Skip to main content

2014 | OriginalPaper | Buchkapitel

Modelling Techniques for Simulating Large QCA Circuits

verfasst von : Faizal Karim, Konrad Walus

Erschienen in: Field-Coupled Nanocomputing

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the past several years, incredible advances in the availability of nano fabrication processes have been witnessed, and have demonstrated molecular-scale production beyond the usable limit for CMOS process technology. This has led to the research and early development of a wide-range of novel computing paradigms at the nanoscale; amongst them, quantum dot cellular automata (QCA). QCA is a nanoelectronic computing paradigm in which an array of cells, each electrostatically interacting with its neighbors, is employed in a locally interconnected manner to implement general purpose digital circuits. Several proof-of-concept QCA devices have been fabricated using silicon-on-insulator (SOI), metallic island devices operating in the Coulomb blockade regime, and nano-magnetics. In recent years, research into implementing these devices using single molecules has also begun to generate significant interest, and most recently, it was demonstrated that silicon atom dangling bonds (DBs), on an otherwise hydrogen terminated silicon crystal surface, can serve as quantum dots.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Haider, M.B., et al.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)CrossRef Haider, M.B., et al.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)CrossRef
2.
Zurück zum Zitat Wang, L., Krapek, V., Ding, F., Horton, F., Schliwa, A., Bimberg, D., Rastelli, A., Schmidt, O.G.: Self-assembled quantum dots with tunable thickness of the wetting layer: role of vertical confinement on interlevel spacing. Phys. Rev. B 80(8), 9 (2009)CrossRef Wang, L., Krapek, V., Ding, F., Horton, F., Schliwa, A., Bimberg, D., Rastelli, A., Schmidt, O.G.: Self-assembled quantum dots with tunable thickness of the wetting layer: role of vertical confinement on interlevel spacing. Phys. Rev. B 80(8), 9 (2009)CrossRef
3.
Zurück zum Zitat Keyser, U.F., Schumacher, H.W., Zeitler, U., Haug, R.J., Eberl, K.: Fabrication of quantum dots with scanning probe nanolithography. Phys. Status Solidi B 224(3), 681–684 (2001)CrossRef Keyser, U.F., Schumacher, H.W., Zeitler, U., Haug, R.J., Eberl, K.: Fabrication of quantum dots with scanning probe nanolithography. Phys. Status Solidi B 224(3), 681–684 (2001)CrossRef
4.
Zurück zum Zitat Lent, C.S.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef Lent, C.S.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef
5.
Zurück zum Zitat Macucci, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F.E., Single, C., Wetekam, G., Kern, D.P.: A QCA cell in silicon-on-insulator technology: theory and experiment. Superlattices Microstruct. 34, 205–211 (2004)CrossRef Macucci, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F.E., Single, C., Wetekam, G., Kern, D.P.: A QCA cell in silicon-on-insulator technology: theory and experiment. Superlattices Microstruct. 34, 205–211 (2004)CrossRef
6.
Zurück zum Zitat Orlov, A.O., Kummamuru, R.K., Ramasubramaniam, R., Lent, C.S., Berstein, G.H., Snider, G.L.: Clocked quantum-dot cellular automata shift register. Surf. Sci. 532–535, 1193–1198 (2003)CrossRef Orlov, A.O., Kummamuru, R.K., Ramasubramaniam, R., Lent, C.S., Berstein, G.H., Snider, G.L.: Clocked quantum-dot cellular automata shift register. Surf. Sci. 532–535, 1193–1198 (2003)CrossRef
7.
Zurück zum Zitat Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)CrossRef Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)CrossRef
8.
Zurück zum Zitat Amlani, I., Orlov, A., Snider, G.L., Lent, C.S.: Demonstration of a functional quantum-dot cellular automata cell. J. Vac. Sci. Technol. B 16, 3795–3799 (1998)CrossRef Amlani, I., Orlov, A., Snider, G.L., Lent, C.S.: Demonstration of a functional quantum-dot cellular automata cell. J. Vac. Sci. Technol. B 16, 3795–3799 (1998)CrossRef
9.
Zurück zum Zitat Lent, C.S., Snider, G.L., Bernstein, G.H., Porod, W., Orlov, A., Lieberman, M., Fehlner, T., Niemier, M.T., Kogge, P.: Quantum-Dot Cellular Automata. Kluwer Academic Publishers, Boca Raton (2003) Lent, C.S., Snider, G.L., Bernstein, G.H., Porod, W., Orlov, A., Lieberman, M., Fehlner, T., Niemier, M.T., Kogge, P.: Quantum-Dot Cellular Automata. Kluwer Academic Publishers, Boca Raton (2003)
10.
Zurück zum Zitat Snider, G.L., Amlani, I., Orlov, A., Toth, G., Bernstein, G., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: line and majority gate logic. Jpn. J. Appl. Phys. 38, 7227–7229 (1999)CrossRef Snider, G.L., Amlani, I., Orlov, A., Toth, G., Bernstein, G., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: line and majority gate logic. Jpn. J. Appl. Phys. 38, 7227–7229 (1999)CrossRef
