Skip to main content

2014 | OriginalPaper | Buchkapitel

ToPoliNano: NanoMagnet Logic Circuits Design and Simulation

verfasst von : Marco Vacca, Stefano Frache, Mariagrazia Graziano, Fabrizio Riente, Giovanna Turvani, Massimo Ruo Roch, Maurizio Zamboni

Erschienen in: Field-Coupled Nanocomputing

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Among the emerging technologies Field-Coupled devices like Quantum dot Cellular Automata are one of the most interesting. Of all the practical implementations of this principle NanoMagnet Logic shows many important features, such like a very low power consumption and the feasibility with up-to-date technology. However its working principle, based on the interaction among neighbor cells, is quite different from CMOS circuits. Dedicated design and simulation tools for this technology are necessary to further study this technology, but at the moment there are no such tools available in the scientific scenario.
In this chapter we present ToPoliNano, a software developed as a design and simulation tool for NanoMagnet Logic, that can be easily adapted to many other emerging technologies, particularly to any kind of Field-Coupled devices. ToPoliNano allows to design circuits following a top-down approach similar to the ones used in CMOS and to simulate them using a switch model specifically targeted for high complexity circuits. This tool greatly enhances the ability to analyze and optimize the design of Field-Coupled circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Porod, W.: Magnetic Logic Devices Based on Field-Coupled Nanomagnets. Nano and Giga, Tempe (2007) Porod, W.: Magnetic Logic Devices Based on Field-Coupled Nanomagnets. Nano and Giga, Tempe (2007)
2.
Zurück zum Zitat Imre, A.: Experimental study of nanomagnets for quantum-dot cellular automata(MQCA)logic applications. Ph.D. thesis, University of Notre Dame, Notre Dame, Indiana (2005) Imre, A.: Experimental study of nanomagnets for quantum-dot cellular automata(MQCA)logic applications. Ph.D. thesis, University of Notre Dame, Notre Dame, Indiana (2005)
3.
Zurück zum Zitat Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef
4.
Zurück zum Zitat Csurgay, A., Porod, W., Lent, C.: Signal processing with near-neighborcoupled time-varying quantum-dot arrays. IEEE Trans. Circ. Syst. 47(8), 1212–1223 (2000)CrossRef Csurgay, A., Porod, W., Lent, C.: Signal processing with near-neighborcoupled time-varying quantum-dot arrays. IEEE Trans. Circ. Syst. 47(8), 1212–1223 (2000)CrossRef
5.
Zurück zum Zitat Awais, M., Vacca, M., Graziano, M., Masera, G.: FFT implementation using QCA. In: 2012 19th IEEE International Conference on Electronics, Circuits and Systems, ICECS, pp. 741–744 (2012) Awais, M., Vacca, M., Graziano, M., Masera, G.: FFT implementation using QCA. In: 2012 19th IEEE International Conference on Electronics, Circuits and Systems, ICECS, pp. 741–744 (2012)
6.
Zurück zum Zitat Graziano, M., Chiolerio, A., Zamboni, M.: A technology aware magnetic QCA NCL-HDL architecture. In: 9th IEEE Conference on Nanotechnology. IEEE-NANO 2009, Genoa, Italy, July 2009, pp. 763–766. IEEE (2009) Graziano, M., Chiolerio, A., Zamboni, M.: A technology aware magnetic QCA NCL-HDL architecture. In: 9th IEEE Conference on Nanotechnology. IEEE-NANO 2009, Genoa, Italy, July 2009, pp. 763–766. IEEE (2009)
7.
Zurück zum Zitat Chiolerio, A., Allia, P., Graziano, M.: Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices. J. Magn. Magn. Mater. 324(19), 3006–3012 (2012)CrossRef Chiolerio, A., Allia, P., Graziano, M.: Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices. J. Magn. Magn. Mater. 324(19), 3006–3012 (2012)CrossRef
8.
