Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2024

30.01.2022 | Original Article

Naturally biodegradable polymer as an effective heterogeneous catalyst for synthesis of biofuels via Knoevenagel condensation strategy

verfasst von: Lulu Chen, Shima Liu, Hu Pan, Ke Song, Xianwu Zhou, Jie Guo, Ou Zhuo, Jian He

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Exploitation of natural biopolymers as heterogeneous catalysts for biomass valorization is highly attractive as it renders the production processes to be sustainable and increases the economic competitiveness of bio-refinery. Herein, sodium alginate was for the first time developed as heterogeneous base catalyst for Knoevenagel condensation of furfural and acetylacetone to produce high-quality fuel precursor. A furfural conversion rate as high as 89.58% along with 86.47% yield of 3-(furan-2-ylmethylene)pentane-2,4-dione was obtained in ethanol at 140 °C with 10 h. The excellent catalytic performance of sodium alginate in Knoevenagel condensation of furfural with acetylacetone was confirmed by the low value (10.8 kJ/mol) of as-obtained activation energy. In addition, a plausible reaction mechanism for Knoevenagel condensation of furfural with acetylacetone over sodium alginate was proposed. Moreover, sodium alginate almost sustained its original activity in consecutive six reuse experiments and the durability of sodium alginate was characterized by several techniques. Furthermore, other bio-based aldehydes such as 5-hydroxymethylfurfural and 5-methylfurfural were also applicable in the as-established system with producing the corresponding fuel precursor in excellent yields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhang B, Guo T, Liu Y, Kühn FE, Wang C, Zhao ZK, Xiao J, Li C, Zhang T (2021) Sustainable production of benzylamines from lignin. Angew Chem Int Ed 60:20666–20671CrossRef Zhang B, Guo T, Liu Y, Kühn FE, Wang C, Zhao ZK, Xiao J, Li C, Zhang T (2021) Sustainable production of benzylamines from lignin. Angew Chem Int Ed 60:20666–20671CrossRef
2.
Zurück zum Zitat Saha B, Vlachos DG (2021) Synthesis of (hemi)cellulosic lubricant base oils via catalytic coupling and deoxygenation pathways. Green Chem 23:4916–4930CrossRef Saha B, Vlachos DG (2021) Synthesis of (hemi)cellulosic lubricant base oils via catalytic coupling and deoxygenation pathways. Green Chem 23:4916–4930CrossRef
3.
Zurück zum Zitat Li X, Sun J, Shao S, Hu X, Cai Y (2021) Aldol condensation/hydrogenation for jet fuel from biomass-derived ketone platform compound in one pot. Fuel Process Technol 215:106768CrossRef Li X, Sun J, Shao S, Hu X, Cai Y (2021) Aldol condensation/hydrogenation for jet fuel from biomass-derived ketone platform compound in one pot. Fuel Process Technol 215:106768CrossRef
4.
Zurück zum Zitat Ghimire N, Bakke R, Bergland WH (2021) Liquefaction of lignocellulosic biomass for methane production: a review. Bioresour Technol 332:125068CrossRef Ghimire N, Bakke R, Bergland WH (2021) Liquefaction of lignocellulosic biomass for methane production: a review. Bioresour Technol 332:125068CrossRef
5.
Zurück zum Zitat Rosillo-Calle F (2016) A review of biomass energy-shortcomings and concerns. J Chem Technol Biotechnol 91:1933–1945CrossRef Rosillo-Calle F (2016) A review of biomass energy-shortcomings and concerns. J Chem Technol Biotechnol 91:1933–1945CrossRef
6.
Zurück zum Zitat Bakhtyari A, Makarem MA, Rahimpour MR (2017) Light olefins/bio-gasoline production from biomass. In: Dalena F, Basile A, Rossi C (eds) Bioenergy Systems for the Future. Elsevier, pp 87–148CrossRef Bakhtyari A, Makarem MA, Rahimpour MR (2017) Light olefins/bio-gasoline production from biomass. In: Dalena F, Basile A, Rossi C (eds) Bioenergy Systems for the Future. Elsevier, pp 87–148CrossRef
7.
