Skip to main content

2014 | OriginalPaper | Buchkapitel

NanoMagnet Logic: An Architectural Level Overview

verfasst von : Marco Vacca, Mariagrazia Graziano, Juanchi Wang, Fabrizio Cairo, Giovanni Causapruno, Gianvito Urgese, Andrea Biroli, Maurizio Zamboni

Erschienen in: Field-Coupled Nanocomputing

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years Field-Coupled devices, like Quantum dot Cellular Automata, are gaining an ever increasing attention from the scientific community. The computational paradigm beyond this device topology is based on the interaction among neighbor cells to propagate information through circuits. Among the various implementations of this theoretical principle, NanoMagnet Logic (NML) is one of the most studied. The reason lies to some interesting features, like the possibility to combine memory and logic in the same device and the possible low power consumption. Since the working principle of Field-Coupled devices is completely different from CMOS technology, it is important to understand all the implications that this new computational paradigm has on complex circuit architectures.
In this chapter we deeply analyze the major issues encountered in the design of complex circuits using Field-Coupled devices. Problems are analyzed and techniques to solve them and to improve performance are presented. Finally, a realistic analysis of the applications best suited for this technology is presented. While the analysis is performed using NanoMagnet Logic as target, the results can be applied to all Field-Coupled devices. This chapter therefore supplies researchers and designers with the essential guidelines necessary to design complex circuits using NanoMagnet Logic and, more in general, Field-Coupled devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef
2.
Zurück zum Zitat Csurgay, A., Porod, W., Lent, C.: Signal processing with near-neighborcoupled time-varying quantum-dot arrays. IEEE Trans. Circ. Syst. 47(8), 1212–1223 (2000)CrossRef Csurgay, A., Porod, W., Lent, C.: Signal processing with near-neighborcoupled time-varying quantum-dot arrays. IEEE Trans. Circ. Syst. 47(8), 1212–1223 (2000)CrossRef
3.
Zurück zum Zitat Lu, U., Lent, C.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. (Springer) 4, 115–118 (2005)CrossRef Lu, U., Lent, C.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. (Springer) 4, 115–118 (2005)CrossRef
4.
Zurück zum Zitat Imre, A., Ji, L., Csaba, G., Orlov, A.O., Bernstein, G., Porod, W.: Magnetic logic devices based on field-coupled nanomagnets. In: 2005 International Semiconductor Device Research Symposium, p. 25, December 2005 Imre, A., Ji, L., Csaba, G., Orlov, A.O., Bernstein, G., Porod, W.: Magnetic logic devices based on field-coupled nanomagnets. In: 2005 International Semiconductor Device Research Symposium, p. 25, December 2005
5.
Zurück zum Zitat Pulimeno, A., Graziano, M., Abrardi, C., Demarchi, D., Piccinini, G.: A write-in system based on electric fields for molecular QCA. In: 2011 IEEE International NanoElectronics Conference (INEC), Tao-Yuan, Taiwan, pp. 1–2. IEEE, June 2011 Pulimeno, A., Graziano, M., Abrardi, C., Demarchi, D., Piccinini, G.: A write-in system based on electric fields for molecular QCA. In: 2011 IEEE International NanoElectronics Conference (INEC), Tao-Yuan, Taiwan, pp. 1–2. IEEE, June 2011
6.
Zurück zum Zitat Pulimeno, A., Graziano, M., Piccinini, G.: Molecule interaction for QCA computation. In: IEEE International Conference on Nanotechnology, pp. 1–5 (2012) Pulimeno, A., Graziano, M., Piccinini, G.: Molecule interaction for QCA computation. In: IEEE International Conference on Nanotechnology, pp. 1–5 (2012)
7.
Zurück zum Zitat Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular QCA wire: simulation of write-in and read-out systems. Solid State Electron. 77, 101–107 (2012)CrossRef Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular QCA wire: simulation of write-in and read-out systems. Solid State Electron. 77, 101–107 (2012)CrossRef
8.
