Skip to main content
Erschienen in: Cellulose 4/2012

01.08.2012 | Original Paper

Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming

verfasst von: Yottha Srithep, Lih-Sheng Turng, Ronald Sabo, Craig Clemons

Erschienen in: Cellulose | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties—such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)—were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission electron microscopy (TEM) images, as well as the optical transparency of the films, revealed that the NFC fibers dispersed well in the resulting PVOH/NFC nanocomposites. Adding NFC increased the tensile modulus of the PVOH/NFC nanocomposites nearly threefold. Differential scanning calorimetry (DSC) analysis showed that the NFC served as a nucleating agent, promoting the early onset of crystallization. However, high NFC content also led to greater thermal degradation of the PVOH matrix. PVOH/NFC nanocomposites were sensitive to moisture content and dynamic mechanical analysis (DMA) tests showed that, at room temperature, the storage modulus increased with decreasing moisture content. The solubility of CO2 in the PVOH/NFC nanocomposites depended on their moisture content and decreased with the addition of NFC. Moreover, the desorption diffusivity increased as more NFC was added. Finally, the foaming behavior of the PVOH/NFC nanocomposites was studied using CO2 and/or water as the physical foaming agent(s) in a batch foaming process. Only samples with a high moisture content were able to foam with CO2. Furthermore, the PVOH/NFC nanocomposites exhibited finer and more anisotropic cell morphologies than the neat PVOH films. In the absence of moisture, no foaming was observed in the CO2-saturated neat PVOH or PVOH/NFC nanocomposite samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahola S (2008) Properties and interfacial behaviour of cellulose nanofibrils. Dissertation, Helsinki University of Technology Ahola S (2008) Properties and interfacial behaviour of cellulose nanofibrils. Dissertation, Helsinki University of Technology
Zurück zum Zitat Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRef Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRef
Zurück zum Zitat Allen G, Bowden M, Todd S, Blundell D, Jeffs G, Davies W (1974) Composites formed by interstitial polymerization of vinyl monomers in polyurethane elastomers: 5. Variation of modulus with composition. Polymer 15:28–32CrossRef Allen G, Bowden M, Todd S, Blundell D, Jeffs G, Davies W (1974) Composites formed by interstitial polymerization of vinyl monomers in polyurethane elastomers: 5. Variation of modulus with composition. Polymer 15:28–32CrossRef
Zurück zum Zitat Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRef Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRef
Zurück zum Zitat ASTM D638-10 (2010) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. doi:10.1520/D0638-10 ASTM D638-10 (2010) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. doi:10.​1520/​D0638-10
Zurück zum Zitat ASTM D792-08 (2008) Standard test methods for density and specific gravity (relative density) of plastics by displacement, ASTM International, West Conshohocken, PA ASTM D792-08 (2008) Standard test methods for density and specific gravity (relative density) of plastics by displacement, ASTM International, West Conshohocken, PA
Zurück zum Zitat Avella M, Cocca M, Errico M, Gentile G (2011) Biodegradable PVOH-based foams for packaging applications. J Cell Plast 47:271CrossRef Avella M, Cocca M, Errico M, Gentile G (2011) Biodegradable PVOH-based foams for packaging applications. J Cell Plast 47:271CrossRef
Zurück zum Zitat Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook. Wiley, New York Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook. Wiley, New York
Zurück zum Zitat Bulota M, Jääskeläinen A, Paltakari J, Hughes M (2011) Properties of biocomposites: influence of preparation method, testing environment and a comparison with theoretical models. J Mater Sci 46:3387–3398CrossRef Bulota M, Jääskeläinen A, Paltakari J, Hughes M (2011) Properties of biocomposites: influence of preparation method, testing environment and a comparison with theoretical models. J Mater Sci 46:3387–3398CrossRef
Zurück zum Zitat Chandra A, Gong S, Yuan M, Turng LS, Gramann P, Cordes H (2005) Microstructure and crystallography in microcellular injection molded polyamide 6 nanocomposite and neat resin. Polym Eng Sci 45:52–61CrossRef Chandra A, Gong S, Yuan M, Turng LS, Gramann P, Cordes H (2005) Microstructure and crystallography in microcellular injection molded polyamide 6 nanocomposite and neat resin. Polym Eng Sci 45:52–61CrossRef
