Skip to main content
Erschienen in: Computational Mechanics 4/2021

24.07.2021 | Original Paper

Nodally integrated thermomechanical RKPM: Part II—generalized thermoelasticity and hyperbolic finite-strain thermoplasticity

verfasst von: Michael Hillman, Kuan-Chung Lin

Erschienen in: Computational Mechanics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this two-part paper, a stable and efficient nodally-integrated reproducing kernel particle method (RKPM) approach for solving the governing equations of generalized thermomechanical theories is developed. Part I investigated quadrature in the weak form using classical thermoelasticity as a model problem, and a stabilized and corrected nodal integration was proposed. In this sequel, these methods are developed for generalized thermoelasticity and generalized finite-strain plasticity theories of the hyperbolic type, which are more amenable to explicit time integration than the classical theories. Generalized thermomechanical models yield finite propagation of temperature, with a so-called second sound speed. Since this speed is not well characterized for common engineering materials and environments, equating the elastic wave speed with the second sound speed is investigated to obtain results close to classical thermoelasticity, which also yields a uniform critical time step. Implementation of the proposed nodally integrated RKPM for explicit analysis of finite-strain thermoplasticity is also described in detail. Several benchmark problems are solved to demonstrate the effectiveness of the proposed approach for thermomechanical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abouelregal AE, Zenkour AM (2013) The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium. Chin Phys B 22(10):108102CrossRef Abouelregal AE, Zenkour AM (2013) The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium. Chin Phys B 22(10):108102CrossRef
2.
Zurück zum Zitat Adam L, Ponthot J-P (2005) Thermomechanical modeling of metals at finite strains: first and mixed order finite elements. Int J Solids Struct 42(21–22):5615–5655MATHCrossRef Adam L, Ponthot J-P (2005) Thermomechanical modeling of metals at finite strains: first and mixed order finite elements. Int J Solids Struct 42(21–22):5615–5655MATHCrossRef
3.
Zurück zum Zitat Armero F, Simo JC (1993) A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity. Int J Plast 9(6):749–782MATHCrossRef Armero F, Simo JC (1993) A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity. Int J Plast 9(6):749–782MATHCrossRef
4.
Zurück zum Zitat Baek J, Chen J, Zhou G, Arnett K, Hillman M, Hegemier G, Hardesty S (in press) A semi-Lagrangian RKPM with node-based shock algorithm for explosive welding simulation. Comput Mech Baek J, Chen J, Zhou G, Arnett K, Hillman M, Hegemier G, Hardesty S (in press) A semi-Lagrangian RKPM with node-based shock algorithm for explosive welding simulation. Comput Mech
5.
Zurück zum Zitat Bagri A, Taheri H, Eslami MR, Fariborz S (2006) Generalized coupled thermoelasticity of a layer. J Therm Stresses 29(4):359–370CrossRef Bagri A, Taheri H, Eslami MR, Fariborz S (2006) Generalized coupled thermoelasticity of a layer. J Therm Stresses 29(4):359–370CrossRef
6.
Zurück zum Zitat Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe, BerlinMATH Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe, BerlinMATH
7.
Zurück zum Zitat Beni YT, Movahhedy MR (2010) Consistent arbitrary Lagrangian Eulerian formulation for large deformation thermo-mechanical analysis. Mater Des 31(8):3690–3702CrossRef Beni YT, Movahhedy MR (2010) Consistent arbitrary Lagrangian Eulerian formulation for large deformation thermo-mechanical analysis. Mater Des 31(8):3690–3702CrossRef
8.
Zurück zum Zitat Camacho GT, Ortiz M (1997) Adaptive Lagrangian modelling of ballistic penetration of metallic targets. Comput Methods Appl Mech Eng 142(3–4):269–301MATHCrossRef Camacho GT, Ortiz M (1997) Adaptive Lagrangian modelling of ballistic penetration of metallic targets. Comput Methods Appl Mech Eng 142(3–4):269–301MATHCrossRef
9.
Zurück zum Zitat Cattaneo C (1958) On a form of the heat equation eliminating the paradox of an instantaneous propagation. Account Render 247:431–433MATH Cattaneo C (1958) On a form of the heat equation eliminating the paradox of an instantaneous propagation. Account Render 247:431–433MATH