Zurück zum Zitat Pulimeno, A., Graziano, M., Saginario, A., Cauda, V., Demarchi, D., Piccinini, G.: Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanotechnol. 12(4), 498–507 (2013)CrossRef Pulimeno, A., Graziano, M., Saginario, A., Cauda, V., Demarchi, D., Piccinini, G.: Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanotechnol. 12(4), 498–507 (2013)CrossRef
9.
Zurück zum Zitat Lent, C., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron devices 50(9), 1890–1896 (2003)CrossRef Lent, C., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron devices 50(9), 1890–1896 (2003)CrossRef
10.
Zurück zum Zitat Porod, W.: Magnetic logic devices based on field-coupled nanomagnets. Nano & Giga (2007) Porod, W.: Magnetic logic devices based on field-coupled nanomagnets. Nano & Giga (2007)
11.
Zurück zum Zitat Pulimeno, A., Graziano, M., Piccinini, G.: UDSM trends comparison: from technology roadmap to UltraSparc Niagara2. IEEE Trans. VLSI Syst. 20(7), 1341–1346 (2012)CrossRef Pulimeno, A., Graziano, M., Piccinini, G.: UDSM trends comparison: from technology roadmap to UltraSparc Niagara2. IEEE Trans. VLSI Syst. 20(7), 1341–1346 (2012)CrossRef
12.
Zurück zum Zitat Niemier, M., Hu, X., Alam, M., Bernstein, G., Porod, W., Putney, M., DeAngelis, J.: Clocking structures and power analysis for nanomagnet-based logic devices. In: International Symposium on Low Power Electronics and Design, Portland-Oregon, USA, pp. 26–31. IEEE (2007) Niemier, M., Hu, X., Alam, M., Bernstein, G., Porod, W., Putney, M., DeAngelis, J.: Clocking structures and power analysis for nanomagnet-based logic devices. In: International Symposium on Low Power Electronics and Design, Portland-Oregon, USA, pp. 26–31. IEEE (2007)
13.
Zurück zum Zitat Niemier, M., et al.: Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 34 (2011)CrossRef Niemier, M., et al.: Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 34 (2011)CrossRef
14.
Zurück zum Zitat Csaba, G., Porod, W.: Behavior of nanomagnet logic in the presence of thermal noise. In: International Workshop on Computational Electronics, Pisa, Italy, pp. 1–4. IEEE (2010) Csaba, G., Porod, W.: Behavior of nanomagnet logic in the presence of thermal noise. In: International Workshop on Computational Electronics, Pisa, Italy, pp. 1–4. IEEE (2010)
15.
Zurück zum Zitat Graziano, M., Chiolerio, A., Zamboni, M.: A Technology Aware Magnetic QCA NCL-HDL Architecture, Italy, Genova, pp. 763–766. IEEE (2009) Graziano, M., Chiolerio, A., Zamboni, M.: A Technology Aware Magnetic QCA NCL-HDL Architecture, Italy, Genova, pp. 763–766. IEEE (2009)
16.
Zurück zum Zitat Chiolerio, A., Allia, P., Graziano, M.: Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices. J. Magn. Magn. Mater. 324(19), 3006–3012 (2012)CrossRef Chiolerio, A., Allia, P., Graziano, M.: Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices. J. Magn. Magn. Mater. 324(19), 3006–3012 (2012)CrossRef
18.
Zurück zum Zitat Graziano, M., Vacca, M., Chiolerio, A., Zamboni, M.: A NCL-HDL snake-clock based magnetic QCA architecture. IEEE Trans. Nanotechnol. 10(5), 1141–1149 (2011)CrossRef Graziano, M., Vacca, M., Chiolerio, A., Zamboni, M.: A NCL-HDL snake-clock based magnetic QCA architecture. IEEE Trans. Nanotechnol. 10(5), 1141–1149 (2011)CrossRef
19.