Zurück zum Zitat Wu K, Wang W, Guo H, Yang Y, Huang Y, Li W, Li C (2020) Engineering Co nanoparticles supported on defect MoS2-x for mild deoxygenation of lignin-derived phenols to arenes. ACS Energy Lett 5:1330–1336CrossRef Wu K, Wang W, Guo H, Yang Y, Huang Y, Li W, Li C (2020) Engineering Co nanoparticles supported on defect MoS2-x for mild deoxygenation of lignin-derived phenols to arenes. ACS Energy Lett 5:1330–1336CrossRef
8.
Zurück zum Zitat He J, Chen L, Liu S, Song K, Yang S, Riisager A (2020) Sustainable access to renewable N-containing chemicals from reductive amination of biomass-derived platform compounds. Green Chem 22:6714–6747CrossRef He J, Chen L, Liu S, Song K, Yang S, Riisager A (2020) Sustainable access to renewable N-containing chemicals from reductive amination of biomass-derived platform compounds. Green Chem 22:6714–6747CrossRef
9.
Zurück zum Zitat Hu X, Ming C, Li Q, Zhang L, Li C-Z (2021) Polymerization of sugars/furan model compounds and bio-oil during the acid-catalyzed conversion-a review. Fuel Process Technol 222:106958CrossRef Hu X, Ming C, Li Q, Zhang L, Li C-Z (2021) Polymerization of sugars/furan model compounds and bio-oil during the acid-catalyzed conversion-a review. Fuel Process Technol 222:106958CrossRef
11.
Zurück zum Zitat Xu C, Paone E, Rodríguez-Padrín D, Luque R, Mauriello F (2020) Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 49:4273–4306CrossRef Xu C, Paone E, Rodríguez-Padrín D, Luque R, Mauriello F (2020) Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 49:4273–4306CrossRef
12.
Zurück zum Zitat Dai T, Li C, Li L, Zhao ZK, Zhang B, Cong Y, Wang A (2018) Selective production of renewable para-xylene by tungsten carbide catalyzed atom-economic cascade reactions. Angew Chem Int Ed 57:1808–1812CrossRef Dai T, Li C, Li L, Zhao ZK, Zhang B, Cong Y, Wang A (2018) Selective production of renewable para-xylene by tungsten carbide catalyzed atom-economic cascade reactions. Angew Chem Int Ed 57:1808–1812CrossRef
13.
Zurück zum Zitat He J, Xu Y, Yu Z, Li H, Zhao W, Wu H, Yang S (2020) ZrOCl2 as a bifunctional and in situ precursor material for catalytic hydrogen transfer of biobased carboxides. Sustain Energy Fuels 4:3102–3114CrossRef He J, Xu Y, Yu Z, Li H, Zhao W, Wu H, Yang S (2020) ZrOCl2 as a bifunctional and in situ precursor material for catalytic hydrogen transfer of biobased carboxides. Sustain Energy Fuels 4:3102–3114CrossRef
14.
Zurück zum Zitat Silva WR, Matsubara YE, Rosolen JM, Donate PM, Gunnella R (2021) Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural-hydrogenation in water. Mol Catal 504:111496CrossRef Silva WR, Matsubara YE, Rosolen JM, Donate PM, Gunnella R (2021) Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural-hydrogenation in water. Mol Catal 504:111496CrossRef
16.
Zurück zum Zitat Pang J, Zhang B, Jiang Y, Zhao Y, Li C, Zheng M, Zhang T (2021) Complete conversion of lignocellulosic biomass to mixed organic acids and ethylene glycol via cascade steps. Green Chem 23:2427–2436CrossRef Pang J, Zhang B, Jiang Y, Zhao Y, Li C, Zheng M, Zhang T (2021) Complete conversion of lignocellulosic biomass to mixed organic acids and ethylene glycol via cascade steps. Green Chem 23:2427–2436CrossRef
17.