Zurück zum Zitat Pulimeno, A., Graziano, M., Piccinini, G.: Molecule interaction for QCA computation. In: IEEE International Conference on Nanotechnology, pp. 1–5 (2012) Pulimeno, A., Graziano, M., Piccinini, G.: Molecule interaction for QCA computation. In: IEEE International Conference on Nanotechnology, pp. 1–5 (2012)
9.
Zurück zum Zitat Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular QCA wire: simulation of write-in and read-out systems. Solid State Electron. 77, 101–107 (2012)CrossRef Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular QCA wire: simulation of write-in and read-out systems. Solid State Electron. 77, 101–107 (2012)CrossRef
10.
Zurück zum Zitat Pulimeno, A., Graziano, M., Saginario, A., Cauda, V., Demarchi, D., Piccinini, G.: Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanotechnol. 12(4), 498–507 (2013)CrossRef Pulimeno, A., Graziano, M., Saginario, A., Cauda, V., Demarchi, D., Piccinini, G.: Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanotechnol. 12(4), 498–507 (2013)CrossRef
11.
Zurück zum Zitat Das, J., Alam, S., Bhanja, S.: Ultra-low power hybrid CMOS-magnetic logic architecture. IEEE Trans. Circ. Syst. 59(9), 2008–2016 (2012)MathSciNet Das, J., Alam, S., Bhanja, S.: Ultra-low power hybrid CMOS-magnetic logic architecture. IEEE Trans. Circ. Syst. 59(9), 2008–2016 (2012)MathSciNet
12.
Zurück zum Zitat Karunaratne, D., Bhanja, S.: Study of single layer and multilayer nano-magnetic logic architectures. J. Appl. Phys. 111, 07A928 (2012)CrossRef Karunaratne, D., Bhanja, S.: Study of single layer and multilayer nano-magnetic logic architectures. J. Appl. Phys. 111, 07A928 (2012)CrossRef
13.
Zurück zum Zitat Niemier, M., et al.: Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 493202 (2011)CrossRef Niemier, M., et al.: Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 493202 (2011)CrossRef
15.
Zurück zum Zitat Vacca, M., Vighetti, D., Mascarino, M., Amaru, L., Graziano, M., Zamboni, M.: Magnetic QCA majority voter feasibility analysis. In: 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 229–232 (2011) Vacca, M., Vighetti, D., Mascarino, M., Amaru, L., Graziano, M., Zamboni, M.: Magnetic QCA majority voter feasibility analysis. In: 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 229–232 (2011)
16.
Zurück zum Zitat Vacca, M., Graziano, M., Zamboni, M.: Majority voter full characterization for nanomagnet logic circuits. IEEE Trans. Nanotechnol. 11(5), 940–947 (2012)CrossRef Vacca, M., Graziano, M., Zamboni, M.: Majority voter full characterization for nanomagnet logic circuits. IEEE Trans. Nanotechnol. 11(5), 940–947 (2012)CrossRef
17.
Zurück zum Zitat Csaba, G., Porod, W.: Simulation of filed coupled computing architectures based on magnetic dot arrays. J. Comput. Electron. 1, 87–91 (2002). (Kluwer)CrossRef Csaba, G., Porod, W.: Simulation of filed coupled computing architectures based on magnetic dot arrays. J. Comput. Electron. 1, 87–91 (2002). (Kluwer)CrossRef
18.
Zurück zum Zitat Graziano, M., Vacca, M., Chiolerio, A., Zamboni, M.: A NCL-HDL snake-clock based magnetic QCA architecture. IEEE Trans. Nanotechnol. 10(5), 1141–1149 (2011)CrossRef Graziano, M., Vacca, M., Chiolerio, A., Zamboni, M.: A NCL-HDL snake-clock based magnetic QCA architecture. IEEE Trans. Nanotechnol. 10(5), 1141–1149 (2011)CrossRef
19.
Zurück zum Zitat Niemier, M., Hu, X., Alam, M., Bernstein, G., Porod, W., Putney, M., DeAngelis, J.: Clocking structures and power analysis for nanomagnet-based logic devices. In: International Symposium on Low Power Electronics and Design, Portlan-Oregon, USA, pp. 26–31. IEEE (2007) Niemier, M., Hu, X., Alam, M., Bernstein, G., Porod, W., Putney, M., DeAngelis, J.: Clocking structures and power analysis for nanomagnet-based logic devices. In: International Symposium on Low Power Electronics and Design, Portlan-Oregon, USA, pp. 26–31. IEEE (2007)
20.