10.
Zurück zum Zitat Chen J, Dargush GF (1995) Boundary element method for dynamic poroelastic and thermoelastic analyses. Int J Solids Struct 32(15):2257–2278MATHCrossRef Chen J, Dargush GF (1995) Boundary element method for dynamic poroelastic and thermoelastic analyses. Int J Solids Struct 32(15):2257–2278MATHCrossRef
11.
Zurück zum Zitat Chen J-S, Hillman M, Chi S-W (2016) Meshfree methods: progress made after 20 years. J Eng Mech Chen J-S, Hillman M, Chi S-W (2016) Meshfree methods: progress made after 20 years. J Eng Mech
12.
Zurück zum Zitat Chen J-S, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95(5):387–418MathSciNetMATHCrossRef Chen J-S, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95(5):387–418MathSciNetMATHCrossRef
13.
Zurück zum Zitat Chen J-S, Liu WK, Hillman M, Chi SW, Lian Y, Bessa MA (2017) Reproducing Kernel approximation and discretization. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, 2nd edn. Wiley, Chichester Chen J-S, Liu WK, Hillman M, Chi SW, Lian Y, Bessa MA (2017) Reproducing Kernel approximation and discretization. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, 2nd edn. Wiley, Chichester
14.
Zurück zum Zitat Chen J-S, Pan C, Roque C, Wang H-P (1998) A lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech 22(3):289–307MATHCrossRef Chen J-S, Pan C, Roque C, Wang H-P (1998) A lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech 22(3):289–307MATHCrossRef
15.
Zurück zum Zitat Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227MathSciNetMATHCrossRef Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227MathSciNetMATHCrossRef
16.
Zurück zum Zitat Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466MATHCrossRef Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466MATHCrossRef
17.
Zurück zum Zitat Chen J-S, Wu Y (2007) Stability in Lagrangian and semi-Lagrangian reproducing kernel discretizations using nodal integration in nonlinear solid mechanics. In: Advances in meshfree techniques. Springer, pp 55–76 Chen J-S, Wu Y (2007) Stability in Lagrangian and semi-Lagrangian reproducing kernel discretizations using nodal integration in nonlinear solid mechanics. In: Advances in meshfree techniques. Springer, pp 55–76
18.
Zurück zum Zitat Chen J-S, Yoon S, Wu C-T (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(12):2587–2615MATHCrossRef Chen J-S, Yoon S, Wu C-T (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(12):2587–2615MATHCrossRef
19.
Zurück zum Zitat Chen J-S, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193(27–29):2827–2844MATHCrossRef Chen J-S, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193(27–29):2827–2844MATHCrossRef
20.
21.
Zurück zum Zitat Danilouskaya V (1950) Thermal stresses in elastic half space due to sudden heating of its boundary. Pelageya Yakovlevna Kochina 14:316–321 Danilouskaya V (1950) Thermal stresses in elastic half space due to sudden heating of its boundary. Pelageya Yakovlevna Kochina 14:316–321
22.
Zurück zum Zitat Eringen AC (1980) Mechanics of continua. Robert E. Krieger Publishing Co., HuntingtonMATH Eringen AC (1980) Mechanics of continua. Robert E. Krieger Publishing Co., HuntingtonMATH
23.
Zurück zum Zitat Fan Z, Li B (2019) Meshfree simulations for additive manufacturing process of metals. Integr Mater Manuf Innov 8(2):144–153CrossRef Fan Z, Li B (2019) Meshfree simulations for additive manufacturing process of metals. Integr Mater Manuf Innov 8(2):144–153CrossRef
25.
Zurück zum Zitat Guan P-C, Chen J-S, Wu Y, Teng H, Gaidos J, Hofstetter K, Alsaleh M (2009) Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations. Mech Mater 41(6):670–683CrossRef Guan P-C, Chen J-S, Wu Y, Teng H, Gaidos J, Hofstetter K, Alsaleh M (2009) Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations. Mech Mater 41(6):670–683CrossRef
26.
Zurück zum Zitat Guan P-C, Chi S-W, Chen J-S, Slawson T, Roth MJ (2011) Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047CrossRef Guan P-C, Chi S-W, Chen J-S, Slawson T, Roth MJ (2011) Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047CrossRef
27.
Zurück zum Zitat Hillman M, Chen J-S (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107:603–630MathSciNetMATHCrossRef Hillman M, Chen J-S (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107:603–630MathSciNetMATHCrossRef
