 13:4129–4140CrossRef Meng J, Agrahari V, Ezoulin MJ, Zhang C, Purohit SS, Molteni A, Dim D, Oyler NA, Youan BC (2016) Tenofovir containing thiolated chitosan core/shell nanofibers: in vitro and in vivo evaluations. Mol Pharm 13:4129–4140CrossRef
58.
Zurück zum Zitat Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine (London) 12:1335–1352CrossRef Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine (London) 12:1335–1352CrossRef
59.
Zurück zum Zitat Liu M, Duan X-P, Li Y-M, Yang D-P, Long Y-Z (2017) Electrospun nanofibers for wound healing. Mater Sci Eng C 76:1413–1423CrossRef Liu M, Duan X-P, Li Y-M, Yang D-P, Long Y-Z (2017) Electrospun nanofibers for wound healing. Mater Sci Eng C 76:1413–1423CrossRef
60.
Zurück zum Zitat Aruan NM, Sriyanti I, Edikresnha D, Suciati T, Munir M, Khairurrijal (2017) Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing. Procedia Eng 170:31–35CrossRef Aruan NM, Sriyanti I, Edikresnha D, Suciati T, Munir M, Khairurrijal (2017) Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing. Procedia Eng 170:31–35CrossRef
61.
Zurück zum Zitat Ganesh M, Aziz AS, Ubaidulla U, Hemalatha P, Saravanakumar A, Ravikumar R, Peng MM, Choi EY, Jang HT (2016) Sulfanilamide and silver nanoparticles-loaded polyvinyl alcohol-chitosan composite electrospun nanofibers: synthesis and evaluation on synergism in wound healing. J Ind Eng Chem 39:127–135CrossRef Ganesh M, Aziz AS, Ubaidulla U, Hemalatha P, Saravanakumar A, Ravikumar R, Peng MM, Choi EY, Jang HT (2016) Sulfanilamide and silver nanoparticles-loaded polyvinyl alcohol-chitosan composite electrospun nanofibers: synthesis and evaluation on synergism in wound healing. J Ind Eng Chem 39:127–135CrossRef
62.
Zurück zum Zitat Tamm I, Heinämäki J, Laidmäe I, Rammo L, Paaver U, Ingebrigtsen SG, Škalko-Basnet N, Halenius A, Yliruusi J, Pitkänen P, Alakurtti S, Kogermann K (2016) Development of suberin fatty acids and chloramphenicol-loaded antimicrobial electrospun nanofibrous mats intended for wound therapy. J Pharm Sci 105:1239–1247CrossRef Tamm I, Heinämäki J, Laidmäe I, Rammo L, Paaver U, Ingebrigtsen SG, Škalko-Basnet N, Halenius A, Yliruusi J, Pitkänen P, Alakurtti S, Kogermann K (2016) Development of suberin fatty acids and chloramphenicol-loaded antimicrobial electrospun nanofibrous mats intended for wound therapy. J Pharm Sci 105:1239–1247CrossRef
63.
Zurück zum Zitat Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452:333–343CrossRef Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452:333–343CrossRef
64.
Zurück zum Zitat Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH (2016) Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater 39:146–155CrossRef Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH (2016) Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater 39:146–155CrossRef
65.
Zurück zum Zitat Unnithan AR, Sasikala AR, Murugesan P, Gurusamy M, Wu D, Park CH, Kim CS (2015) Electrospun polyurethane-dextran nanofiber mats loaded with estradiol for post-menopausal wound dressing. Int J Biol Macromol 77:1–8CrossRef Unnithan AR, Sasikala AR, Murugesan P, Gurusamy M, Wu D, Park CH, Kim CS (2015) Electrospun polyurethane-dextran nanofiber mats loaded with estradiol for post-menopausal wound dressing. Int J Biol Macromol 77:1–8CrossRef
66.
Zurück zum Zitat Sarhan WA, Azzazy HM, El-Sherbiny IM (2016) Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 8:6379–6390CrossRef Sarhan WA, Azzazy HM, El-Sherbiny IM (2016) Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 8:6379–6390CrossRef
67.