Zurück zum Zitat He J, Li H, Xu Y, Yang S (2020) Dual acidic mesoporous KIT silicates enable one-pot production of γ-valerolactone from biomass derivatives via cascade reactions. Renew Energy 146:359–370CrossRef He J, Li H, Xu Y, Yang S (2020) Dual acidic mesoporous KIT silicates enable one-pot production of γ-valerolactone from biomass derivatives via cascade reactions. Renew Energy 146:359–370CrossRef
18.
Zurück zum Zitat Jadon TPS, Jana AK, Parikh PA (2021) Conversion of biorenewably available acetone and butanol to liquid fuels using base catalysts. Biomass Conv Bioref 11:1921–1930CrossRef Jadon TPS, Jana AK, Parikh PA (2021) Conversion of biorenewably available acetone and butanol to liquid fuels using base catalysts. Biomass Conv Bioref 11:1921–1930CrossRef
19.
Zurück zum Zitat He J, Qiang Q, Liu S, Song K, Zhou X, Guo J, Zhang B, Li C (2021) Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy. Fuel 306:121765CrossRef He J, Qiang Q, Liu S, Song K, Zhou X, Guo J, Zhang B, Li C (2021) Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy. Fuel 306:121765CrossRef
21.
Zurück zum Zitat Li H, Riisager A, Saravanamurugan S, Pandey A, Sangwan RS, Yang S, Luque R (2018) Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal 8:148–187CrossRef Li H, Riisager A, Saravanamurugan S, Pandey A, Sangwan RS, Yang S, Luque R (2018) Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal 8:148–187CrossRef
22.
Zurück zum Zitat Nguyen XP, Hoang AT, Ölçerv AI, Engel D, Pham VV, Nayak SK (2021) Biomass-derived 2,5-dimethylfuran as a promising alternative fuel: an application review on the compression and spark ignition engine. Fuel Process Technol 214:106687CrossRef Nguyen XP, Hoang AT, Ölçerv AI, Engel D, Pham VV, Nayak SK (2021) Biomass-derived 2,5-dimethylfuran as a promising alternative fuel: an application review on the compression and spark ignition engine. Fuel Process Technol 214:106687CrossRef
23.
Zurück zum Zitat de la Flor D, López-Aguado C, Paniagua M, Morales G, Mariscal R, Melero JA (2021) Defective UiO-66(Zr) as an efficient catalyst for the synthesis of bio jet-fuel precursors via aldol condensation of furfural and MIBK. J Catal 401:27–39CrossRef de la Flor D, López-Aguado C, Paniagua M, Morales G, Mariscal R, Melero JA (2021) Defective UiO-66(Zr) as an efficient catalyst for the synthesis of bio jet-fuel precursors via aldol condensation of furfural and MIBK. J Catal 401:27–39CrossRef
24.
Zurück zum Zitat Xu Q, Sheng X, Li N, Zhang J, Shi H, Niu M, Ping Q, Li N (2021) Ball-milling: a productive, economical, and widely applicable method for condensation of biomass-derived aldehydes and ketones at mild temperatures. ACS Sustain Chem Eng 9:8232–8237CrossRef Xu Q, Sheng X, Li N, Zhang J, Shi H, Niu M, Ping Q, Li N (2021) Ball-milling: a productive, economical, and widely applicable method for condensation of biomass-derived aldehydes and ketones at mild temperatures. ACS Sustain Chem Eng 9:8232–8237CrossRef
25.
Zurück zum Zitat Kwon JS, Choo H, Choi J, Jae J, Suh DJ, Lee KY, Ha J (2019) Condensation of pentose-derived furan compounds to C15 fuel precursors using supported phosphotungstic acid catalysts: strategy for designing heterogeneous acid catalysts based on the acid strength and pore structures. Appl Catal A Gen 570:238–244CrossRef Kwon JS, Choo H, Choi J, Jae J, Suh DJ, Lee KY, Ha J (2019) Condensation of pentose-derived furan compounds to C15 fuel precursors using supported phosphotungstic acid catalysts: strategy for designing heterogeneous acid catalysts based on the acid strength and pore structures. Appl Catal A Gen 570:238–244CrossRef
26.