28.
Zurück zum Zitat Hillman M, Chen J-S, Chi S-W (2014) Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput Part Mech 1(3):245–256CrossRef Hillman M, Chen J-S, Chi S-W (2014) Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput Part Mech 1(3):245–256CrossRef
29.
Zurück zum Zitat Hosseini SM, Sladek J, Sladek V (2011) Meshless local Petrov-Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder. Eng Anal Bound Elem 35(6):827–835MathSciNetMATHCrossRef Hosseini SM, Sladek J, Sladek V (2011) Meshless local Petrov-Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder. Eng Anal Bound Elem 35(6):827–835MathSciNetMATHCrossRef
30.
Zurück zum Zitat Hosseini-Tehrani P, Eslami MR, Azari S (2006) Analysis of thermoelastic crack problems using Green-Lindsay Theory. J Therm Stresses 29(4):317–330CrossRef Hosseini-Tehrani P, Eslami MR, Azari S (2006) Analysis of thermoelastic crack problems using Green-Lindsay Theory. J Therm Stresses 29(4):317–330CrossRef
31.
Zurück zum Zitat Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Dover Publications Inc, Mineola Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Dover Publications Inc, Mineola
32.
Zurück zum Zitat Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis. Int J Numer Methods Eng 15(12):1862–1867MathSciNetMATHCrossRef Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis. Int J Numer Methods Eng 15(12):1862–1867MathSciNetMATHCrossRef
33.
Zurück zum Zitat Kouchakzadeh MA, Entezari A (2015) Analytical solution of classic coupled thermoelasticity problem in a rotating disk. J Therm Stresses 38(11):1267–1289CrossRef Kouchakzadeh MA, Entezari A (2015) Analytical solution of classic coupled thermoelasticity problem in a rotating disk. J Therm Stresses 38(11):1267–1289CrossRef
34.
Zurück zum Zitat Li B, Habbal F, Ortiz M (2010) Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int J Numer Methods Eng 83(12):1541–1579MathSciNetMATHCrossRef Li B, Habbal F, Ortiz M (2010) Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int J Numer Methods Eng 83(12):1541–1579MathSciNetMATHCrossRef
35.
36.
Zurück zum Zitat Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34CrossRef Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34CrossRef
37.
Zurück zum Zitat Lindgren L-E (2006) Numerical modelling of welding. Comput Methods Appl Mech Eng 195(48):6710–6736MATHCrossRef Lindgren L-E (2006) Numerical modelling of welding. Comput Methods Appl Mech Eng 195(48):6710–6736MATHCrossRef
38.
39.
Zurück zum Zitat Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309MATHCrossRef Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309MATHCrossRef
40.
Zurück zum Zitat Mallik SH, Kanoria M (2009) A unified generalized thermoelasticity formulation: application to penny-shaped crack analysis. J Therm Stresses 32(9):943–965CrossRef Mallik SH, Kanoria M (2009) A unified generalized thermoelasticity formulation: application to penny-shaped crack analysis. J Therm Stresses 32(9):943–965CrossRef
41.
Zurück zum Zitat Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Methods Eng 38(21):3675–3694MATHCrossRef Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Methods Eng 38(21):3675–3694MATHCrossRef
42.
Zurück zum Zitat Norris DM Jr, Moran B, Scudder JK, Quinones DF (1978) A computer simulation of the tension test. J Mech Phys Solids 26(1):1–19CrossRef Norris DM Jr, Moran B, Scudder JK, Quinones DF (1978) A computer simulation of the tension test. J Mech Phys Solids 26(1):1–19CrossRef
43.
Zurück zum Zitat Pan X, Wu CT, Hu W, Wu Y (2019) A momentum-consistent stabilization algorithm for Lagrangian particle methods in the thermo-mechanical friction drilling analysis. Comput Mech 64(3):625–644MathSciNetMATHCrossRef Pan X, Wu CT, Hu W, Wu Y (2019) A momentum-consistent stabilization algorithm for Lagrangian particle methods in the thermo-mechanical friction drilling analysis. Comput Mech 64(3):625–644MathSciNetMATHCrossRef
44.
Zurück zum Zitat Prevost J-H, Tao D (1983) Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times. J Appl Mech 50(4a):817–822MATHCrossRef Prevost J-H, Tao D (1983) Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times. J Appl Mech 50(4a):817–822MATHCrossRef
45.
46.
