Skip to main content
Erschienen in: Journal of Materials Science 7/2020

26.11.2019 | Computation & theory

Network cavity, spatial distribution of sodium and dynamics in sodium silicate melts

verfasst von: To Ba Van, P. K. Hung, L. T. Vinh, N. T. T. Ha, L. T. San, Fumiya Noritake

Erschienen in: Journal of Materials Science | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molecular dynamics simulation is carried out for studying the structure and dynamics of sodium silicate melts using the network cavity (NC), NF (network former) cluster and NC cluster. The simulation shows that an NC contains up to six Na, and its radius varies from 1.4 to 4.5 Å. The number of Na atoms located in NC depends strongly on the constituent content of NC-forming atoms. The simulation also reveals that Na and O form the chemical bond. The static structure is found to be heterogeneous with separate Na-poor and Na-rich regions formed by different-type NC clusters, the number and size of which vary with SiO2 content. We also find the sodium deficit around Si and sodium surplus around O. As the status of O changes, Na atoms are redistributed between vicinity spaces of network former (VSNFs). The dynamical structure is heterogeneous with separate regions occupied by an NF cluster of high-sodium-density atoms and a number of NF clusters of low-sodium-density atoms. During hundreds of picoseconds, the sodium atoms are not uniformly distributed throughout VSNFs, but they prefer to move along diffusion pathways. In the SiO2-rich model, the diffusion pathways emerge clearly, while in the SiO2-poor model, these diffusion pathways disappear.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Davidenko AO, Sokolskii VE, Roik AS, Goncharov IA (2014) Structural study of sodium silicate glasses and melts. Inorg Mater 50(12):1289–1296CrossRef Davidenko AO, Sokolskii VE, Roik AS, Goncharov IA (2014) Structural study of sodium silicate glasses and melts. Inorg Mater 50(12):1289–1296CrossRef
2.
Zurück zum Zitat Zhao Q, Guerette M, Scannell G, Huang L (2012) In-situ high temperature Raman and Brillouin light scattering studies of sodium silicate glasses. J Non-Cryst Solids 358:3418–3426CrossRef Zhao Q, Guerette M, Scannell G, Huang L (2012) In-situ high temperature Raman and Brillouin light scattering studies of sodium silicate glasses. J Non-Cryst Solids 358:3418–3426CrossRef
3.
Zurück zum Zitat Jabraoui H, Vaills Y, Hasnaoui A, Badawi M, Ouaskit S (2016) Effect of sodium oxide modifier on structural and elastic properties of silicate glass. J Phys Chem B 120(51):13193–13205CrossRef Jabraoui H, Vaills Y, Hasnaoui A, Badawi M, Ouaskit S (2016) Effect of sodium oxide modifier on structural and elastic properties of silicate glass. J Phys Chem B 120(51):13193–13205CrossRef
4.
Zurück zum Zitat Meyer A, Horbach J, Kob W, Kargl F, Schober H (2004) Channel formation and intermediate range order in sodium silicate melts and glasses. Phys Rev Lett 93(2):027801–027804CrossRef Meyer A, Horbach J, Kob W, Kargl F, Schober H (2004) Channel formation and intermediate range order in sodium silicate melts and glasses. Phys Rev Lett 93(2):027801–027804CrossRef
5.
Zurück zum Zitat Nesbitt HW, Henderson GS, Bancroft GM, Ho R (2015) Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: implications for spectroscopic studies and for the modified random network. J Non-Cryst Solids 409:139–148CrossRef Nesbitt HW, Henderson GS, Bancroft GM, Ho R (2015) Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: implications for spectroscopic studies and for the modified random network. J Non-Cryst Solids 409:139–148CrossRef
6.
Zurück zum Zitat Koroleva Olga N, Anfilogov Vsevolod N (2013) Structure of Na2O–SiO2 melt as a function of composition: in situ Raman spectroscopic study. J Non-Cryst Solids 375:62–68CrossRef Koroleva Olga N, Anfilogov Vsevolod N (2013) Structure of Na2O–SiO2 melt as a function of composition: in situ Raman spectroscopic study. J Non-Cryst Solids 375:62–68CrossRef
7.
Zurück zum Zitat Smith W, Greaves GN, Gillan MJ (1995) Computer simulation of sodium disilicate glass. J Chem Phys 103(8):3091–3097CrossRef Smith W, Greaves GN, Gillan MJ (1995) Computer simulation of sodium disilicate glass. J Chem Phys 103(8):3091–3097CrossRef
8.
