Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2024

09.02.2022 | Original Article

Biomass to biofuel densification of coconut fibers: kinetic triplet and thermodynamic evaluation

verfasst von: Letícia Maciel Sant’Ana Simões, Carine Setter, Nádia Guimarães Sousa, Cássia Regina Cardoso, Tiago José Pires de Oliveira

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper aims to investigate coconut fiber’s thermal behavior and evaluate its potential energy production through kinetic and thermodynamic studies, as well as the potential to produce solid biofuels (briquettes). Structural chemical analysis, proximate analysis, and higher heating value characterized coconut fiber. The thermogravimetric experiments were carried out in an inert atmosphere (N2), varying the heating rates at 5, 10, 15, and 20 K min−1. The kinetic triplet was determined using isoconversional methods and master plot methodology. The pre-exponential factor, enthalpy, entropy, and Gibbs free energy parameters were calculated. The briquettes were made by different particle sizes: mixed particles (without granulometric classification); particles between 0.35 mm and 0.25 mm, and particles lower than 0.25 mm. The coconut fiber briquettes were produced in a compaction system at a temperature of 393.15 K under 15 MPa pressure for 20 min. This study also determined the apparent density, the resistance to diametral compression, and the energy density for coconut fiber briquettes. The pyrolysis reaction was modeled considering the reaction mechanism of as the three-dimensional Jader equation, with global activation energy 129.8 kJ mol−1 and global pre-exponential factor 2.68 × 107 s−1. The enthalpy and entropy values have shown considerable variations due to the conversion, suggesting that the pyrolysis of coconut fiber involves complex reaction mechanisms. The briquetting process enhanced the coconut fibers, and the results have shown that the lower particle size (particles ≤ 0.25 mm) presented better physical–mechanical properties and energy density. It is concluded that coconut fiber has the potential to be turned into biofuels from the thermochemical processes and may be enhanced by the densification process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Adeniyi AG, Otoikhian KS, Ighalo JO, Mohammed IA (2019) Pyrolysis of different fruit peel waste via a thermodynamic model. ABUAD J Eng Res Dev 2:16–24 Adeniyi AG, Otoikhian KS, Ighalo JO, Mohammed IA (2019) Pyrolysis of different fruit peel waste via a thermodynamic model. ABUAD J Eng Res Dev 2:16–24
4.
Zurück zum Zitat Correa MU de (2012) Árvore do conhecimento: coco Correa MU de (2012) Árvore do conhecimento: coco
6.
Zurück zum Zitat Empresa de Pesquisa Energética - EPE (2019) Balanço Energético Nacional Empresa de Pesquisa Energética - EPE (2019) Balanço Energético Nacional
9.
13.
Zurück zum Zitat Yesid Javier, Rueda-Ordóñez Katia, Tannous Edgardo, Olivares-Gómez (2015) An empirical model to obtain the kinetic parameters of lignocellulosic biomass pyrolysis in an independent parallel reactions scheme. Fuel Processing Technology 140222-230 10.1016/j.fuproc.2015.09.001 CrossRef Yesid Javier, Rueda-Ordóñez Katia, Tannous Edgardo, Olivares-Gómez (2015) An empirical model to obtain the kinetic parameters of lignocellulosic biomass pyrolysis in an independent parallel reactions scheme. Fuel Processing Technology 140222-230 10.1016/j.fuproc.2015.09.001 CrossRef
18.
Zurück zum Zitat Singh RK, Pandey D, Patil T, Sawarkar AN (2020) Pyrolysis of banana leaves biomass: physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresource Technol 310:123464CrossRef Singh RK, Pandey D, Patil T, Sawarkar AN (2020) Pyrolysis of banana leaves biomass: physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresource Technol 310:123464CrossRef
20.
Zurück zum Zitat White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol 91:1–33CrossRef White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol 91:1–33CrossRef
21.
Zurück zum Zitat Açıkalın K (2021) Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass. Bioresource Technol 125438 Açıkalın K (2021) Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass. Bioresource Technol 125438
27.
Zurück zum Zitat ASTM (2013) D1762–84, Standard test method for chemical analysis of wood charcoal, ASTM ASTM (2013) D1762–84, Standard test method for chemical analysis of wood charcoal, ASTM
28.
Zurück zum Zitat TAPPI T. (2007) 204 cm-97. Solvent extractives of wood and pulp. 12 TAPPI T. (2007) 204 cm-97. Solvent extractives of wood and pulp. 12
29.
Zurück zum Zitat Gomide JL, Demuner BJ (1986) Determinação do teor de lignina em material lenhoso: método Klason modificado. O papel 47:36–38 Gomide JL, Demuner BJ (1986) Determinação do teor de lignina em material lenhoso: método Klason modificado. O papel 47:36–38
30.
Zurück zum Zitat Goldschimid O (1971) Ultraviolet spectra. In: Sarkanen KV, Ludwig CH Lignins: occurrence, formation, structure and reactions. John Wiley Interprice, New York Goldschimid O (1971) Ultraviolet spectra. In: Sarkanen KV, Ludwig CH Lignins: occurrence, formation, structure and reactions. John Wiley Interprice, New York
32.
Zurück zum Zitat Uzun BB, Yaman E (2017) Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis. J Energy Inst 90:825–837CrossRef Uzun BB, Yaman E (2017) Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis. J Energy Inst 90:825–837CrossRef
33.