Zurück zum Zitat Seitz A, Wall WA, Popp A (2018) A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Adv Model Simul Eng Sci 5(1):5CrossRef Seitz A, Wall WA, Popp A (2018) A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Adv Model Simul Eng Sci 5(1):5CrossRef
47.
Zurück zum Zitat Sherief HH, El-Maghraby NM (2005) A mode-I crack problem for an infinite space in generalized thermoelasticity. J Therm Stresses 28(5):465–484CrossRef Sherief HH, El-Maghraby NM (2005) A mode-I crack problem for an infinite space in generalized thermoelasticity. J Therm Stresses 28(5):465–484CrossRef
48.
Zurück zum Zitat Sherief HH, El-Maghraby NM, Allam AA (2013) Stochastic thermal shock problem in generalized thermoelasticity. Appl Math Model 37(3):762–775MathSciNetMATHCrossRef Sherief HH, El-Maghraby NM, Allam AA (2013) Stochastic thermal shock problem in generalized thermoelasticity. Appl Math Model 37(3):762–775MathSciNetMATHCrossRef
49.
Zurück zum Zitat Simkins DC, Li S (2006) Meshfree simulations of thermo-mechanical ductile fracture. Comput Mech 38(3):235–249MATHCrossRef Simkins DC, Li S (2006) Meshfree simulations of thermo-mechanical ductile fracture. Comput Mech 38(3):235–249MATHCrossRef
50.
Zurück zum Zitat Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(1):41–104MATHCrossRef Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(1):41–104MATHCrossRef
51.
Zurück zum Zitat Tehrani PH, Eslami MR (2000) Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA J 38(3):534–541CrossRef Tehrani PH, Eslami MR (2000) Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA J 38(3):534–541CrossRef
52.
Zurück zum Zitat Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes rendus 246:3154–3155MATH Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes rendus 246:3154–3155MATH
53.
Zurück zum Zitat Wang H, Liao H, Fan Z, Fan J, Stainier L, Li X, Li B (2020) The Hot Optimal Transportation Meshfree (HOTM) method for materials under extreme dynamic thermomechanical conditions. Comput Methods Appl Mech Eng 364:112958MathSciNetMATHCrossRef Wang H, Liao H, Fan Z, Fan J, Stainier L, Li X, Li B (2020) The Hot Optimal Transportation Meshfree (HOTM) method for materials under extreme dynamic thermomechanical conditions. Comput Methods Appl Mech Eng 364:112958MathSciNetMATHCrossRef
54.
Zurück zum Zitat Wu CT, Wu Y, Lyu D, Pan X, Hu W (2020) The momentum-consistent smoothed particle Galerkin (MC-SPG) method for simulating the extreme thread forming in the flow drill screw-driving process. Comput Part Mech 7(2):177–191CrossRef Wu CT, Wu Y, Lyu D, Pan X, Hu W (2020) The momentum-consistent smoothed particle Galerkin (MC-SPG) method for simulating the extreme thread forming in the flow drill screw-driving process. Comput Part Mech 7(2):177–191CrossRef
55.
Zurück zum Zitat Wu J, Wang D (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631MathSciNetMATHCrossRef Wu J, Wang D (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631MathSciNetMATHCrossRef
56.
Zurück zum Zitat Yang Q, Stainier L, Ortiz M (2006) A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J Mech Phys Solids 54(2):401–424MathSciNetMATHCrossRef Yang Q, Stainier L, Ortiz M (2006) A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J Mech Phys Solids 54(2):401–424MathSciNetMATHCrossRef
57.
Zurück zum Zitat Yousefi H, Kani AT, Kani IM (2019) Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems. Front Struct Civil Eng 13(2):429–455CrossRef Yousefi H, Kani AT, Kani IM (2019) Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems. Front Struct Civil Eng 13(2):429–455CrossRef
58.
Zurück zum Zitat Zamani A, Hetnarski RB, Eslami MR (2011) Second sound in a cracked layer based on Lord-Shulman theory. J Therm Stresses 34(3):181–200CrossRef Zamani A, Hetnarski RB, Eslami MR (2011) Second sound in a cracked layer based on Lord-Shulman theory. J Therm Stresses 34(3):181–200CrossRef
Metadaten
Titel
Nodally integrated thermomechanical RKPM: Part II—generalized thermoelasticity and hyperbolic finite-strain thermoplasticity
verfasst von
Michael Hillman
Kuan-Chung Lin
Publikationsdatum
24.07.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2021
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02048-8

Weitere Artikel der Ausgabe 4/2021

Computational Mechanics 4/2021 Zur Ausgabe

Neuer Inhalt