Zurück zum Zitat Sedghi R, Shaabani A (2016) Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer 101:151–157CrossRef Sedghi R, Shaabani A (2016) Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer 101:151–157CrossRef
68.
Zurück zum Zitat Garcia-Orue I, Gainza G, Gutierrez FB, Aguirre JJ, Evora C, Pedraz JL, Hernandez RM, Delgado A, Igartua M (2017) Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharm 523:556–566CrossRef Garcia-Orue I, Gainza G, Gutierrez FB, Aguirre JJ, Evora C, Pedraz JL, Hernandez RM, Delgado A, Igartua M (2017) Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharm 523:556–566CrossRef
69.
Zurück zum Zitat Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, Wang TW (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10:4156–4166CrossRef Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, Wang TW (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10:4156–4166CrossRef
70.
Zurück zum Zitat Thakur RA, Florek CA, Kohn J, Michniak BB (2008) Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 364:87–93CrossRef Thakur RA, Florek CA, Kohn J, Michniak BB (2008) Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 364:87–93CrossRef
71.
Zurück zum Zitat Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldoni L, Bertorelli R, Athanassiou A, Bayer IS (2017) Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 104:133–144CrossRef Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldoni L, Bertorelli R, Athanassiou A, Bayer IS (2017) Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 104:133–144CrossRef
72.
Zurück zum Zitat Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T (2012) Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int J Pharm 427:379–384CrossRef Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T (2012) Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int J Pharm 427:379–384CrossRef
73.
Zurück zum Zitat Rath G, Hussain T, Chauhan G, Garg T, Goyal AK (2015) Fabrication and characterization of cefazolin-loaded nanofibrous mats for the recovery of post-surgical wound. Artif Cells Nanomed Biotechnol 44:1783–1792CrossRef Rath G, Hussain T, Chauhan G, Garg T, Goyal AK (2015) Fabrication and characterization of cefazolin-loaded nanofibrous mats for the recovery of post-surgical wound. Artif Cells Nanomed Biotechnol 44:1783–1792CrossRef
74.
Zurück zum Zitat Jain SA, Basu H, Prabhu PS, Soni U, Joshi MD, Mathur D, Patravale VB, Pathak S, Sharma S (2014) Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers. Biomaterials 35:6636–6645CrossRef Jain SA, Basu H, Prabhu PS, Soni U, Joshi MD, Mathur D, Patravale VB, Pathak S, Sharma S (2014) Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers. Biomaterials 35:6636–6645CrossRef
75.
Zurück zum Zitat Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223CrossRef Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223CrossRef
76.
Zurück zum Zitat Wang X, Yu DG, Li XY, Bligh SW, Williams GR (2015) Electrospun medicated shellac nanofibers for colon-targeted drug delivery. Int J Pharm 490:384–390CrossRef Wang X, Yu DG, Li XY, Bligh SW, Williams GR (2015) Electrospun medicated shellac nanofibers for colon-targeted drug delivery. Int J Pharm 490:384–390CrossRef
77.
Zurück zum Zitat Irani M, Mir Mohamad Sadeghi G, Haririan I (2017) Gold coated poly (ε-caprolactonediol) based polyurethane nanofibers for controlled release of temozolomide. Biomed Pharmacother 88:667–676CrossRef Irani M, Mir Mohamad Sadeghi G, Haririan I (2017) Gold coated poly (ε-caprolactonediol) based polyurethane nanofibers for controlled release of temozolomide. Biomed Pharmacother 88:667–676CrossRef
78.
Zurück zum Zitat Liu J, Liu J, Xu H, Zhang Y, Chu L, Liu Q, Song N, Yang C (2014) Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomedicine 9:197–207 Liu J, Liu J, Xu H, Zhang Y, Chu L, Liu Q, Song N, Yang C (2014) Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomedicine 9:197–207
79.
Zurück zum Zitat Bahnson ES, Kassam HA, Moyer TJ, Jiang W, Morgan CE, Vercammen JM, Jiang Q, Flynn ME, Stupp SI, Kibbe MR (2016) Targeted nitric oxide delivery by supramolecular nanofibers for the prevention of restenosis after arterial injury. Antioxid Redox Signal 24:401–418CrossRef Bahnson ES, Kassam HA, Moyer TJ, Jiang W, Morgan CE, Vercammen JM, Jiang Q, Flynn ME, Stupp SI, Kibbe MR (2016) Targeted nitric oxide delivery by supramolecular nanofibers for the prevention of restenosis after arterial injury. Antioxid Redox Signal 24:401–418CrossRef
80.