Zurück zum Zitat Alam, M., Siddiq, M., Bernstein, G., Niemier, M., Porod, W., Hu, X.: On-chip clocking for nanomagnet logic devices. IEEE Trans. Nanotechnol. 9(3), 348–351 (2009)CrossRef Alam, M., Siddiq, M., Bernstein, G., Niemier, M., Porod, W., Hu, X.: On-chip clocking for nanomagnet logic devices. IEEE Trans. Nanotechnol. 9(3), 348–351 (2009)CrossRef
20.
Zurück zum Zitat Das, J., Alam, S., Bhanja, S.: Low power magnetic quantum cellular automata realization using magnetic multi-layer structures. J. Emerg. Sel. Top. Circ. Syst. 1(3), 267–276 (2011)CrossRef Das, J., Alam, S., Bhanja, S.: Low power magnetic quantum cellular automata realization using magnetic multi-layer structures. J. Emerg. Sel. Top. Circ. Syst. 1(3), 267–276 (2011)CrossRef
21.
Zurück zum Zitat Das, J., Alam, S., Bhanja, S.: Ultra-low power hybrid CMOS-magnetic logic architecture. Trans. Comput. Syst. 59(9), 2008–2016 (2011)MathSciNet Das, J., Alam, S., Bhanja, S.: Ultra-low power hybrid CMOS-magnetic logic architecture. Trans. Comput. Syst. 59(9), 2008–2016 (2011)MathSciNet
22.
Zurück zum Zitat Karunaratne, D., Bhanja, S.: Study of single layer and multilayer nano-magnetic logic architectures. J. Appl. Phys. 111, 07A928 (2012)CrossRef Karunaratne, D., Bhanja, S.: Study of single layer and multilayer nano-magnetic logic architectures. J. Appl. Phys. 111, 07A928 (2012)CrossRef
23.
Zurück zum Zitat Vacca, M., Crescenzo, L., Graziano, M., Zamboni, M., Chiolerio, A., Lamberti, A., Enrico, E., Celegato, F., Tiberto, P., Boarino, L.: Electric clock for NanoMagnet logic circuits. In: Field Couple Computing Workshop (FCN) (2013) Vacca, M., Crescenzo, L., Graziano, M., Zamboni, M., Chiolerio, A., Lamberti, A., Enrico, E., Celegato, F., Tiberto, P., Boarino, L.: Electric clock for NanoMagnet logic circuits. In: Field Couple Computing Workshop (FCN) (2013)
24.
Zurück zum Zitat Fashami, M.S., Atulasimha, J., Bandyopadhyay, S.: Magnetization dynamics, throughput and energy dissipation in a universal multiferroic nanomagnetic logic gate with fan-in and fan-out. Nanotechnology 23(10), 105201 (2012)CrossRef Fashami, M.S., Atulasimha, J., Bandyopadhyay, S.: Magnetization dynamics, throughput and energy dissipation in a universal multiferroic nanomagnetic logic gate with fan-in and fan-out. Nanotechnology 23(10), 105201 (2012)CrossRef
25.
Zurück zum Zitat Rizos, N., Omar, M., Lugli, P., Csaba, G., Becherer, M., Schmitt-Landsiedel, D.: Clocking schemes for field coupled devices from magnetic multilayers. In: International Workshop on Computational Electronics, Beijin, China, pp. 1–4. IEEE (2009) Rizos, N., Omar, M., Lugli, P., Csaba, G., Becherer, M., Schmitt-Landsiedel, D.: Clocking schemes for field coupled devices from magnetic multilayers. In: International Workshop on Computational Electronics, Beijin, China, pp. 1–4. IEEE (2009)
26.