Zurück zum Zitat Bai J, Zhang Y, Zhang X, Wang C, Ma L (2021) Synthesis of high-density components of jet fuel from lignin-derived aromatics via alkylation and subsequent hydrodeoxygenation. ACS Sustain Chem Eng 9:7112–7119CrossRef Bai J, Zhang Y, Zhang X, Wang C, Ma L (2021) Synthesis of high-density components of jet fuel from lignin-derived aromatics via alkylation and subsequent hydrodeoxygenation. ACS Sustain Chem Eng 9:7112–7119CrossRef
27.
Zurück zum Zitat Cioc RC, Smak TJ, Crockatt M, van der Waal JC, Bruijnincx PCA (2021) Furoic acid and derivatives as atypical dienes in Diels-Alder reactions. Green Chem 23:5503–5510CrossRef Cioc RC, Smak TJ, Crockatt M, van der Waal JC, Bruijnincx PCA (2021) Furoic acid and derivatives as atypical dienes in Diels-Alder reactions. Green Chem 23:5503–5510CrossRef
28.
Zurück zum Zitat Settle AE, Berstis L, Rorrer NA, Roman-Leshkóv Y, Beckham GT, Richards RM, Vardon DR (2017) Heterogeneous Diels-Alder catalysis for biomass-derived aromatic compounds. Green Chem 19:3468–3492CrossRef Settle AE, Berstis L, Rorrer NA, Roman-Leshkóv Y, Beckham GT, Richards RM, Vardon DR (2017) Heterogeneous Diels-Alder catalysis for biomass-derived aromatic compounds. Green Chem 19:3468–3492CrossRef
29.
Zurück zum Zitat Kumar A, Srivastava R (2020) Zirconium phosphate catalyzed transformations of biomass derived furfural to renewable chemicals. ACS Sustain Chem Eng 8:9497–9506CrossRef Kumar A, Srivastava R (2020) Zirconium phosphate catalyzed transformations of biomass derived furfural to renewable chemicals. ACS Sustain Chem Eng 8:9497–9506CrossRef
30.
Zurück zum Zitat Erigoni A, Hernández-Soto MC, Rey F, Segarra C, Díaz U (2020) Highly active hybrid mesoporous silica-supported base organocatalysts for C-C bond formation. Catal Today 345:227–236CrossRef Erigoni A, Hernández-Soto MC, Rey F, Segarra C, Díaz U (2020) Highly active hybrid mesoporous silica-supported base organocatalysts for C-C bond formation. Catal Today 345:227–236CrossRef
31.
Zurück zum Zitat Xu M, Zhang H, Guégan F, Frapper G, Corbet M, Marion P, Richard F, Clacens J (2020) Activated charcoal grafted with phenyl imidazole groups for Knœvenagel condensation of furfural with malononitrile. Catal Commun 147:106151CrossRef Xu M, Zhang H, Guégan F, Frapper G, Corbet M, Marion P, Richard F, Clacens J (2020) Activated charcoal grafted with phenyl imidazole groups for Knœvenagel condensation of furfural with malononitrile. Catal Commun 147:106151CrossRef
32.
Zurück zum Zitat Qin H, Zhou Y, Zeng Q, Cheng H, Chen L, Zhang B, Qi Z (2020) Efficient Knoevenagel condensation catalyzed by imidazole-based halogenfree deep eutectic solvent at room temperature. Green Energy Environ 5:124–129CrossRef Qin H, Zhou Y, Zeng Q, Cheng H, Chen L, Zhang B, Qi Z (2020) Efficient Knoevenagel condensation catalyzed by imidazole-based halogenfree deep eutectic solvent at room temperature. Green Energy Environ 5:124–129CrossRef
33.