Zurück zum Zitat Morgan CE, Dombrowski AW, Rubert Pérez CM, Bahnson ESM, Tsihlis ND, Jiang W, Jiang Q, Vercammen JM, Prakash VS, Pritts TA, Stupp SI, Kibbe MR (2016) Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage. ACS Nano 10:899–909CrossRef Morgan CE, Dombrowski AW, Rubert Pérez CM, Bahnson ESM, Tsihlis ND, Jiang W, Jiang Q, Vercammen JM, Prakash VS, Pritts TA, Stupp SI, Kibbe MR (2016) Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage. ACS Nano 10:899–909CrossRef
81.
Zurück zum Zitat Elashnikov R, Slepička P, Rimpelova S, Ulbrich P, Švorčík V, Lyutakov O (2017) Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. Mater Sci Eng C Mater Biol Appl 72:293–300CrossRef Elashnikov R, Slepička P, Rimpelova S, Ulbrich P, Švorčík V, Lyutakov O (2017) Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. Mater Sci Eng C Mater Biol Appl 72:293–300CrossRef
82.
Zurück zum Zitat Jiang J, Xie J, Ma B, Bartlett DE, Xu A, Wang CH (2014) Mussel inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater 10:1324–1332CrossRef Jiang J, Xie J, Ma B, Bartlett DE, Xu A, Wang CH (2014) Mussel inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater 10:1324–1332CrossRef
83.
Zurück zum Zitat Hu J, Li HY, Williams GR, Yang HH, Tao L, Zhu LM (2016) Electrospun poly (N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J Pharm Sci 105:1104–1112CrossRef Hu J, Li HY, Williams GR, Yang HH, Tao L, Zhu LM (2016) Electrospun poly (N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J Pharm Sci 105:1104–1112CrossRef
84.
Zurück zum Zitat Li H, Williams GR, Wu J, Lv Y, Sun X, Wu H, Zhu LM (2017) Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. Int J Pharm 517:135–147CrossRef Li H, Williams GR, Wu J, Lv Y, Sun X, Wu H, Zhu LM (2017) Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. Int J Pharm 517:135–147CrossRef
85.
Zurück zum Zitat Erik AL, Nejad AG, Park CH, Kim CS (2017) On-demand drug release and hyperthermia therapy applications of thermoresponsive poly-(NIPAAm-co-HMAAm)/polyurethane core-shell nanofiber mat on non-vascular nitinol stents. Nanomedicine 13:527–538CrossRef Erik AL, Nejad AG, Park CH, Kim CS (2017) On-demand drug release and hyperthermia therapy applications of thermoresponsive poly-(NIPAAm-co-HMAAm)/polyurethane core-shell nanofiber mat on non-vascular nitinol stents. Nanomedicine 13:527–538CrossRef
86.
Zurück zum Zitat Agrahari V, Meng J, Ezoulin MJ, Youm I, Dim DC, Molteni A, Hung WT, Christenson LK, Youan BC (2016) Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity. Nanomedicine (London) 11:2935–2958CrossRef Agrahari V, Meng J, Ezoulin MJ, Youm I, Dim DC, Molteni A, Hung WT, Christenson LK, Youan BC (2016) Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity. Nanomedicine (London) 11:2935–2958CrossRef
87.
Zurück zum Zitat Birajdar MS, Lee J (2016) Sonication-triggered zero-order release by uncorking core–shell nanofibers. Chem Eng J 288:1–8CrossRef Birajdar MS, Lee J (2016) Sonication-triggered zero-order release by uncorking core–shell nanofibers. Chem Eng J 288:1–8CrossRef
88.