Zurück zum Zitat Becherer, M., Kiermaier, J., Csaba, G., Rezgani, J., Yilmaz, C., Osswald, P., Lugli, P., Schmitt-Landsiedel, D.: Characterizing magnetic field-coupled computing devices by the Extraordinary Hall-effect. In: Proceedings European Solid State Device Research Conference, Athens, Greece, pp. 105–108. IEEE (2009) Becherer, M., Kiermaier, J., Csaba, G., Rezgani, J., Yilmaz, C., Osswald, P., Lugli, P., Schmitt-Landsiedel, D.: Characterizing magnetic field-coupled computing devices by the Extraordinary Hall-effect. In: Proceedings European Solid State Device Research Conference, Athens, Greece, pp. 105–108. IEEE (2009)
27.
Zurück zum Zitat Ju, X., Niemier, M., Becherer, M., Porod, W., Putney, M., Lugli, P., Csaba, G.: Systolic pattern matching hardware with out-of-plane nanomagnet logic devices. IEEE Trans. Nanotechnol. 12(3), 376–386 (2013)CrossRef Ju, X., Niemier, M., Becherer, M., Porod, W., Putney, M., Lugli, P., Csaba, G.: Systolic pattern matching hardware with out-of-plane nanomagnet logic devices. IEEE Trans. Nanotechnol. 12(3), 376–386 (2013)CrossRef
28.
Zurück zum Zitat Ercan, I., Anderson, N.: Heat Dissipation Bounds for Nanocomputing: Theory and Application to QCA (2011) Ercan, I., Anderson, N.: Heat Dissipation Bounds for Nanocomputing: Theory and Application to QCA (2011)
29.
Zurück zum Zitat Vacca, M., Graziano, M., Zamboni, M.: Nanomagnetic logic microprocessor: hierarchical power model. IEEE Trans. VLSI Syst. 21(8), 1410–1420 (2012)CrossRef Vacca, M., Graziano, M., Zamboni, M.: Nanomagnetic logic microprocessor: hierarchical power model. IEEE Trans. VLSI Syst. 21(8), 1410–1420 (2012)CrossRef
30.
Zurück zum Zitat Vacca, M., Graziano, M., Zamboni, M.: Majority voter full characterization for nanomagnet logic circuits. IEEE Trans. Nanotechnol. 11(5), 940–947 (2012)CrossRef Vacca, M., Graziano, M., Zamboni, M.: Majority voter full characterization for nanomagnet logic circuits. IEEE Trans. Nanotechnol. 11(5), 940–947 (2012)CrossRef
31.
Zurück zum Zitat Niemier, M., Varga, E., Bernstein, G., Porod, W., Alam, M., Dingler, A., Orlov, A., Hu, X.: Shape engineering for controlled switching with nanomagnet logic. IEEE Trans. Nanotechnol. 11(2), 220–230 (2012)CrossRef Niemier, M., Varga, E., Bernstein, G., Porod, W., Alam, M., Dingler, A., Orlov, A., Hu, X.: Shape engineering for controlled switching with nanomagnet logic. IEEE Trans. Nanotechnol. 11(2), 220–230 (2012)CrossRef
32.
Zurück zum Zitat Graziano, M., Vacca, M., Blua, D., Zamboni, M.: Asynchrony in quantum-dot cellular automata nanocomputation: elixir or poison? IEEE Des. Test Comput. 28(5), 72–83 (2011)CrossRef Graziano, M., Vacca, M., Blua, D., Zamboni, M.: Asynchrony in quantum-dot cellular automata nanocomputation: elixir or poison? IEEE Des. Test Comput. 28(5), 72–83 (2011)CrossRef
33.
Zurück zum Zitat Niemier, M., Kogge, P.: Problems in designing with QCAs: Layout = Timing. Int. J. Circ. Theor. Appl. 29, 49–62 (2001)CrossRef Niemier, M., Kogge, P.: Problems in designing with QCAs: Layout = Timing. Int. J. Circ. Theor. Appl. 29, 49–62 (2001)CrossRef
34.
