Skip to main content
Erschienen in: Microsystem Technologies 9/2019

02.11.2018 | Technical Paper

Nanoparticle transportation through a permeable duct with Joule heating influence

verfasst von: Zhixiong Li, Ahmad Shafee, R. Kandasamy, M. Ramzan, Qasem M. Al-Mdallal

Erschienen in: Microsystem Technologies | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofluid radiation in a semi permeable duct is analyzed in existence of Lorentz forces. Lorentz forces impact on energy equation are involved. Last ODEs were solved via RK4 approach. Effects of suction, radiation, Eckert, Hartmann numbers on flow, heat and mass transfer have been described. Outputs reveal that as Ha augments, vertical velocity reduces but temperature enhances. Concentration of nanofluid reduces with augment of magnetic force.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Daniel YS, Aziz ZA, Ismail Z, Salah F (2017) Effects of thermal radiation, viscous and Joule heating on electrical MHD nanofluid with double stratification. Chin J Phys 55(3):630–651CrossRef Daniel YS, Aziz ZA, Ismail Z, Salah F (2017) Effects of thermal radiation, viscous and Joule heating on electrical MHD nanofluid with double stratification. Chin J Phys 55(3):630–651CrossRef
Zurück zum Zitat Eldabe NTM, Abo-Seida OM, Abo Seliem AAS, Elshekhipy AA, Hegazy N (2018) Magnetohydrodynamic peristaltic flow of Williamson nanofluid with heat and mass transfer through a non-Darcy porous medium. Microsyst Technol 24:3751–3776CrossRef Eldabe NTM, Abo-Seida OM, Abo Seliem AAS, Elshekhipy AA, Hegazy N (2018) Magnetohydrodynamic peristaltic flow of Williamson nanofluid with heat and mass transfer through a non-Darcy porous medium. Microsyst Technol 24:3751–3776CrossRef
Zurück zum Zitat Ijaz S, Nadeem S (2017) A biomedical solicitation examination of nanoparticles as drug agents to minimize the hemodynamics of a stenotic channel. Eur Phys J Plus 132(11):448CrossRef Ijaz S, Nadeem S (2017) A biomedical solicitation examination of nanoparticles as drug agents to minimize the hemodynamics of a stenotic channel. Eur Phys J Plus 132(11):448CrossRef
Zurück zum Zitat Khalid A, Khan I, Shafie S (2015) Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur Phys J Plus 130:57CrossRef Khalid A, Khan I, Shafie S (2015) Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur Phys J Plus 130:57CrossRef
Zurück zum Zitat Mehmood A, Ali A (2008) Analytic solution of three-dimensional viscous flow and heat transfer over a stretching flat surface by homotopy analysis method. ASME J Heat Trans 130:12701-1–12701-7CrossRef Mehmood A, Ali A (2008) Analytic solution of three-dimensional viscous flow and heat transfer over a stretching flat surface by homotopy analysis method. ASME J Heat Trans 130:12701-1–12701-7CrossRef
Zurück zum Zitat Misra JC, Rath S (2008) Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to hemodynamics. Comput Fluids 37(01):1–11CrossRefMATH Misra JC, Rath S (2008) Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to hemodynamics. Comput Fluids 37(01):1–11CrossRefMATH
Zurück zum Zitat Raptis A (1998) Radiation and free convection flow through a porous medium. Int Commun Heat Mass Transf 25:289–295CrossRef Raptis A (1998) Radiation and free convection flow through a porous medium. Int Commun Heat Mass Transf 25:289–295CrossRef
Zurück zum Zitat Saleem S, Nadeem S, Ul Haq R (2014) Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone. Eur Phys J Plus 129:213CrossRef Saleem S, Nadeem S, Ul Haq R (2014) Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone. Eur Phys J Plus 129:213CrossRef
Zurück zum Zitat Sheikholeslami M (2018a) Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq 263:472–488CrossRef Sheikholeslami M (2018a) Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq 263:472–488CrossRef
Zurück zum Zitat Sheikholeslami M (2018b) Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq 266:495–503CrossRef Sheikholeslami M (2018b) Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq 266:495–503CrossRef