11.
Zurück zum Zitat Kummamuru, R.V., Timler, J., Toth, G., Lent, C.S., Ramasubramaniam, R., Orlov, A., Bernstein, G.H.: Power gain and dissipation in a quantum-dot cellular automata latch. Appl. Phys. Lett. 81, 1332–1334 (2002)CrossRef Kummamuru, R.V., Timler, J., Toth, G., Lent, C.S., Ramasubramaniam, R., Orlov, A., Bernstein, G.H.: Power gain and dissipation in a quantum-dot cellular automata latch. Appl. Phys. Lett. 81, 1332–1334 (2002)CrossRef
12.
Zurück zum Zitat Toth, G., Lent, C.S.: Quasiadiabatic switching of metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999)CrossRef Toth, G., Lent, C.S.: Quasiadiabatic switching of metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999)CrossRef
13.
Zurück zum Zitat Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority Logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)CrossRef Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority Logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)CrossRef
14.
Zurück zum Zitat Csaba, G., et al.: Nanocomputing by field-coupled nanomagnets. IEEE Trans. Nanotechnol. 1(4), 209–213 (2002)CrossRef Csaba, G., et al.: Nanocomputing by field-coupled nanomagnets. IEEE Trans. Nanotechnol. 1(4), 209–213 (2002)CrossRef
15.
Zurück zum Zitat György, C., Porod, W.: Simulation of field coupled computing architectures based on magnetic dot arrays. J. Comput. Electron. 1(1), 87–91 (2002) György, C., Porod, W.: Simulation of field coupled computing architectures based on magnetic dot arrays. J. Comput. Electron. 1(1), 87–91 (2002)
16.
Zurück zum Zitat Parish, M.C.B.: Modeling of physical constraints on bistable magnetic quantum cellular automata. Ph.D. thesis, University of London (2003) Parish, M.C.B.: Modeling of physical constraints on bistable magnetic quantum cellular automata. Ph.D. thesis, University of London (2003)
17.
Zurück zum Zitat Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)CrossRef Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)CrossRef
18.
Zurück zum Zitat Bernstein, G.H., Imre, A., Metlushko, V., Ji, L., Orlov, A., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005)CrossRef Bernstein, G.H., Imre, A., Metlushko, V., Ji, L., Orlov, A., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005)CrossRef
19.
Zurück zum Zitat Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005)CrossRef Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005)CrossRef
20.
Zurück zum Zitat Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)CrossRef Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)CrossRef
21.
Zurück zum Zitat Jiao, J., Long, G.J., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125(25), 7522–7523 (2003)CrossRef Jiao, J., Long, G.J., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125(25), 7522–7523 (2003)CrossRef
22.
Zurück zum Zitat Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef
23.
Zurück zum Zitat Li, Z., Fehlner, T.P.: Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a au surface by an organic linker. Inorg. Chem. 42(18), 5715–5721 (2003)CrossRef Li, Z., Fehlner, T.P.: Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a au surface by an organic linker. Inorg. Chem. 42(18), 5715–5721 (2003)CrossRef
24.
Zurück zum Zitat Li, Z., Beatty, A.M., Fehlner, T.P.: Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding. Inorg. Chem. 42(18), 5707–5714 (2003)CrossRef Li, Z., Beatty, A.M., Fehlner, T.P.: Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding. Inorg. Chem. 42(18), 5707–5714 (2003)CrossRef
25.
Zurück zum Zitat Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003)CrossRef Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003)CrossRef
26.
Zurück zum Zitat Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)CrossRef Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)CrossRef
27.
Zurück zum Zitat Timler, J., Lent, C.S.: Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94, 1050–1060 (2003)CrossRef Timler, J., Lent, C.S.: Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94, 1050–1060 (2003)CrossRef
28.
Zurück zum Zitat Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Dev. 50, 1890–1896 (2003)CrossRef Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Dev. 50, 1890–1896 (2003)CrossRef
29.
Zurück zum Zitat Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. Master’s thesis, University of Notre Dame, Notre Dame, IN 46556 (2006) Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. Master’s thesis, University of Notre Dame, Notre Dame, IN 46556 (2006)
30.