Zurück zum Zitat Ju, X., Niemier, M.T., Becherer, M., Porod, W., Lugli, P., Csaba, G.: Systolic pattern matching hardware with out-of-plane nanomagnet logic devices. IEEE Trans. Nanotechnol. 12(3), 399–407 (2013)CrossRef Ju, X., Niemier, M.T., Becherer, M., Porod, W., Lugli, P., Csaba, G.: Systolic pattern matching hardware with out-of-plane nanomagnet logic devices. IEEE Trans. Nanotechnol. 12(3), 399–407 (2013)CrossRef
21.
Zurück zum Zitat Das, J., Alam, S., Bhanja, S.: Low power magnetic quantum cellular automata realization using magnetic multi-layer structures. J. Emerg. Sel. Top. Circ. Syst. 1(3), 267–276 (2011)CrossRef Das, J., Alam, S., Bhanja, S.: Low power magnetic quantum cellular automata realization using magnetic multi-layer structures. J. Emerg. Sel. Top. Circ. Syst. 1(3), 267–276 (2011)CrossRef
22.
Zurück zum Zitat Chung, T., Keller, S., Carman, G.: Electric-field-induced reversible magnetic single-domain evolution in a magnetoelectric thin film. Appl. Phys. Lett. 94, 132501 (2009)CrossRef Chung, T., Keller, S., Carman, G.: Electric-field-induced reversible magnetic single-domain evolution in a magnetoelectric thin film. Appl. Phys. Lett. 94, 132501 (2009)CrossRef
23.
Zurück zum Zitat Csaba, G., Porod, W.: Behavior of nanomagnet logic in the presence of thermal noise. In: International Workshop on Computational Electronics, Pisa, Italy, pp. 1–4. IEEE (2010) Csaba, G., Porod, W.: Behavior of nanomagnet logic in the presence of thermal noise. In: International Workshop on Computational Electronics, Pisa, Italy, pp. 1–4. IEEE (2010)
24.
Zurück zum Zitat Ercan, I., Anderson, N.: Heat Dissipation Bounds for Nanocomputing: Theory and Application to QCA (2011) Ercan, I., Anderson, N.: Heat Dissipation Bounds for Nanocomputing: Theory and Application to QCA (2011)
25.
Zurück zum Zitat Alam, M., Siddiq, M., Bernstein, G., Niemier, M., Porod, W., Hu, X.: On-chip clocking for nanomagnet logic devices. IEEE Trans. Nanotechnol. 9(3), 348–351 (2010)CrossRef Alam, M., Siddiq, M., Bernstein, G., Niemier, M., Porod, W., Hu, X.: On-chip clocking for nanomagnet logic devices. IEEE Trans. Nanotechnol. 9(3), 348–351 (2010)CrossRef
26.
Zurück zum Zitat Graziano, M., Vacca, M., Blua, D., Zamboni, M.: Asynchrony in quantum-dot cellular automata nanocomputation: elixir or poison? IEEE Des. Test Comput. 28(5), 72–83 (2011)CrossRef Graziano, M., Vacca, M., Blua, D., Zamboni, M.: Asynchrony in quantum-dot cellular automata nanocomputation: elixir or poison? IEEE Des. Test Comput. 28(5), 72–83 (2011)CrossRef
27.
Zurück zum Zitat Vacca, M., Graziano, M., Zamboni, M.: Asynchronous solutions for nano-magnetic logic circuits. ACM J. Emerg. Tech. Comput. Syst. 7(4), (2011) Vacca, M., Graziano, M., Zamboni, M.: Asynchronous solutions for nano-magnetic logic circuits. ACM J. Emerg. Tech. Comput. Syst. 7(4), (2011)
28.