Zurück zum Zitat Li H, Li L, Zhang R et al (2014) Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production. J Energy Chem 23:732–741CrossRef Li H, Li L, Zhang R et al (2014) Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production. J Energy Chem 23:732–741CrossRef
34.
Zurück zum Zitat Vyazovkin S, Chrissafis K, Di Lorenzo ML et al (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23CrossRef Vyazovkin S, Chrissafis K, Di Lorenzo ML et al (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23CrossRef
35.
Zurück zum Zitat de Carvalho VS, Tannous K (2017) Thermal decomposition kinetics modeling of energy cane Saccharum robustum. Thermochim Acta 657:56–65CrossRef de Carvalho VS, Tannous K (2017) Thermal decomposition kinetics modeling of energy cane Saccharum robustum. Thermochim Acta 657:56–65CrossRef
36.
Zurück zum Zitat Aslan DI, Parthasarathy P, Goldfarb JL, Ceylan S (2017) Pyrolysis reaction models of waste tires: application of master-plots method for energy conversion via devolatilization. Waste Manage 68:405–411CrossRef Aslan DI, Parthasarathy P, Goldfarb JL, Ceylan S (2017) Pyrolysis reaction models of waste tires: application of master-plots method for energy conversion via devolatilization. Waste Manage 68:405–411CrossRef
41.
Zurück zum Zitat Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894CrossRef Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894CrossRef
42.
Zurück zum Zitat Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115CrossRef Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115CrossRef
43.
Zurück zum Zitat ASTM E711–87 (2004) Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter. Annual Book of ASTM Standards ASTM E711–87 (2004) Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter. Annual Book of ASTM Standards
45.
Zurück zum Zitat Yang X, Wang H, Strong PJ et al (2017) Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies 10:469CrossRef Yang X, Wang H, Strong PJ et al (2017) Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies 10:469CrossRef
48.
Zurück zum Zitat Eriksson S, Prior M (1990) The briquetting of agricultural wastes for fuel. Food and Agriculture Organization of the United Nations Eriksson S, Prior M (1990) The briquetting of agricultural wastes for fuel. Food and Agriculture Organization of the United Nations
63.
Zurück zum Zitat Wang J, Zhang M, Chen M et al (2006) Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim Acta 444:110–114CrossRef Wang J, Zhang M, Chen M et al (2006) Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim Acta 444:110–114CrossRef
64.
Zurück zum Zitat Hameed S, Sharma A, Pareek V et al (2019) A review on biomass pyrolysis models: Kinetic, network and mechanistic models. Biomass Bioenerg 123:104–122CrossRef Hameed S, Sharma A, Pareek V et al (2019) A review on biomass pyrolysis models: Kinetic, network and mechanistic models. Biomass Bioenerg 123:104–122CrossRef
65.
Zurück zum Zitat Cardoso CR, Miranda MR, Santos KG, Ataíde CH (2011) Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse. J Anal Appl Pyrol 92:392–400CrossRef Cardoso CR, Miranda MR, Santos KG, Ataíde CH (2011) Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse. J Anal Appl Pyrol 92:392–400CrossRef
66.
Zurück zum Zitat Liu R, Liu G, Yousaf B et al (2022) Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix. Renew Sustain Energy Rev 153:111761CrossRef Liu R, Liu G, Yousaf B et al (2022) Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix. Renew Sustain Energy Rev 153:111761CrossRef
67.
Zurück zum Zitat Leng E, Guo Y, Chen J et al (2022) A comprehensive review on lignin pyrolysis: mechanism, modeling and the effects of inherent metals in biomass. Fuel 309:122102CrossRef Leng E, Guo Y, Chen J et al (2022) A comprehensive review on lignin pyrolysis: mechanism, modeling and the effects of inherent metals in biomass. Fuel 309:122102CrossRef
75.
Zurück zum Zitat Soria-Verdugo A, Goos E, García-Hernando N, Riedel U (2018) Analyzing the pyrolysis kinetics of several microalgae species by various differential and integral isoconversional kinetic methods and the Distributed Activation Energy Model. Algal Res 32:11–29CrossRef Soria-Verdugo A, Goos E, García-Hernando N, Riedel U (2018) Analyzing the pyrolysis kinetics of several microalgae species by various differential and integral isoconversional kinetic methods and the Distributed Activation Energy Model. Algal Res 32:11–29CrossRef
80.
Zurück zum Zitat Missagia B, Guerrero C, Narra S et al (2011) Physicomechanical properties of rice husk pellets for energy generation. Energy Fuels 25:5786–5790CrossRef Missagia B, Guerrero C, Narra S et al (2011) Physicomechanical properties of rice husk pellets for energy generation. Energy Fuels 25:5786–5790CrossRef
81.
Zurück zum Zitat de Nazaret Cardenas-Rodriguez H, Martins R, Oliveira LEL et al (2021) Analysis on the use of briquettes as an alternative to improve the generation of thermal energy in the locality of Aripuana-Brazil. Energies 14:6355CrossRef de Nazaret Cardenas-Rodriguez H, Martins R, Oliveira LEL et al (2021) Analysis on the use of briquettes as an alternative to improve the generation of thermal energy in the locality of Aripuana-Brazil. Energies 14:6355CrossRef
Metadaten
Titel
Biomass to biofuel densification of coconut fibers: kinetic triplet and thermodynamic evaluation
verfasst von
Letícia Maciel Sant’Ana Simões
Carine Setter
Nádia Guimarães Sousa
Cássia Regina Cardoso
Tiago José Pires de Oliveira
Publikationsdatum
09.02.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02393-5

Weitere Artikel der Ausgabe 1/2024

Biomass Conversion and Biorefinery 1/2024 Zur Ausgabe