Zurück zum Zitat Jabraoui H, Achhal EM, Hasnaoui A, Garden JL, Vaills Y, Ouaskit S (2016) Molecular dynamics simulation of thermodynamic and structural properties of silicate glass: effect of the alkali oxide modifiers. J Non-Cryst Solids 448:16–26CrossRef Jabraoui H, Achhal EM, Hasnaoui A, Garden JL, Vaills Y, Ouaskit S (2016) Molecular dynamics simulation of thermodynamic and structural properties of silicate glass: effect of the alkali oxide modifiers. J Non-Cryst Solids 448:16–26CrossRef
9.
Zurück zum Zitat Henderson GS (2005) The structure of silicate melts: a glass perspective. Can Mineral 43:1921–1958CrossRef Henderson GS (2005) The structure of silicate melts: a glass perspective. Can Mineral 43:1921–1958CrossRef
10.
Zurück zum Zitat Mountjoy G, Al-Hasni BM, Storey C (2011) Structural organisation in oxide glasses from molecular dynamics modelling. J Non-Cryst Solids 357:2522–2529CrossRef Mountjoy G, Al-Hasni BM, Storey C (2011) Structural organisation in oxide glasses from molecular dynamics modelling. J Non-Cryst Solids 357:2522–2529CrossRef
11.
Zurück zum Zitat Pedone A, Malavasi G, Cormack AN, Segre U, Menziani MC (2007) Insight into elastic properties of binary alkali silicate glasses; prediction and interpretation through atomistic simulation techniques. Chem Mater 19(13):3144–3154CrossRef Pedone A, Malavasi G, Cormack AN, Segre U, Menziani MC (2007) Insight into elastic properties of binary alkali silicate glasses; prediction and interpretation through atomistic simulation techniques. Chem Mater 19(13):3144–3154CrossRef
12.
Zurück zum Zitat Adkins L, Cormack AN (2011) Large-scale simulations of sodium silicate glasses. J Non-Cryst Solids 357:2538–2541CrossRef Adkins L, Cormack AN (2011) Large-scale simulations of sodium silicate glasses. J Non-Cryst Solids 357:2538–2541CrossRef
13.
Zurück zum Zitat Malavasi G, Menziani MC, Pedone A, Segre U (2006) Void size distribution in MD-modelled silica glass structures. J Non-Cryst Solids 352:285–296CrossRef Malavasi G, Menziani MC, Pedone A, Segre U (2006) Void size distribution in MD-modelled silica glass structures. J Non-Cryst Solids 352:285–296CrossRef
14.
Zurück zum Zitat Sviridov SI (2013) Diffusion of cations in sodium-potassium and sodium-barium silicate melts. Glass Phys Chem 39(2):130–135CrossRef Sviridov SI (2013) Diffusion of cations in sodium-potassium and sodium-barium silicate melts. Glass Phys Chem 39(2):130–135CrossRef
15.
Zurück zum Zitat Kargl F, Weis H, Unruh T, Meyer A (2012) Self diffusion in liquid aluminium. J Phys Conf Ser 340:012077CrossRef Kargl F, Weis H, Unruh T, Meyer A (2012) Self diffusion in liquid aluminium. J Phys Conf Ser 340:012077CrossRef
16.
Zurück zum Zitat Jund P, Kob W, Jullien R (2001) Channel diffusion of sodium in a silicate glass. Phys Rev B 64:134303–134307CrossRef Jund P, Kob W, Jullien R (2001) Channel diffusion of sodium in a silicate glass. Phys Rev B 64:134303–134307CrossRef
17.
Zurück zum Zitat Jund P, Kob W, Jullien R (2002) Transport properties of sodium in a silicate glass: a numerical study. Philos Mag B 82(5):597–606CrossRef Jund P, Kob W, Jullien R (2002) Transport properties of sodium in a silicate glass: a numerical study. Philos Mag B 82(5):597–606CrossRef
18.
Zurück zum Zitat Sunyer E, Jund P, Jullien R (2003) Matrix-controlled channel diffusion of sodium in amorphous silica. J Phys Condens Matter 15:L431–L437CrossRef Sunyer E, Jund P, Jullien R (2003) Matrix-controlled channel diffusion of sodium in amorphous silica. J Phys Condens Matter 15:L431–L437CrossRef
19.
Zurück zum Zitat Sunyer E, Jund P, Jullien R (2003) Numerical investigation of ionic transport in glasses: the example of sodium in amorphous silica. J Phys Condens Matter 15:S1659–S1671CrossRef Sunyer E, Jund P, Jullien R (2003) Numerical investigation of ionic transport in glasses: the example of sodium in amorphous silica. J Phys Condens Matter 15:S1659–S1671CrossRef
20.
Zurück zum Zitat Sunyer E, Jund P, Jullien R (2002) Characterization of channel diffusion in a sodium tetrasilicate glass via molecular-dynamics simulations. Phys Rev B 65:214203–214208CrossRef Sunyer E, Jund P, Jullien R (2002) Characterization of channel diffusion in a sodium tetrasilicate glass via molecular-dynamics simulations. Phys Rev B 65:214203–214208CrossRef
21.