Zurück zum Zitat Choudhary P, Sen A, Kumar A, Dhingra S, Nagaraja CM, Krishnan V (2021) Sulfonic acid functionalized graphitic carbon nitride as solid acid-base bifunctional catalyst for Knoevenagel condensation and multicomponent tandem reactions. Mater Chem Front 5:6265–6278CrossRef Choudhary P, Sen A, Kumar A, Dhingra S, Nagaraja CM, Krishnan V (2021) Sulfonic acid functionalized graphitic carbon nitride as solid acid-base bifunctional catalyst for Knoevenagel condensation and multicomponent tandem reactions. Mater Chem Front 5:6265–6278CrossRef
34.
Zurück zum Zitat Bahuguna A, Kumar A, Chhabra T, Kumar A, Krishnan V (2018) Potassium-functionalized graphitic carbon nitride supported on reduced graphene oxide as a sustainable catalyst for Knoevenagel condensation. ACS Appl Nano Mater 1:6711–6723CrossRef Bahuguna A, Kumar A, Chhabra T, Kumar A, Krishnan V (2018) Potassium-functionalized graphitic carbon nitride supported on reduced graphene oxide as a sustainable catalyst for Knoevenagel condensation. ACS Appl Nano Mater 1:6711–6723CrossRef
35.
Zurück zum Zitat Xu G, Jin M, Kalkhajeh YK, Wang L, Tao M, Zhang W (2019) Proton sponge functionalized polyacrylonitrile fibers as an efficient and recyclable superbasic catalyst for Knoevenagel condensation in water. J Clean Prod 231:77–86CrossRef Xu G, Jin M, Kalkhajeh YK, Wang L, Tao M, Zhang W (2019) Proton sponge functionalized polyacrylonitrile fibers as an efficient and recyclable superbasic catalyst for Knoevenagel condensation in water. J Clean Prod 231:77–86CrossRef
36.
Zurück zum Zitat van Schijndel J, Canalle LA, Molendijk D, Meuldijk J (2017) The green Knoevenagel condensation: solvent-free condensation of benzaldehydes. Green Chem Lett Rev 10:404–411CrossRef van Schijndel J, Canalle LA, Molendijk D, Meuldijk J (2017) The green Knoevenagel condensation: solvent-free condensation of benzaldehydes. Green Chem Lett Rev 10:404–411CrossRef
37.
Zurück zum Zitat Lolak N, Kuyuldar E, Burhan H, Goksu H, Akocak S, Sen F (2019) Composites of palladium-nickel alloy nanoparticles and graphene oxide for the Knoevenagel condensation of aldehydes with malononitrile. ACS Omega 4:6848–6853CrossRef Lolak N, Kuyuldar E, Burhan H, Goksu H, Akocak S, Sen F (2019) Composites of palladium-nickel alloy nanoparticles and graphene oxide for the Knoevenagel condensation of aldehydes with malononitrile. ACS Omega 4:6848–6853CrossRef
38.
Zurück zum Zitat Opanasenko M, Dhakshinamoorthy A, Shamzhy M, Nachtigall P, Horáček M, Garcia H, Čejka J (2013) Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal Sci Technol 3:500–507CrossRef Opanasenko M, Dhakshinamoorthy A, Shamzhy M, Nachtigall P, Horáček M, Garcia H, Čejka J (2013) Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal Sci Technol 3:500–507CrossRef
39.
Zurück zum Zitat Appaturi JN, Selvaraj M, Hamid SBA (2018) Synthesis of 3-(2-furylmethylene)-2,4-pentanedione using DL-alanine functionalized MCM-41 catalyst via Knoevenagel condensation reaction. Microporous Mesoporous Mater 260:260–269CrossRef Appaturi JN, Selvaraj M, Hamid SBA (2018) Synthesis of 3-(2-furylmethylene)-2,4-pentanedione using DL-alanine functionalized MCM-41 catalyst via Knoevenagel condensation reaction. Microporous Mesoporous Mater 260:260–269CrossRef
40.
Zurück zum Zitat Gohain M, Laskar K, Paul AK, Daimary N, Maharana M, Goswami IK, Hazarika A, Bora U, Deka D (2020) Carica papaya stem: a source of versatile heterogeneous catalyst for biodiesel production and C-C bond formation. Renew Energy 147:541–555CrossRef Gohain M, Laskar K, Paul AK, Daimary N, Maharana M, Goswami IK, Hazarika A, Bora U, Deka D (2020) Carica papaya stem: a source of versatile heterogeneous catalyst for biodiesel production and C-C bond formation. Renew Energy 147:541–555CrossRef
41.