Zurück zum Zitat Walus, K., Dysart, T., Jullien, G., Budiman, R.: Qcadesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRef Walus, K., Dysart, T., Jullien, G., Budiman, R.: Qcadesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRef
29.
Zurück zum Zitat Donahue, M., Porter, D.: OOMMF User’s Guide, Version 1.0. Technical Report Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, September 1999 Donahue, M., Porter, D.: OOMMF User’s Guide, Version 1.0. Technical Report Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, September 1999
30.
Zurück zum Zitat Fischbacher, T., Franchin, M., Bordignon, G., Fangohr, H.: A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag. IEEE Trans. Magn. 43(6), 2887–2889 (2007)CrossRef Fischbacher, T., Franchin, M., Bordignon, G., Fangohr, H.: A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag. IEEE Trans. Magn. 43(6), 2887–2889 (2007)CrossRef
31.
Zurück zum Zitat Scholz, W., Fidler, J., Schrefl, T., Suess, D., Dittrich, R., Forster, H., Tsiantos, V.: Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mater. Sci. 28, 366–383 (2003)CrossRef Scholz, W., Fidler, J., Schrefl, T., Suess, D., Dittrich, R., Forster, H., Tsiantos, V.: Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mater. Sci. 28, 366–383 (2003)CrossRef
32.
Zurück zum Zitat Vacca, M., Graziano, M., Zamboni, M.: Nanomagnetic logic microprocessor: hierarchical power model. IEEE Trans. VLSI Syst. 21(8), 1410–1420 (2012)CrossRef Vacca, M., Graziano, M., Zamboni, M.: Nanomagnetic logic microprocessor: hierarchical power model. IEEE Trans. VLSI Syst. 21(8), 1410–1420 (2012)CrossRef
33.
Zurück zum Zitat Niemier, M., Varga, E., Bernstein, G., Porod, W., Alam, M., Dingler, A., Orlov, A., Hu, X.: Shape engineering for controlled switching with nanomagnet logic. IEEE Trans. Nanotechnol. 11(2), 220–230 (2012)CrossRef Niemier, M., Varga, E., Bernstein, G., Porod, W., Alam, M., Dingler, A., Orlov, A., Hu, X.: Shape engineering for controlled switching with nanomagnet logic. IEEE Trans. Nanotechnol. 11(2), 220–230 (2012)CrossRef
35.
Zurück zum Zitat Awais, M., Vacca, M., Graziano, M., Masera, G.: Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12(3), 368–377 (2013)CrossRef Awais, M., Vacca, M., Graziano, M., Masera, G.: Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12(3), 368–377 (2013)CrossRef
37.
Zurück zum Zitat Vacca, M., Frache, S., Graziano, M., Zamboni, M.: ToPoliNano: a synthesis and simulation tool for NML circuits. In: IEEE International Conference on Nanotechnology, pp. 1–6, August 2012 Vacca, M., Frache, S., Graziano, M., Zamboni, M.: ToPoliNano: a synthesis and simulation tool for NML circuits. In: IEEE International Conference on Nanotechnology, pp. 1–6, August 2012
38.
Zurück zum Zitat Frache, S., Chiabrando, D., Graziano, M., Riente, F., Turvani, G., Zamboni, M.: ToPoliNano: nanoarchitectures design made real. In: IEEE International Symposium on Nanoscale Architectures NANOARCH, pp. 160–167 (2012) Frache, S., Chiabrando, D., Graziano, M., Riente, F., Turvani, G., Zamboni, M.: ToPoliNano: nanoarchitectures design made real. In: IEEE International Symposium on Nanoscale Architectures NANOARCH, pp. 160–167 (2012)
39.
Zurück zum Zitat Frache, S., Chiabrando, D., Graziano, M., Graziano, M., Boarino, L., Zamboni, M.: Enabling design and simulation of massive parallel nanoarchitectures. J. Parallel Distrib. Comput. 74, 2530–2541 (2014)CrossRef Frache, S., Chiabrando, D., Graziano, M., Graziano, M., Boarino, L., Zamboni, M.: Enabling design and simulation of massive parallel nanoarchitectures. J. Parallel Distrib. Comput. 74, 2530–2541 (2014)CrossRef
40.