Zurück zum Zitat Data flow in molecular QCA: Logic can “sprint,” but the memory wall can still be a “hurdle” (2005) Data flow in molecular QCA: Logic can “sprint,” but the memory wall can still be a “hurdle” (2005)
31.
Zurück zum Zitat Lent, C., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)CrossRef Lent, C., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)CrossRef
32.
Zurück zum Zitat Walus, K., Budiman, R.A., Jullien, G.A.: Impurity charging in semiconductor quantum-dot cellular automata. Nanotechnology 16(11), 2525–2529 (2005)CrossRef Walus, K., Budiman, R.A., Jullien, G.A.: Impurity charging in semiconductor quantum-dot cellular automata. Nanotechnology 16(11), 2525–2529 (2005)CrossRef
33.
Zurück zum Zitat Walus, K.: Design and simulation of quantum-dot cellular automata devices and circuits. Ph.D. thesis, University of Alberta, September (2005) Walus, K.: Design and simulation of quantum-dot cellular automata devices and circuits. Ph.D. thesis, University of Alberta, September (2005)
34.
Zurück zum Zitat Walus, K., Karim, F., Ivanov, A.: Architecture for an external input into a molecular QCA circuit. J. Comput. Electron. 8, 35–42 (2009)CrossRef Walus, K., Karim, F., Ivanov, A.: Architecture for an external input into a molecular QCA circuit. J. Comput. Electron. 8, 35–42 (2009)CrossRef
35.
Zurück zum Zitat Karim, F., Walus, K., Ivanov, A.: Analysis of field-driven clocking for molecular quantum-dot cellular automata. J. Comput. Electron. 9, 16–30 (2010)CrossRef Karim, F., Walus, K., Ivanov, A.: Analysis of field-driven clocking for molecular quantum-dot cellular automata. J. Comput. Electron. 9, 16–30 (2010)CrossRef
36.
Zurück zum Zitat Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001)CrossRef Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001)CrossRef
37.
Zurück zum Zitat Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74, 6227–6233 (1993)CrossRef Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74, 6227–6233 (1993)CrossRef
38.
Zurück zum Zitat Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)CrossRef Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)CrossRef
39.
Zurück zum Zitat Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 4722–4735 (1996)CrossRef Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 4722–4735 (1996)CrossRef
40.
Zurück zum Zitat Tóth, G., Lent, C.S.: Role of correlation in the operation of quantum-dot cellular automata. J. Appl. Phys. 89, 7943–7953 (2001)CrossRef Tóth, G., Lent, C.S.: Role of correlation in the operation of quantum-dot cellular automata. J. Appl. Phys. 89, 7943–7953 (2001)CrossRef
41.
Zurück zum Zitat Karim, F., Navabi, A., Walus, K., Ivanov, A.: Quantum mechanical simulation of QCA with a reduced hamiltonian. In: Proceedings of the 8th IEEE Conference on Nanotechnolgy (2008) Karim, F., Navabi, A., Walus, K., Ivanov, A.: Quantum mechanical simulation of QCA with a reduced hamiltonian. In: Proceedings of the 8th IEEE Conference on Nanotechnolgy (2008)
42.
Zurück zum Zitat Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)CrossRef Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)CrossRef
43.
Zurück zum Zitat Lieberman, M., Chellamma, S., Varughese, B., Wang, Y.L., Lent, C., Bernstein, G.H., Snider, G., Peiris, F.C.: Quantum-dot cellular automata at a molecular scale. Mol. Electron. II 960, 225–239 (2002) Lieberman, M., Chellamma, S., Varughese, B., Wang, Y.L., Lent, C., Bernstein, G.H., Snider, G., Peiris, F.C.: Quantum-dot cellular automata at a molecular scale. Mol. Electron. II 960, 225–239 (2002)
44.
Zurück zum Zitat Walus, K., Mazur, M., Schulhof, G., Jullien, G.A.: Simple 4-bit processor based on quantum-dot cellular automata (QCA). In: Proceedings of Application Specific Architectures, and Processors Conference, pp. 288–293, July 2005 Walus, K., Mazur, M., Schulhof, G., Jullien, G.A.: Simple 4-bit processor based on quantum-dot cellular automata (QCA). In: Proceedings of Application Specific Architectures, and Processors Conference, pp. 288–293, July 2005
45.
Zurück zum Zitat Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62, 714–716 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62, 714–716 (1993)CrossRef
46.
Zurück zum Zitat Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)CrossRef Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)CrossRef
47.
Zurück zum Zitat Mahler, G., Weberruß, V.A.: Quantum Networks: Dynamics of Open Nanostructures. Springer, Berlin (1998)CrossRef Mahler, G., Weberruß, V.A.: Quantum Networks: Dynamics of Open Nanostructures. Springer, Berlin (1998)CrossRef
48.
Metadaten
Titel
Modelling Techniques for Simulating Large QCA Circuits
verfasst von
Faizal Karim
Konrad Walus
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-43722-3_11

Premium Partner