Zurück zum Zitat Sheikholeslami M (2018c) Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq 265:347–355CrossRef Sheikholeslami M (2018c) Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq 265:347–355CrossRef
Zurück zum Zitat Sheikholeslami M (2018d) Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput Appl 30(4):1055–1064CrossRef Sheikholeslami M (2018d) Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput Appl 30(4):1055–1064CrossRef
Zurück zum Zitat Sheikholeslami M (2018e) Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq 249:1212–1221CrossRef Sheikholeslami M (2018e) Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq 249:1212–1221CrossRef
Zurück zum Zitat Sheikholeslami M (2018f) CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq 249:921–929CrossRef Sheikholeslami M (2018f) CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq 249:921–929CrossRef
Zurück zum Zitat Sheikholeslami M (2018g) Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq 249:739–746CrossRef Sheikholeslami M (2018g) Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq 249:739–746CrossRef
Zurück zum Zitat Sheikholeslami M, Ghasemi A (2018) Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf 123:418–431CrossRef Sheikholeslami M, Ghasemi A (2018) Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf 123:418–431CrossRef
Zurück zum Zitat Sheikholeslami M, Rokni HB (2018b) CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J Mol Liq 254:446–462CrossRef Sheikholeslami M, Rokni HB (2018b) CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J Mol Liq 254:446–462CrossRef
Zurück zum Zitat Sheikholeslami M, Rokni HB (2018c) Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf 118:823–831CrossRef Sheikholeslami M, Rokni HB (2018c) Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf 118:823–831CrossRef
Zurück zum Zitat Sheikholeslami M, Seyednezhad M (2018) Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf 120:772–781CrossRef Sheikholeslami M, Seyednezhad M (2018) Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf 120:772–781CrossRef
Zurück zum Zitat Sheikholeslami M, Shehzad SA (2018a) CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf 122:1264–1271CrossRef Sheikholeslami M, Shehzad SA (2018a) CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf 122:1264–1271CrossRef
Zurück zum Zitat Sheikholeslami M, Shehzad SA (2018b) Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf 120:1200–1212CrossRef Sheikholeslami M, Shehzad SA (2018b) Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf 120:1200–1212CrossRef
Zurück zum Zitat Sheikholeslami M, Shehzad SA (2018c) Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf 118:182–192CrossRef Sheikholeslami M, Shehzad SA (2018c) Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf 118:182–192CrossRef
Zurück zum Zitat Sheikholeslami M, Darzi M, Li Z (2018a) Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf 125:1087–1095CrossRef Sheikholeslami M, Darzi M, Li Z (2018a) Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf 125:1087–1095CrossRef
Zurück zum Zitat Sheikholeslami M, Shehzad SA, Li Z, Shafee A (2018b) Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf 127:614–622CrossRef Sheikholeslami M, Shehzad SA, Li Z, Shafee A (2018b) Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf 127:614–622CrossRef
Zurück zum Zitat Sheikholeslami M, Jafaryar M, Li Z, Shafee A (2018c) Investigation of second law and hydrothermal behavior of nanofluid through a tube using passive methods. J Mol Liq 269:407–416CrossRef Sheikholeslami M, Jafaryar M, Li Z, Shafee A (2018c) Investigation of second law and hydrothermal behavior of nanofluid through a tube using passive methods. J Mol Liq 269:407–416CrossRef
Zurück zum Zitat Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y (2018d) Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf 126:156–163CrossRef Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y (2018d) Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf 126:156–163CrossRef