Zurück zum Zitat Fu GD, Xu LQ, Yao F, Li GL, Kang ET (2009) Smart nanofibers with a photoresponsive surface for controlled release. ACS Appl Mater Interfaces 1:2424–2427CrossRef Fu GD, Xu LQ, Yao F, Li GL, Kang ET (2009) Smart nanofibers with a photoresponsive surface for controlled release. ACS Appl Mater Interfaces 1:2424–2427CrossRef
89.
Zurück zum Zitat Li LL, Wang LM, Xu Y, Lv LX (2012) Preparation of gentamicin-loaded electrospun coating on titanium implants and a study of their properties in vitro. Arch Orthop Trauma Surg 132:897–903CrossRef Li LL, Wang LM, Xu Y, Lv LX (2012) Preparation of gentamicin-loaded electrospun coating on titanium implants and a study of their properties in vitro. Arch Orthop Trauma Surg 132:897–903CrossRef
90.
Zurück zum Zitat Ashbaugh AG, Jiang X, Zheng J, Tsai AS, Kim WS, Thompson JM, Miller RJ, Shahbazian JH, Wang Y, Dillen CA, Ordonez AA, Chang YS, Jain SK, Jones LC, Sterling RS, Mao HQ, Miller LS (2016) Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proc Natl Acad Sci USA 113:E6919–E6928CrossRef Ashbaugh AG, Jiang X, Zheng J, Tsai AS, Kim WS, Thompson JM, Miller RJ, Shahbazian JH, Wang Y, Dillen CA, Ordonez AA, Chang YS, Jain SK, Jones LC, Sterling RS, Mao HQ, Miller LS (2016) Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proc Natl Acad Sci USA 113:E6919–E6928CrossRef
91.
Zurück zum Zitat Gilchrist SE, Lange D, Letchford K, Bach H, Fazli L, Burt HM (2013) Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J Control Release 170:64–73CrossRef Gilchrist SE, Lange D, Letchford K, Bach H, Fazli L, Burt HM (2013) Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J Control Release 170:64–73CrossRef
93.
Zurück zum Zitat Oh B, Lee CH (2013) Advanced cardiovascular stent coated with nanofiber. Mol Pharm 10:4432–4442CrossRef Oh B, Lee CH (2013) Advanced cardiovascular stent coated with nanofiber. Mol Pharm 10:4432–4442CrossRef
94.
Zurück zum Zitat Tang J, Liu Y, Zhu B, Su Y, Zhu X (2017) Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Appl Surf Sci 393:299–308CrossRef Tang J, Liu Y, Zhu B, Su Y, Zhu X (2017) Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Appl Surf Sci 393:299–308CrossRef
95.
Zurück zum Zitat Lee CH, Chang SH, Lin YH, Liu SJ, Wang CJ, Hsu MY, Hung KC, Yeh YH, Chen WJ, Hsieh IC, Wen MS (2014) Acceleration of re-endothelialization and inhibition of neointimal formation using hybrid biodegradable nanofibrous rosuvastatin-loaded stents. Biomaterials 35:4417–4427CrossRef Lee CH, Chang SH, Lin YH, Liu SJ, Wang CJ, Hsu MY, Hung KC, Yeh YH, Chen WJ, Hsieh IC, Wen MS (2014) Acceleration of re-endothelialization and inhibition of neointimal formation using hybrid biodegradable nanofibrous rosuvastatin-loaded stents. Biomaterials 35:4417–4427CrossRef
96.
Zurück zum Zitat Gao Q, Huang C, Sun B, Aqeel BM, Wang J, Chen W, Mo X, Wan X (2016) Fabrication and characterization of metal stent coating with drug-loaded nanofiber film for gallstone dissolution. J Biomater Appl 31:784–796CrossRef Gao Q, Huang C, Sun B, Aqeel BM, Wang J, Chen W, Mo X, Wan X (2016) Fabrication and characterization of metal stent coating with drug-loaded nanofiber film for gallstone dissolution. J Biomater Appl 31:784–796CrossRef
98.
Zurück zum Zitat Rujitanaroj PO, Wang YC, Wang J, Chew SY (2011) Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials 32:5915–5923CrossRef Rujitanaroj PO, Wang YC, Wang J, Chew SY (2011) Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials 32:5915–5923CrossRef
100.