Zurück zum Zitat Tarade K, Shinde S, Sakate S, Rode C (2019) Pyridine immobilised on magnetic silica as an efficient solid base catalyst for Knoevenagel condensation of furfural with acetyl acetone. Catal Commun 124:81–85CrossRef Tarade K, Shinde S, Sakate S, Rode C (2019) Pyridine immobilised on magnetic silica as an efficient solid base catalyst for Knoevenagel condensation of furfural with acetyl acetone. Catal Commun 124:81–85CrossRef
42.
Zurück zum Zitat Anbu N, Hariharan S, Dhakshinamoorthy A (2020) Knoevenagel-Doebner condensation promoted by chitosan as a reusable solid base catalyst. Mol Catal 484:110744CrossRef Anbu N, Hariharan S, Dhakshinamoorthy A (2020) Knoevenagel-Doebner condensation promoted by chitosan as a reusable solid base catalyst. Mol Catal 484:110744CrossRef
43.
Zurück zum Zitat Anbu N, Elamathi V, Varalakshmi P, Dhakshinamoorthy A (2020) Chitosan as a biodegradable heterogeneous catalyst for Knoevenagel condensation for benzaldehydes and ethylcyanoacetamide. Catal Commun 138:105954CrossRef Anbu N, Elamathi V, Varalakshmi P, Dhakshinamoorthy A (2020) Chitosan as a biodegradable heterogeneous catalyst for Knoevenagel condensation for benzaldehydes and ethylcyanoacetamide. Catal Commun 138:105954CrossRef
44.
Zurück zum Zitat Zhu S, Xu J, Cheng Z, Kuang Y, Wu Q, Wang B, Gao W, Zeng J, Li J, Chen K (2020) Catalytic transformation of cellulose into short rodlike cellulose nanofibers and platform chemicals over lignin-based solid acid. Appl Catal B Environ 268:118732CrossRef Zhu S, Xu J, Cheng Z, Kuang Y, Wu Q, Wang B, Gao W, Zeng J, Li J, Chen K (2020) Catalytic transformation of cellulose into short rodlike cellulose nanofibers and platform chemicals over lignin-based solid acid. Appl Catal B Environ 268:118732CrossRef
45.
Zurück zum Zitat Odoom-Wubah T, Li Q, Mulka R, Chen M, Huang J, Li Q, Luque R (2020) Calcified shrimp waste supported Pd NPs as an efficient catalyst towards benzene destruction. ACS Sustain Chem Eng 8:486–497CrossRef Odoom-Wubah T, Li Q, Mulka R, Chen M, Huang J, Li Q, Luque R (2020) Calcified shrimp waste supported Pd NPs as an efficient catalyst towards benzene destruction. ACS Sustain Chem Eng 8:486–497CrossRef
46.
Zurück zum Zitat Hussain Z, Kumar R (2018) Synthesis and characterization of novel corncob-based solid acid catalyst for biodiesel production. Ind Eng Chem Res 57:11645–11657CrossRef Hussain Z, Kumar R (2018) Synthesis and characterization of novel corncob-based solid acid catalyst for biodiesel production. Ind Eng Chem Res 57:11645–11657CrossRef
47.
Zurück zum Zitat Alirezvani Z, Dekamin MG, Davoodi F, Valiey E (2018) Melamine-functionalized chitosan: a new bio-based reusable bifunctional organocatalyst for the synthesis of cyanocinnamonitrile intermediates and densely functionalized nicotinonitrile derivatives. ChemistrySelect 3:10450–10463CrossRef Alirezvani Z, Dekamin MG, Davoodi F, Valiey E (2018) Melamine-functionalized chitosan: a new bio-based reusable bifunctional organocatalyst for the synthesis of cyanocinnamonitrile intermediates and densely functionalized nicotinonitrile derivatives. ChemistrySelect 3:10450–10463CrossRef
48.