Zurück zum Zitat Vacca, M., Frache, S., Graziano, M., Zamboni, M.: ToPoliNano: a synthesis and simulation tool for NML circuits. In: IEEE International Conference on Nanotechnology, pp. 1–6, August 2012 Vacca, M., Frache, S., Graziano, M., Zamboni, M.: ToPoliNano: a synthesis and simulation tool for NML circuits. In: IEEE International Conference on Nanotechnology, pp. 1–6, August 2012
35.
Zurück zum Zitat Frache, S., Chiabrando, D., Graziano, M., Riente, F., Turvani, G., Zamboni, M.: ToPoliNano: nanoarchitectures design made real. In: IEEE International Symposium on Nanoscale Architectures (NANOARCH), pp. 160–167 (2012) Frache, S., Chiabrando, D., Graziano, M., Riente, F., Turvani, G., Zamboni, M.: ToPoliNano: nanoarchitectures design made real. In: IEEE International Symposium on Nanoscale Architectures (NANOARCH), pp. 160–167 (2012)
36.
Zurück zum Zitat Frache, S., Chiabrando, D., Graziano, M., Vacca, M., Boarino, L., Zamboni, M.: Enabling design and simulation of massive parallel nanoarchitectures. J. Parallel Distrib. Comput. 74(6), 2530–2541 (2013)CrossRef Frache, S., Chiabrando, D., Graziano, M., Vacca, M., Boarino, L., Zamboni, M.: Enabling design and simulation of massive parallel nanoarchitectures. J. Parallel Distrib. Comput. 74(6), 2530–2541 (2013)CrossRef
37.
Zurück zum Zitat Vacca, M., Frache, S., Graziano, M., Crescenzo, L., Cairo, F., Zamboni, M.: Automatic Place&Route of Nano-magnetic Logic circuits, pp. 58–63, July 2013 Vacca, M., Frache, S., Graziano, M., Crescenzo, L., Cairo, F., Zamboni, M.: Automatic Place&Route of Nano-magnetic Logic circuits, pp. 58–63, July 2013
38.
Zurück zum Zitat Vacca, M., Vighetti, D., Mascarino, M., Amaru, L., Graziano, M., Zamboni, M.: Magnetic QCA majority voter feasibility analysis. In: 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 229–232 (2011) Vacca, M., Vighetti, D., Mascarino, M., Amaru, L., Graziano, M., Zamboni, M.: Magnetic QCA majority voter feasibility analysis. In: 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 229–232 (2011)
39.
Zurück zum Zitat Fant, K., Brandt., S.: NULL convention logic\(^{TM}\), a complete and consistent logic for asynchronous digital circuit synthesis. In: International Conference on Application Specific Systems, Chicago-Illinois, USA, pp. 261–273. IEEE (1996) Fant, K., Brandt., S.: NULL convention logic\(^{TM}\), a complete and consistent logic for asynchronous digital circuit synthesis. In: International Conference on Application Specific Systems, Chicago-Illinois, USA, pp. 261–273. IEEE (1996)
40.
Zurück zum Zitat Choi, M., Patitz, Z., Jin, B., Tao, F., Park, N.: Designing layout-timing independent quantum-dot cellular automata (QCA) circuits by global asynchrony. J. Syst. Architect. Elsevier 53, 551–567 (2007)CrossRef Choi, M., Patitz, Z., Jin, B., Tao, F., Park, N.: Designing layout-timing independent quantum-dot cellular automata (QCA) circuits by global asynchrony. J. Syst. Architect. Elsevier 53, 551–567 (2007)CrossRef
41.
Zurück zum Zitat Vacca, M., Graziano, M., Zamboni, M.: Asynchronous solutions for nano-magnetic logic circuits. ACM J. Emerg. Tech. Comp. Syst. 7(4), 15 (2011) Vacca, M., Graziano, M., Zamboni, M.: Asynchronous solutions for nano-magnetic logic circuits. ACM J. Emerg. Tech. Comp. Syst. 7(4), 15 (2011)
43.