Zurück zum Zitat Prabhu P, Patravale V (2012) The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol 8:859–882CrossRef Prabhu P, Patravale V (2012) The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol 8:859–882CrossRef
101.
Zurück zum Zitat Yan E, Cao M, Wang Y, Hao X, Pei S, Gao J, Wang Y, Zhang Z, Zhang D (2016) Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery. Mater Sci Eng C Mater Biol Appl 58:1090–1097CrossRef Yan E, Cao M, Wang Y, Hao X, Pei S, Gao J, Wang Y, Zhang Z, Zhang D (2016) Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery. Mater Sci Eng C Mater Biol Appl 58:1090–1097CrossRef
102.
Zurück zum Zitat Mandal A, Sekar S, Kanagavel M, Chandrasekaran N, Mukherjee A, Sastry TP (2013) Collagen based magnetic nanobiocomposite as MRI contrast agent and for targeted delivery in cancer therapy. Biochim Biophys Acta 1830:4628–4633CrossRef Mandal A, Sekar S, Kanagavel M, Chandrasekaran N, Mukherjee A, Sastry TP (2013) Collagen based magnetic nanobiocomposite as MRI contrast agent and for targeted delivery in cancer therapy. Biochim Biophys Acta 1830:4628–4633CrossRef
103.
Zurück zum Zitat Zhang C, Zhang T, Jin S, Xue X, Yang X, Gong N, Zhang J, Wang PC, Tian JH, Xing J, Liang XJ (2017) Virus-inspired self-assembly nanofibers with aggregation-induced emission for highly efficient and visible gene delivery. ACS Appl Mater Interfaces 9:4425–4432CrossRef Zhang C, Zhang T, Jin S, Xue X, Yang X, Gong N, Zhang J, Wang PC, Tian JH, Xing J, Liang XJ (2017) Virus-inspired self-assembly nanofibers with aggregation-induced emission for highly efficient and visible gene delivery. ACS Appl Mater Interfaces 9:4425–4432CrossRef
104.
Zurück zum Zitat Yoo JJ, Kim C, Chung CW, Jeong YI, Kang DH (2012) 5-aminolevulinic acid-incorporated poly (vinyl alcohol) nanofiber-coated metal stent for application in photodynamic therapy. Int J Nanomedicine 7:1997–2005 Yoo JJ, Kim C, Chung CW, Jeong YI, Kang DH (2012) 5-aminolevulinic acid-incorporated poly (vinyl alcohol) nanofiber-coated metal stent for application in photodynamic therapy. Int J Nanomedicine 7:1997–2005
105.
Zurück zum Zitat El-Khordagui L, El-Sayed N, Galal S, El-Gowelli H, Omar H, Mohamed M (2017) Photosensitizer-eluting nanofibers for enhanced photodynamic therapy of wounds: a preclinical study in immunocompromized rats. Int J Pharm 520:139–148CrossRef El-Khordagui L, El-Sayed N, Galal S, El-Gowelli H, Omar H, Mohamed M (2017) Photosensitizer-eluting nanofibers for enhanced photodynamic therapy of wounds: a preclinical study in immunocompromized rats. Int J Pharm 520:139–148CrossRef
106.
Zurück zum Zitat Severyukhina AN, Petrova NV, Yashchenok AM, Bratashov DN, Smuda K, Mamonova IA, Yurasov NA, Puchinyan DM, Georgieva R, Bäumler H, Lapanje A, Gorin DA (2017) Light-induced antibacterial activity of electrospun chitosan-based material containing photosensitizer. Mater Sci Eng C 70:311–316CrossRef Severyukhina AN, Petrova NV, Yashchenok AM, Bratashov DN, Smuda K, Mamonova IA, Yurasov NA, Puchinyan DM, Georgieva R, Bäumler H, Lapanje A, Gorin DA (2017) Light-induced antibacterial activity of electrospun chitosan-based material containing photosensitizer. Mater Sci Eng C 70:311–316CrossRef
Metadaten
Titel
Nanofibers for Medical Diagnosis and Therapy
verfasst von
Priyanka Prabhu
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_48

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.