Zurück zum Zitat Tang S, Yang J, Lin L, Peng K, Chen Y, Jin S, Yao W (2020) Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem Eng J 393:124728CrossRef Tang S, Yang J, Lin L, Peng K, Chen Y, Jin S, Yao W (2020) Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem Eng J 393:124728CrossRef
49.
Zurück zum Zitat Sellimi S, Younes I, Ayed HB, Maalej H, Montero V, Rinaudo M, Dahia M, Mechichi T, Hajji M, Nasri M (2015) Structural, physicochemical and antioxidant properties of sodium alginate isolated from Tunisian brown seaweed. Int J Biol Macromol 72:1358–1367CrossRef Sellimi S, Younes I, Ayed HB, Maalej H, Montero V, Rinaudo M, Dahia M, Mechichi T, Hajji M, Nasri M (2015) Structural, physicochemical and antioxidant properties of sodium alginate isolated from Tunisian brown seaweed. Int J Biol Macromol 72:1358–1367CrossRef
50.
Zurück zum Zitat Fujiwara Y, Maeda R, Takeshita H, Komohara Y (2021) Alginates as food ingredients absorb extra salt in sodium chloride-treated mice. Heliyon 7:e06551CrossRef Fujiwara Y, Maeda R, Takeshita H, Komohara Y (2021) Alginates as food ingredients absorb extra salt in sodium chloride-treated mice. Heliyon 7:e06551CrossRef
51.
Zurück zum Zitat Wu Z, Wu J, Zhang R, Yuan S, Lu Q, Yu Y (2018) Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification. Carbohydr Polym 181:56–62CrossRef Wu Z, Wu J, Zhang R, Yuan S, Lu Q, Yu Y (2018) Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification. Carbohydr Polym 181:56–62CrossRef
52.
Zurück zum Zitat Nouri A, Nouri AP, Khalafy J, Etivand N (2020) A new and facile synthesis of 3-(2-aryl-6-nitro-1H-indol-3-yl) quinoline-2,4(1H,3H)-diones by sodium alginate as biopolymeric catalyst. Res Chem Intermed 46:3025–3036CrossRef Nouri A, Nouri AP, Khalafy J, Etivand N (2020) A new and facile synthesis of 3-(2-aryl-6-nitro-1H-indol-3-yl) quinoline-2,4(1H,3H)-diones by sodium alginate as biopolymeric catalyst. Res Chem Intermed 46:3025–3036CrossRef
53.
Zurück zum Zitat Ilkhanizadeh S, Khalafy J, Dekamin MG (2019) Sodium alginate: a biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes. Int J Biol Macromol 140:605–613CrossRef Ilkhanizadeh S, Khalafy J, Dekamin MG (2019) Sodium alginate: a biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes. Int J Biol Macromol 140:605–613CrossRef
54.
Zurück zum Zitat Juan-Alcañiz J, Ramos-Fernandez EV, Lafont U, Gascon J, Kapteijn F (2010) Building MOF bottles around phosphotungstic acid ships: one-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. J Catal 269:229–241CrossRef Juan-Alcañiz J, Ramos-Fernandez EV, Lafont U, Gascon J, Kapteijn F (2010) Building MOF bottles around phosphotungstic acid ships: one-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. J Catal 269:229–241CrossRef
55.
Zurück zum Zitat Shakerizadeh-Shirazi F, Hemmateenejad B, Mehranpour AM (2013) Determination of the empirical solvent polarity parameter ET(30) by multivariate image analysis. Anal Methods 5:891–896CrossRef Shakerizadeh-Shirazi F, Hemmateenejad B, Mehranpour AM (2013) Determination of the empirical solvent polarity parameter ET(30) by multivariate image analysis. Anal Methods 5:891–896CrossRef
56.
Zurück zum Zitat Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358CrossRef Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358CrossRef
57.