Zurück zum Zitat Awais, M., Vacca, M., Graziano, M., Masera, G.: Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12(3), 368–377 (2013)CrossRef Awais, M., Vacca, M., Graziano, M., Masera, G.: Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12(3), 368–377 (2013)CrossRef
44.
Zurück zum Zitat Awais, M., Vacca, M., Graziano, M., Masera, G.: FFT implementation using QCA. In: 2012 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 741–744 (2012) Awais, M., Vacca, M., Graziano, M., Masera, G.: FFT implementation using QCA. In: 2012 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 741–744 (2012)
45.
Zurück zum Zitat Martina, M., Masera, G.: Turbo NOC: a framework for the design of network-on-chip-based turbo decoder architectures. IEEE Trans. Circ. Syst. I 57(10), 2776–2789 (2010)CrossRefMathSciNet Martina, M., Masera, G.: Turbo NOC: a framework for the design of network-on-chip-based turbo decoder architectures. IEEE Trans. Circ. Syst. I 57(10), 2776–2789 (2010)CrossRefMathSciNet
46.
Zurück zum Zitat Kung, H., Leiserson, C., Science, C.M.U.D.o.C.: Systolic Arrays for (VLSI). CMU-CS. Carnegie-Mellon University, Department of Computer Science (1978) Kung, H., Leiserson, C., Science, C.M.U.D.o.C.: Systolic Arrays for (VLSI). CMU-CS. Carnegie-Mellon University, Department of Computer Science (1978)
47.
Zurück zum Zitat Haron, N., Hamdioui, S.: Why is CMOS scaling coming to an END? In: 3rd International Design and Test Workshop, IDT 2008, pp. 98–103, December 2008 Haron, N., Hamdioui, S.: Why is CMOS scaling coming to an END? In: 3rd International Design and Test Workshop, IDT 2008, pp. 98–103, December 2008
48.
Zurück zum Zitat Pan, S.B., Park, R.H.: Unified systolic arrays for computation of the DCT/DST/DHT. IEEE Trans. Circ. Syst. Video Technol. 7(2), 413–419 (1997)CrossRef Pan, S.B., Park, R.H.: Unified systolic arrays for computation of the DCT/DST/DHT. IEEE Trans. Circ. Syst. Video Technol. 7(2), 413–419 (1997)CrossRef
49.
Zurück zum Zitat Panchanathan, S., Goldberg, M.: A systolic array architecture for image coding using adaptive vector quantization. IEEE Trans. Circ. Syst. Video Technol. 1(2), 222–229 (1991)CrossRef Panchanathan, S., Goldberg, M.: A systolic array architecture for image coding using adaptive vector quantization. IEEE Trans. Circ. Syst. Video Technol. 1(2), 222–229 (1991)CrossRef
50.
Zurück zum Zitat Iyengar, G., Panchanathan, S.: Systolic array architecture for Gabor decomposition. IEEE Trans. Circ. Syst. Video Technol. 5(4), 355–359 (1995)CrossRef Iyengar, G., Panchanathan, S.: Systolic array architecture for Gabor decomposition. IEEE Trans. Circ. Syst. Video Technol. 5(4), 355–359 (1995)CrossRef
51.
Zurück zum Zitat Lim, H., Swartzlander, E.J.: Multidimensional systolic arrays for the implementation of discrete Fourier transforms. IEEE Trans. Signal Process. 47(5), 1359–1370 (1999)CrossRef Lim, H., Swartzlander, E.J.: Multidimensional systolic arrays for the implementation of discrete Fourier transforms. IEEE Trans. Signal Process. 47(5), 1359–1370 (1999)CrossRef
52.
Zurück zum Zitat Herzberg, H., Haimi-Cohen, R.: A systolic array realization of an LMS adaptive filter and the effects of delayed adaptation. IEEE Trans. Signal Process. 40(11), 2799–2803 (1992)CrossRef Herzberg, H., Haimi-Cohen, R.: A systolic array realization of an LMS adaptive filter and the effects of delayed adaptation. IEEE Trans. Signal Process. 40(11), 2799–2803 (1992)CrossRef
53.