Zurück zum Zitat Horbach J, Kob W, Binder K (2001) Structural and dynamical properties of sodium silicate melts: an investigation by molecular dynamics computer simulation. Chem Geol 174:87–101CrossRef Horbach J, Kob W, Binder K (2001) Structural and dynamical properties of sodium silicate melts: an investigation by molecular dynamics computer simulation. Chem Geol 174:87–101CrossRef
22.
Zurück zum Zitat Bauchy M, Micoulaut M (2011) From pockets to channels: density-controlled diffusion in sodium silicates. Phys Rev B 83:184118–184122CrossRef Bauchy M, Micoulaut M (2011) From pockets to channels: density-controlled diffusion in sodium silicates. Phys Rev B 83:184118–184122CrossRef
23.
Zurück zum Zitat Lammert H, Kunow M, Heuer A (2003) Complete identification of alkali sites in ion conducting lithium silicate glasses: a computer study of ion dynamics. Phys Rev Lett 90:215901–251904CrossRef Lammert H, Kunow M, Heuer A (2003) Complete identification of alkali sites in ion conducting lithium silicate glasses: a computer study of ion dynamics. Phys Rev Lett 90:215901–251904CrossRef
24.
Zurück zum Zitat Habasaki J, Hiwatari Y (2004) Molecular dynamics study of the mechanism of ion transport in lithium silicate glasses: characteristics of the potential energy surface and structures. Phys Rev B 69:144207–144214CrossRef Habasaki J, Hiwatari Y (2004) Molecular dynamics study of the mechanism of ion transport in lithium silicate glasses: characteristics of the potential energy surface and structures. Phys Rev B 69:144207–144214CrossRef
25.
Zurück zum Zitat Shajahan M, Razul G, Matharoo GS, Poole PH (2011) Spatial correlation of the dynamic propensity of a glass-forming liquid. J Phys Condens Matter 23:235103–235106CrossRef Shajahan M, Razul G, Matharoo GS, Poole PH (2011) Spatial correlation of the dynamic propensity of a glass-forming liquid. J Phys Condens Matter 23:235103–235106CrossRef
26.
Zurück zum Zitat Sillescu H (1999) Heterogeneity at the glass transition: a review. J Non-Cryst Solids 243:81–108CrossRef Sillescu H (1999) Heterogeneity at the glass transition: a review. J Non-Cryst Solids 243:81–108CrossRef
27.
Zurück zum Zitat Coslovich D, Pastore G (2009) Dynamics and energy landscape in a tetrahedral network glass-former: direct comparison with models of fragile liquids. J Phys Condens Matter 21:285107CrossRef Coslovich D, Pastore G (2009) Dynamics and energy landscape in a tetrahedral network glass-former: direct comparison with models of fragile liquids. J Phys Condens Matter 21:285107CrossRef
28.
Zurück zum Zitat Appignanesi GA, Rodriguez Fris JA (2009) Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters. J Phys Condens Matter 21:203103–203126CrossRef Appignanesi GA, Rodriguez Fris JA (2009) Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters. J Phys Condens Matter 21:203103–203126CrossRef
29.
Zurück zum Zitat Glotzer Sharon C (2000) Spatially heterogeneous dynamics in liquids: insights from simulation. J Non-Cryst Solids 274:342–355CrossRef Glotzer Sharon C (2000) Spatially heterogeneous dynamics in liquids: insights from simulation. J Non-Cryst Solids 274:342–355CrossRef
30.
Zurück zum Zitat Noritake F, Kawamura K, Yoshino T, Takahashi E (2012) Molecular dynamics simulation and electrical conductivity measurement of Na2O·3SiO2 melt under high pressure; relationship between its structure and properties. J Non-Cryst Solids 358:3109–3118CrossRef Noritake F, Kawamura K, Yoshino T, Takahashi E (2012) Molecular dynamics simulation and electrical conductivity measurement of Na2O·3SiO2 melt under high pressure; relationship between its structure and properties. J Non-Cryst Solids 358:3109–3118CrossRef
31.
Zurück zum Zitat Fabian M, Jovari P, Svab E, Meszaros G, Proffen T, Veress E (2007) Network structure of 0.7SiO2–0.3Na2O glass from neutron and X-ray diffraction and RMC modelling. J Phys Condens Matter 19:335209–335219CrossRef Fabian M, Jovari P, Svab E, Meszaros G, Proffen T, Veress E (2007) Network structure of 0.7SiO2–0.3Na2O glass from neutron and X-ray diffraction and RMC modelling. J Phys Condens Matter 19:335209–335219CrossRef
Metadaten
Titel
Network cavity, spatial distribution of sodium and dynamics in sodium silicate melts
verfasst von
To Ba Van
P. K. Hung
L. T. Vinh
N. T. T. Ha
L. T. San
Fumiya Noritake
Publikationsdatum
26.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04232-x

Weitere Artikel der Ausgabe 7/2020

Journal of Materials Science 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.