Zurück zum Zitat Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798CrossRef Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798CrossRef
Zurück zum Zitat Davies W (1971a) The elastic constants of a two-phase composite material. J Phys D Appl Phys 4:1176CrossRef Davies W (1971a) The elastic constants of a two-phase composite material. J Phys D Appl Phys 4:1176CrossRef
Zurück zum Zitat Davies W (1971b) The theory of composite dielectrics. J Phys D Appl Phys 4:318CrossRef Davies W (1971b) The theory of composite dielectrics. J Phys D Appl Phys 4:318CrossRef
Zurück zum Zitat Doroudiani S, Chaffey CE, Kortschot MT (2002) Sorption and diffusion of carbon dioxide in wood-fiber/polystyrene composites. J Polym Sci Pol Phys 40:723–735CrossRef Doroudiani S, Chaffey CE, Kortschot MT (2002) Sorption and diffusion of carbon dioxide in wood-fiber/polystyrene composites. J Polym Sci Pol Phys 40:723–735CrossRef
Zurück zum Zitat Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRef Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRef
Zurück zum Zitat Finch CA (1973) Polyvinyl alcohol: properties and applications, vol 339. Wiley, New York Finch CA (1973) Polyvinyl alcohol: properties and applications, vol 339. Wiley, New York
Zurück zum Zitat Gong S, Yuan M, Chandra A, Kharbas H, Osorio A, Turng L (2005) Microcellular injection molding. Int Polym Proc 20:202–214 Gong S, Yuan M, Chandra A, Kharbas H, Osorio A, Turng L (2005) Microcellular injection molding. Int Polym Proc 20:202–214
Zurück zum Zitat Holland B, Hay J (2001) The thermal degradation of poly (vinyl alcohol). Polymer 42:6775–6783CrossRef Holland B, Hay J (2001) The thermal degradation of poly (vinyl alcohol). Polymer 42:6775–6783CrossRef
Zurück zum Zitat Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89:461–466CrossRef Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89:461–466CrossRef
Zurück zum Zitat Javadi A, Srithep Y, Lee J, Pilla S, Clemons C, Gong S, Turng LS (2010) Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Compos Part A Appl S 41:982–990CrossRef Javadi A, Srithep Y, Lee J, Pilla S, Clemons C, Gong S, Turng LS (2010) Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Compos Part A Appl S 41:982–990CrossRef
Zurück zum Zitat Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRef Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRef
Zurück zum Zitat Kramschuster A, Gong S, Turng LS, Li T (2007) Injection-molded solid and microcellular polylactide and polylactide nanocomposites. J Biobased Mater Bio 1:37–45CrossRef Kramschuster A, Gong S, Turng LS, Li T (2007) Injection-molded solid and microcellular polylactide and polylactide nanocomposites. J Biobased Mater Bio 1:37–45CrossRef
Zurück zum Zitat Kumar V, Nadella KV (2004) Microcellular foams. In: Eaves D (ed) Handbook of polymer foams. Smithers Rapra Press, Shropshire, pp 243–268 Kumar V, Nadella KV (2004) Microcellular foams. In: Eaves D (ed) Handbook of polymer foams. Smithers Rapra Press, Shropshire, pp 243–268
Zurück zum Zitat Labuschagne PW, Germishuizen WA, Verryn SMC, Moolman FS (2008) Improved oxygen barrier performance of poly (vinyl alcohol) films through hydrogen bond complex with poly (methyl vinyl ether-co-maleic acid). Eur Polym J 44:2146–2152CrossRef Labuschagne PW, Germishuizen WA, Verryn SMC, Moolman FS (2008) Improved oxygen barrier performance of poly (vinyl alcohol) films through hydrogen bond complex with poly (methyl vinyl ether-co-maleic acid). Eur Polym J 44:2146–2152CrossRef
Zurück zum Zitat Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363CrossRef Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363CrossRef
Zurück zum Zitat Liu M, Guo B, Du M, Jia D (2007) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl Phys A Mater 88:391–395CrossRef Liu M, Guo B, Du M, Jia D (2007) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl Phys A Mater 88:391–395CrossRef
Zurück zum Zitat Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A 39:738–746CrossRef Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A 39:738–746CrossRef
Zurück zum Zitat Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074CrossRef Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074CrossRef