Zurück zum Zitat Chang, L.W., Wu, M.C.: A unified systolic array for discrete cosine and sine transforms. IEEE Trans. Signal Process. 39(1), 192–194 (1991)CrossRefMathSciNet Chang, L.W., Wu, M.C.: A unified systolic array for discrete cosine and sine transforms. IEEE Trans. Signal Process. 39(1), 192–194 (1991)CrossRefMathSciNet
54.
Zurück zum Zitat Buyukkurt, B., Najj, W.: Compiler generated systolic arrays for wavefront algorithm acceleration on FPGAs. In: International Conference on Field Programmable Logic and Applications, FPL 2008, pp. 655–658, September 2008 Buyukkurt, B., Najj, W.: Compiler generated systolic arrays for wavefront algorithm acceleration on FPGAs. In: International Conference on Field Programmable Logic and Applications, FPL 2008, pp. 655–658, September 2008
55.
Zurück zum Zitat Jin, W., Zhang, C., Li, H.: Mapping multiple algorithms into a reconfigurable systolic array. In: Canadian Conference on Electrical and Computer Engineering, CCECE 2008, pp. 001187–001192, May 2008 Jin, W., Zhang, C., Li, H.: Mapping multiple algorithms into a reconfigurable systolic array. In: Canadian Conference on Electrical and Computer Engineering, CCECE 2008, pp. 001187–001192, May 2008
56.
Zurück zum Zitat Lu, L., Liu, W., O’Neill, M., Swartzlander, E.: QCA systolic matrix multiplier. In: 2010 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 149–154, July 2010 Lu, L., Liu, W., O’Neill, M., Swartzlander, E.: QCA systolic matrix multiplier. In: 2010 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 149–154, July 2010
57.
Zurück zum Zitat Lu, L., Liu, W., O’Neill, M., Swartzlander, J.E.: QCA systolic array design. IEEE Trans. Comput. 62(3), 548–560 (2013)CrossRefMathSciNet Lu, L., Liu, W., O’Neill, M., Swartzlander, J.E.: QCA systolic array design. IEEE Trans. Comput. 62(3), 548–560 (2013)CrossRefMathSciNet
58.
Zurück zum Zitat Crocker, M., Hu, X., Niemier, M.: Design and Comparison of NML Systolic Architectures. Nanoarch (2010) Crocker, M., Hu, X., Niemier, M.: Design and Comparison of NML Systolic Architectures. Nanoarch (2010)
59.
Zurück zum Zitat Causapruno, G.: Analysis and optimization of parallel processing architectures for nanotechnologies. Master’s thesis, Politecnico di Torino, November 2012 Causapruno, G.: Analysis and optimization of parallel processing architectures for nanotechnologies. Master’s thesis, Politecnico di Torino, November 2012
60.
Zurück zum Zitat Rajaram, S., Karunaratne, D., Sarkar, S., Bhanja, S.: Study of dipolar neighbor interaction on magnetization states of nano-magnetic disks. IEEE Trans. Magn. 49(7), 3129–3132 (2013)CrossRef Rajaram, S., Karunaratne, D., Sarkar, S., Bhanja, S.: Study of dipolar neighbor interaction on magnetization states of nano-magnetic disks. IEEE Trans. Magn. 49(7), 3129–3132 (2013)CrossRef
61.
Zurück zum Zitat Panchumarthy, R., Karunaratne, D., Sarkar, S., Bhanja, S.: Magnetic state estimator to characterize the magnetic states of nano-magnetic disks. IEEE Trans. Magn. 49(7), 3545–3548 (2013)CrossRef Panchumarthy, R., Karunaratne, D., Sarkar, S., Bhanja, S.: Magnetic state estimator to characterize the magnetic states of nano-magnetic disks. IEEE Trans. Magn. 49(7), 3545–3548 (2013)CrossRef
62.