Zurück zum Zitat Chiswell, I., Hodges, W.: Mathematical Logic. Oxford Texts in Logic, vol. 3. Oxford University Press, Oxford (2007) Chiswell, I., Hodges, W.: Mathematical Logic. Oxford Texts in Logic, vol. 3. Oxford University Press, Oxford (2007)
41.
Zurück zum Zitat Vacca, M., Frache, S., Graziano, M., Crescenzo, L., Cairo, F., Zamboni, M.: Automatic Place&Route of nano-magnetic logic circuits, pp. 58–63 (2013) Vacca, M., Frache, S., Graziano, M., Crescenzo, L., Cairo, F., Zamboni, M.: Automatic Place&Route of nano-magnetic logic circuits, pp. 58–63 (2013)
42.
Zurück zum Zitat Ravichandran, R., et al.: Partitioning and placement for buildable QCA circuits. In: DAC, vol. 1 (2005) Ravichandran, R., et al.: Partitioning and placement for buildable QCA circuits. In: DAC, vol. 1 (2005)
43.
Zurück zum Zitat Chung, W., et al.: Node duplication and routing algorithms for quantum-dot cellular automata circuits. IEEE Proc. Circ. Dev. Syst. 153(5), 497–505 (2006)CrossRef Chung, W., et al.: Node duplication and routing algorithms for quantum-dot cellular automata circuits. IEEE Proc. Circ. Dev. Syst. 153(5), 497–505 (2006)CrossRef
44.
Zurück zum Zitat Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970)CrossRefMATH Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970)CrossRefMATH
45.
Zurück zum Zitat Ravikumar, Si.Pi., Ravikumar, C.P.: Parallel Methods for VLSI Layout Design. Greenwood Publishing Group, Boston (1995) Ravikumar, Si.Pi., Ravikumar, C.P.: Parallel Methods for VLSI Layout Design. Greenwood Publishing Group, Boston (1995)
46.
Zurück zum Zitat Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 4598(220), 671–680 (1983)CrossRefMathSciNet Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 4598(220), 671–680 (1983)CrossRefMathSciNet
47.
Zurück zum Zitat Cerny, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)CrossRefMATHMathSciNet Cerny, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)CrossRefMATHMathSciNet
48.
Zurück zum Zitat Sechen, C., Sangiovanni-Vincentelli, A.: The Timberwolf placement and routing package. IEEE J. Solid-State Circ. 20(2), 510–522 (1985)CrossRef Sechen, C., Sangiovanni-Vincentelli, A.: The Timberwolf placement and routing package. IEEE J. Solid-State Circ. 20(2), 510–522 (1985)CrossRef
49.
Zurück zum Zitat Wang, D.: Novel routing schemes for IC layout part I: two-layer channel routing. In: Design Automation Conference (1991) Wang, D.: Novel routing schemes for IC layout part I: two-layer channel routing. In: Design Automation Conference (1991)
50.
Zurück zum Zitat Sherwani, N.: Algorithms for VLSI Physical Design Automation. Springer, Heidelberg (2002) Sherwani, N.: Algorithms for VLSI Physical Design Automation. Springer, Heidelberg (2002)
51.
Zurück zum Zitat Kahng, A., Lienig, J., Markov, I., Hu, J.: VLSI Physical Design Automation: From Graph Partitioning to Timing Closure. Springer, Heidelberg (2011)CrossRef Kahng, A., Lienig, J., Markov, I., Hu, J.: VLSI Physical Design Automation: From Graph Partitioning to Timing Closure. Springer, Heidelberg (2011)CrossRef
52.
Zurück zum Zitat Deutsch, D.: A dogleg channel router. In: Proceedings of 19th Design Automation Conference (1976) Deutsch, D.: A dogleg channel router. In: Proceedings of 19th Design Automation Conference (1976)
53.
Zurück zum Zitat Yoshimura, T.: An Efficient Channel Router (1984) Yoshimura, T.: An Efficient Channel Router (1984)
54.