Zurück zum Zitat Matuana LM, Park CB, Balatinecz JJ (1998) Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites. Polym Eng Sci 38:1862–1872CrossRef Matuana LM, Park CB, Balatinecz JJ (1998) Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites. Polym Eng Sci 38:1862–1872CrossRef
Zurück zum Zitat Naguib HE, Park CB, Panzer U, Reichelt N (2002) Strategies for achieving ultra low density polypropylene foams. Polym Eng Sci 42:1481–1492CrossRef Naguib HE, Park CB, Panzer U, Reichelt N (2002) Strategies for achieving ultra low density polypropylene foams. Polym Eng Sci 42:1481–1492CrossRef
Zurück zum Zitat Nakagaito A, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phy A Mater 78:547–552CrossRef Nakagaito A, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phy A Mater 78:547–552CrossRef
Zurück zum Zitat Osswald TA (2006) International plastics handbook: the resource for plastics engineers. Hanser, Verlag Osswald TA (2006) International plastics handbook: the resource for plastics engineers. Hanser, Verlag
Zurück zum Zitat Piringer OG, Baner AL (2000) Plastic packaging materials for food: barrier function, mass transport, quality assurance, and legislation. Wiley-Vch, Weinheim Piringer OG, Baner AL (2000) Plastic packaging materials for food: barrier function, mass transport, quality assurance, and legislation. Wiley-Vch, Weinheim
Zurück zum Zitat Poling BE, Thomson GH, Friend DG, Rowley RL, Wilding WV (2008) Perry’s chemical engineer’s handbook. McGraw-Hill, New York Poling BE, Thomson GH, Friend DG, Rowley RL, Wilding WV (2008) Perry’s chemical engineer’s handbook. McGraw-Hill, New York
Zurück zum Zitat Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 45:4437–4443CrossRef Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 45:4437–4443CrossRef
Zurück zum Zitat Rachtanapun P, Selke S, Matuana L (2003) Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. J Appl Polym Sci 88:2842–2850CrossRef Rachtanapun P, Selke S, Matuana L (2003) Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. J Appl Polym Sci 88:2842–2850CrossRef
Zurück zum Zitat Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498CrossRef Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498CrossRef
Zurück zum Zitat Saito T, Okita Y, Nge T, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65:435–440CrossRef Saito T, Okita Y, Nge T, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65:435–440CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef
Zurück zum Zitat Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004CrossRef Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004CrossRef
Zurück zum Zitat Sharma S (2002) Economics of composites and reinforcements. Composite materials, 1st edn. Narosa Publishing House, New Delhi, pp 20–25 Sharma S (2002) Economics of composites and reinforcements. Composite materials, 1st edn. Narosa Publishing House, New Delhi, pp 20–25
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Stern S, Shah V, Hardy B (1987) Structure-permeability relationships in silicone polymers. J Polym Sci Pol Phys 25:1263–1298CrossRef Stern S, Shah V, Hardy B (1987) Structure-permeability relationships in silicone polymers. J Polym Sci Pol Phys 25:1263–1298CrossRef
Zurück zum Zitat Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRef Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRef
Zurück zum Zitat Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16CrossRef Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16CrossRef
Zurück zum Zitat Yuan M, Winardi A, Gong S, Turng LS (2005) Effects of nano and micro fillers and processing parameters on injection molded microcellular composites. Polym Eng Sci 45:773–788CrossRef Yuan M, Winardi A, Gong S, Turng LS (2005) Effects of nano and micro fillers and processing parameters on injection molded microcellular composites. Polym Eng Sci 45:773–788CrossRef
Zurück zum Zitat Zhu B, Zha W, Yang J, Zhang C, Lee LJ (2010) Layered-silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as blowing agent. Polymer 51:2177–2184CrossRef Zhu B, Zha W, Yang J, Zhang C, Lee LJ (2010) Layered-silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as blowing agent. Polymer 51:2177–2184CrossRef
Metadaten
Titel
Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming
verfasst von
Yottha Srithep
Lih-Sheng Turng
Ronald Sabo
Craig Clemons
Publikationsdatum
01.08.2012
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2012
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9726-0

Weitere Artikel der Ausgabe 4/2012

Cellulose 4/2012 Zur Ausgabe