Zurück zum Zitat Deriu, M.A., Shkurti, A., Paciello, G., Bidone, T.C., Morbiducci, U., Ficarra, E., Audenino, A., Acquaviva, A.: Multiscale modeling of cellular actin filaments: from atomistic molecular to coarse-grained dynamics. Proteins Struct. Funct. Bioinf. 80(6), 1598–1609 (2012)CrossRef Deriu, M.A., Shkurti, A., Paciello, G., Bidone, T.C., Morbiducci, U., Ficarra, E., Audenino, A., Acquaviva, A.: Multiscale modeling of cellular actin filaments: from atomistic molecular to coarse-grained dynamics. Proteins Struct. Funct. Bioinf. 80(6), 1598–1609 (2012)CrossRef
63.
Zurück zum Zitat Shkurti, A., Orsi, M., Macii, E., Ficarra, E., Acquaviva, A.: Acceleration of coarse grain molecular dynamics on GPU architectures. J. Comput. Chem. 34(10), 803–818 (2013)CrossRef Shkurti, A., Orsi, M., Macii, E., Ficarra, E., Acquaviva, A.: Acceleration of coarse grain molecular dynamics on GPU architectures. J. Comput. Chem. 34(10), 803–818 (2013)CrossRef
64.
Zurück zum Zitat Smith, T., Waterman, M.: Identification of common molecular subsequences. Mol. Biol. 147, 195–197 (1981)CrossRef Smith, T., Waterman, M.: Identification of common molecular subsequences. Mol. Biol. 147, 195–197 (1981)CrossRef
65.
Zurück zum Zitat Urgese, G.: Analysis and design of an optimized HW accelerator for protein alignment. Master’s thesis, Politecnico di Torino (2012) Urgese, G.: Analysis and design of an optimized HW accelerator for protein alignment. Master’s thesis, Politecnico di Torino (2012)
66.
Zurück zum Zitat Graziano, M., Frache, S., Zamboni, M.: A hardware viewpoint on biosequence analysis: what’s next? ACM J. Emerg. Technol. Comput. Syst. 9(4), 29 (2013)CrossRef Graziano, M., Frache, S., Zamboni, M.: A hardware viewpoint on biosequence analysis: what’s next? ACM J. Emerg. Technol. Comput. Syst. 9(4), 29 (2013)CrossRef
67.
Zurück zum Zitat Urgese, G., Graziano, M., Vacca, M., Awais, M., Frache, S., Zamboni, M.: Protein alignment HW/SW optimizations. In: The IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 145–148 (2012) Urgese, G., Graziano, M., Vacca, M., Awais, M., Frache, S., Zamboni, M.: Protein alignment HW/SW optimizations. In: The IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 145–148 (2012)
68.
Zurück zum Zitat Wang, J.: Emerging technologies for biosequence analysis. Master’s thesis, Politecnico di Torino (2012) Wang, J.: Emerging technologies for biosequence analysis. Master’s thesis, Politecnico di Torino (2012)
69.
Zurück zum Zitat Wang, J., Vacca, M., Graziano, M., Zamboni, M.: Biosequences analysis on NanoMagnet Logic. In: International Conference on IC Design and Technology, pp. 131–134, May 2013 Wang, J., Vacca, M., Graziano, M., Zamboni, M.: Biosequences analysis on NanoMagnet Logic. In: International Conference on IC Design and Technology, pp. 131–134, May 2013
Metadaten
Titel
NanoMagnet Logic: An Architectural Level Overview
verfasst von
Marco Vacca
Mariagrazia Graziano
Juanchi Wang
Fabrizio Cairo
Giovanni Causapruno
Gianvito Urgese
Andrea Biroli
Maurizio Zamboni
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-43722-3_10

Premium Partner