Zurück zum Zitat Rani D, Singla P, Agarwal J (2018) ‘Chitosan in water’ as an eco-friendly and efficient catalytic system for Knoevenagel condensation reaction. Carbohydr Polym 202:355–364CrossRef Rani D, Singla P, Agarwal J (2018) ‘Chitosan in water’ as an eco-friendly and efficient catalytic system for Knoevenagel condensation reaction. Carbohydr Polym 202:355–364CrossRef
58.
Zurück zum Zitat Cheng H, Ning L, Liao S, Li W, Tang S, Li J, Chen H, Liu X, Shao L (2021) Nickel-alkyne-functionalized metal-organic frameworks: an efficient and reusable catalyst. Appl Catal A Gen 623:118216CrossRef Cheng H, Ning L, Liao S, Li W, Tang S, Li J, Chen H, Liu X, Shao L (2021) Nickel-alkyne-functionalized metal-organic frameworks: an efficient and reusable catalyst. Appl Catal A Gen 623:118216CrossRef
59.
Zurück zum Zitat Samui A, Kesharwani N, Haldar C, Sahu SK (2020) Fabrication of nanoscale covalent porous organic polymer: an efficacious catalyst for Knoevenagel condensation. Microp Mesop Mater 299:110112CrossRef Samui A, Kesharwani N, Haldar C, Sahu SK (2020) Fabrication of nanoscale covalent porous organic polymer: an efficacious catalyst for Knoevenagel condensation. Microp Mesop Mater 299:110112CrossRef
60.
Zurück zum Zitat Lee Y, Do XH, Hwang SS, Baek K (2021) Dual-functionalized ZIF-8 as an efficient acid-base bifunctional catalyst for the one-pot tandem reaction. Catal Today 359:124–132CrossRef Lee Y, Do XH, Hwang SS, Baek K (2021) Dual-functionalized ZIF-8 as an efficient acid-base bifunctional catalyst for the one-pot tandem reaction. Catal Today 359:124–132CrossRef
61.
Zurück zum Zitat Tan YC, Zeng HC (2018) Lewis basicity generated by localised charge imbalance in noble metal nanoparticle-embedded defective metal-organic frameworks. Nat Commun 9:4326CrossRef Tan YC, Zeng HC (2018) Lewis basicity generated by localised charge imbalance in noble metal nanoparticle-embedded defective metal-organic frameworks. Nat Commun 9:4326CrossRef
62.
Zurück zum Zitat Sigel H, Griesser R, Prijs BB, Mccormick DB, Joiner MG (1969) “Hard and Soft” Behavior of Mn2+, Cu2+, and Zn2+ with respect to carboxylic acids and α-oxy- or α-thio-substituted carboxylic acids of biochemical significance. Arch Biochem Biophys 130:514–520CrossRef Sigel H, Griesser R, Prijs BB, Mccormick DB, Joiner MG (1969) “Hard and Soft” Behavior of Mn2+, Cu2+, and Zn2+ with respect to carboxylic acids and α-oxy- or α-thio-substituted carboxylic acids of biochemical significance. Arch Biochem Biophys 130:514–520CrossRef
63.
Zurück zum Zitat Zhao X, Wang X, Lou T (2022) Simultaneous adsorption for cationic and anionic dyes using chitosan/electrospun sodium alginate nanofiber composite sponges. Carbohydr Polym 276:118728CrossRef Zhao X, Wang X, Lou T (2022) Simultaneous adsorption for cationic and anionic dyes using chitosan/electrospun sodium alginate nanofiber composite sponges. Carbohydr Polym 276:118728CrossRef
64.
Zurück zum Zitat Swamy BY, Yun Y (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119CrossRef Swamy BY, Yun Y (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119CrossRef
Metadaten
Titel
Naturally biodegradable polymer as an effective heterogeneous catalyst for synthesis of biofuels via Knoevenagel condensation strategy
verfasst von
Lulu Chen
Shima Liu
Hu Pan
Ke Song
Xianwu Zhou
Jie Guo
Ou Zhuo
Jian He
Publikationsdatum
30.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-021-02253-8

Weitere Artikel der Ausgabe 1/2024

Biomass Conversion and Biorefinery 1/2024 Zur Ausgabe