Zurück zum Zitat Sau, A., Pal, A., Mandal, T., Datta, A., Pal, R., Chaudhuri, A.: A Graph based Algorithm to Minimize Total Wire Length in VLSI Channel Routing (2011) Sau, A., Pal, A., Mandal, T., Datta, A., Pal, R., Chaudhuri, A.: A Graph based Algorithm to Minimize Total Wire Length in VLSI Channel Routing (2011)
55.
Zurück zum Zitat Urgese, G., Graziano, M., Vacca, M., Awais, M., Frache, S., Zamboni, M.: Protein Alignment HW/SW Optimizations. In: The IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 145–148 (2012) Urgese, G., Graziano, M., Vacca, M., Awais, M., Frache, S., Zamboni, M.: Protein Alignment HW/SW Optimizations. In: The IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 145–148 (2012)
56.
Zurück zum Zitat Wang, J., Vacca, M., Graziano, M., Zamboni, M.: Biosequences analysis on NanoMagnet Logic. In: International Conference on IC Design and Technology, pp. 131–134, May 2013 Wang, J., Vacca, M., Graziano, M., Zamboni, M.: Biosequences analysis on NanoMagnet Logic. In: International Conference on IC Design and Technology, pp. 131–134, May 2013
57.
Zurück zum Zitat Graziano, M., Frache, S., Zamboni, M.: A hardware viewpoint on biosequence analysis: what’s next? ACM J. Emerg. Technol. Comput. Syst. 9(4), 29 (2013)CrossRef Graziano, M., Frache, S., Zamboni, M.: A hardware viewpoint on biosequence analysis: what’s next? ACM J. Emerg. Technol. Comput. Syst. 9(4), 29 (2013)CrossRef
58.
Zurück zum Zitat Free peer-reviewed portable C++ source libraries Free peer-reviewed portable C++ source libraries
59.
Zurück zum Zitat Wang, T., Narayanan, P., Moritz, C.A.: Heterogeneous 2-level logic and its density and fault tolerance implications in nanoscale fabrics. IEEE Trans. Nanotechnol. 8(1), 22–30 (2009)CrossRef Wang, T., Narayanan, P., Moritz, C.A.: Heterogeneous 2-level logic and its density and fault tolerance implications in nanoscale fabrics. IEEE Trans. Nanotechnol. 8(1), 22–30 (2009)CrossRef
60.
Zurück zum Zitat Comparison of Analog and Digital Nano-Systems: Issues for the Nano-Architect (2008) Comparison of Analog and Digital Nano-Systems: Issues for the Nano-Architect (2008)
61.
Zurück zum Zitat CMOL: devices, circuits, and architectures (2004) CMOL: devices, circuits, and architectures (2004)
62.
Zurück zum Zitat DeHon, A., Wilson, M.: Nanowire-based sublithographic programmable logic arrays (2004) DeHon, A., Wilson, M.: Nanowire-based sublithographic programmable logic arrays (2004)
63.
Zurück zum Zitat Snider, G., Kuekes, P., Williams, R.: CMOS-like logic in defective, nanoscale crossbars. Nanotechnology 15, 881–891 (2004)CrossRef Snider, G., Kuekes, P., Williams, R.: CMOS-like logic in defective, nanoscale crossbars. Nanotechnology 15, 881–891 (2004)CrossRef
64.
Zurück zum Zitat Goldstein, S., Budiu, M.: NanoFabrics: spatial computing using molecular, electronics. In: Proceedings of the 28th Annual International Symposium on Computer Architecture (2001) Goldstein, S., Budiu, M.: NanoFabrics: spatial computing using molecular, electronics. In: Proceedings of the 28th Annual International Symposium on Computer Architecture (2001)
Metadaten
Titel
ToPoliNano: NanoMagnet Logic Circuits Design and Simulation
verfasst von
Marco Vacca
Stefano Frache
Mariagrazia Graziano
Fabrizio Riente
Giovanna Turvani
Massimo Ruo Roch
Maurizio Zamboni
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-43722-3_12

Premium Partner