Zurück zum Zitat Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S (2018e) Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf 126:1252–1264CrossRef Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S (2018e) Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf 126:1252–1264CrossRef
Zurück zum Zitat Sheikholeslami M, Jafaryar M, Li Z (2018f) Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J Mol Liq 263:489–500CrossRef Sheikholeslami M, Jafaryar M, Li Z (2018f) Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J Mol Liq 263:489–500CrossRef
Zurück zum Zitat Sheikholeslami M, Shehzad SA, Li Z (2018g) Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf 125:375–386CrossRef Sheikholeslami M, Shehzad SA, Li Z (2018g) Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf 125:375–386CrossRef
Zurück zum Zitat Sheikholeslami M, Shehzad SA, Abbasi FM, Li Z (2018h) Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Comput Methods Appl Mech Eng 338:491–505MathSciNetCrossRef Sheikholeslami M, Shehzad SA, Abbasi FM, Li Z (2018h) Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Comput Methods Appl Mech Eng 338:491–505MathSciNetCrossRef
Zurück zum Zitat Sheikholeslami M, Darzi M, Sadoughi MK (2018i) Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid: an experimental procedure. Int J Heat Mass Transf 122:643–650CrossRef Sheikholeslami M, Darzi M, Sadoughi MK (2018i) Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid: an experimental procedure. Int J Heat Mass Transf 122:643–650CrossRef
Zurück zum Zitat Sheikholeslami M, Hayat T, Muhammad T, Alsaedi A (2018j) MHD forced convection flow of nanofluid in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int J Mech Sci 135:532–540CrossRef Sheikholeslami M, Hayat T, Muhammad T, Alsaedi A (2018j) MHD forced convection flow of nanofluid in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int J Mech Sci 135:532–540CrossRef
Zurück zum Zitat Sheikholeslami M, Shamlooei M, Moradi R (2018k) Fe3O4-Ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. J Mol Liq 249:429–437CrossRef Sheikholeslami M, Shamlooei M, Moradi R (2018k) Fe3O4-Ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. J Mol Liq 249:429–437CrossRef
Zurück zum Zitat Sheikholeslami M, Hayat T, Alsaedi A (2018l) Numerical simulation for forced convection flow of MHD CuO–H2O nanofluid inside a cavity by means of LBM. J Mol Liq 249:941–948CrossRef Sheikholeslami M, Hayat T, Alsaedi A (2018l) Numerical simulation for forced convection flow of MHD CuO–H2O nanofluid inside a cavity by means of LBM. J Mol Liq 249:941–948CrossRef
Zurück zum Zitat Ul Haq R, Shahzad F, Al-Mdallal QM, Pulsatile MHD (2017) Flow of engine oil based carbon nanotubes between two concentric cylinders. Results Phys 7:57–68CrossRef Ul Haq R, Shahzad F, Al-Mdallal QM, Pulsatile MHD (2017) Flow of engine oil based carbon nanotubes between two concentric cylinders. Results Phys 7:57–68CrossRef
Zurück zum Zitat Ul Haq R, Soomro FA, Hammouch Z (2018) Heat transfer analysis of CuO-water enclosed in a partially heated rhombus with heated square obstacle. Int J Heat Mass Transf 118:773–784CrossRef Ul Haq R, Soomro FA, Hammouch Z (2018) Heat transfer analysis of CuO-water enclosed in a partially heated rhombus with heated square obstacle. Int J Heat Mass Transf 118:773–784CrossRef
Zurück zum Zitat Vajravelu K, Kumar BVR (2004) Analytic and numerical solutions of coupled nonlinear system arising in three-dimensional rotating flow. Int J Non-Linear Mech 39:13–24CrossRefMATH Vajravelu K, Kumar BVR (2004) Analytic and numerical solutions of coupled nonlinear system arising in three-dimensional rotating flow. Int J Non-Linear Mech 39:13–24CrossRefMATH
Metadaten
Titel
Nanoparticle transportation through a permeable duct with Joule heating influence
verfasst von
Zhixiong Li
Ahmad Shafee
R. Kandasamy
M. Ramzan
Qasem M. Al-Mdallal
Publikationsdatum
02.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 9/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4208-4

Weitere Artikel der Ausgabe 9/2019

Microsystem Technologies 9/2019 Zur Ausgabe