Skip to main content
Erschienen in: Computational Mechanics 4/2021

07.07.2021 | Original Paper

Nodally integrated thermomechanical RKPM: Part I—Thermoelasticity

verfasst von: Michael Hillman, Kuan-Chung Lin

Erschienen in: Computational Mechanics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this two-part paper, a stable and efficient nodally-integrated reproducing kernel particle method (RKPM) is introduced for solving the governing equations of generalized thermomechanical theories. Part I investigates quadrature in the weak form using coupled and uncoupled classical thermoelasticity as model problems. It is first shown that nodal integration of these equations results in spurious oscillations in the solution many orders of magnitude greater than pure elasticity. A naturally stabilized nodal integration is then proposed for the coupled equations. The variational consistency conditions for nth order exactness and convergence in the two-field problem are then derived, and a uniform correction on the test function approximations is proposed to achieve these conditions. Several benchmark problems are solved to demonstrate the effectiveness of the proposed method. In the sequel, these methods are developed for generalized thermoelasticity and generalized finite-strain thermoplasticity theories of the hyperbolic type that are amenable to efficient explicit time integration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baek J, Chen J-S, Zhou G, Arnett K, Hillman M, Hegemier G, Hardesty S (2021) A semi-Lagrangian reproducing kernel particle method with particle-based shock algorithm for explosive welding simulation. Comput Mech 67:1601–1627MathSciNetMATHCrossRef Baek J, Chen J-S, Zhou G, Arnett K, Hillman M, Hegemier G, Hardesty S (2021) A semi-Lagrangian reproducing kernel particle method with particle-based shock algorithm for explosive welding simulation. Comput Mech 67:1601–1627MathSciNetMATHCrossRef
2.
Zurück zum Zitat Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139:49–74MathSciNetMATHCrossRef Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139:49–74MathSciNetMATHCrossRef
3.
Zurück zum Zitat Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unifieded stability analysis of meshless particle methods. Int J Numer Methods Eng 48(9):1359–1400MATHCrossRef Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unifieded stability analysis of meshless particle methods. Int J Numer Methods Eng 48(9):1359–1400MATHCrossRef
4.
Zurück zum Zitat Bobaru F, Mukherjee S (2002) Meshless approach to shape optimization of linear thermoelastic solids. Int J Numer Methods Eng 53(4):765–796CrossRef Bobaru F, Mukherjee S (2002) Meshless approach to shape optimization of linear thermoelastic solids. Int J Numer Methods Eng 53(4):765–796CrossRef
5.
Zurück zum Zitat Boley BA, Tolins IS (1962) Transient coupled thermoelastic boundary value problems in the half-space. J Appl Mech 29(4):637–646MathSciNetMATHCrossRef Boley BA, Tolins IS (1962) Transient coupled thermoelastic boundary value problems in the half-space. J Appl Mech 29(4):637–646MathSciNetMATHCrossRef
6.
Zurück zum Zitat Cannarozzi AA, Ubertini F (2001) A mixed variational method for linear coupled thermoelastic analysis. Int J Solids Struct 38(4):717–739MATHCrossRef Cannarozzi AA, Ubertini F (2001) A mixed variational method for linear coupled thermoelastic analysis. Int J Solids Struct 38(4):717–739MATHCrossRef
7.
Zurück zum Zitat Carter JP, Booker JR (1989) Finite element analysis of coupled thermoelasticity. Comput Struct 31(1):73–80CrossRef Carter JP, Booker JR (1989) Finite element analysis of coupled thermoelasticity. Comput Struct 31(1):73–80CrossRef
8.
Zurück zum Zitat Chen J, Dargush GF (1995) Boundary element method for dynamic poroelastic and thermoelastic analyses. Int J Solids Struct 32(15):2257–2278MATHCrossRef Chen J, Dargush GF (1995) Boundary element method for dynamic poroelastic and thermoelastic analyses. Int J Solids Struct 32(15):2257–2278MATHCrossRef
9.
Zurück zum Zitat Chen J, Hu W, Puso M, Wu Y, Zhang X (2007) Strain smoothing for stabilization and regularization of galerkin meshfree methods. In Meshfree methods for partial differential equations III, pages 57–75. Springer Chen J, Hu W, Puso M, Wu Y, Zhang X (2007) Strain smoothing for stabilization and regularization of galerkin meshfree methods. In Meshfree methods for partial differential equations III, pages 57–75. Springer
10.
Zurück zum Zitat Chen J-S, Hillman M, Chi S-W (2017) Meshfree methods: progress made after 20 years. J Eng Mech 143(4):04017001CrossRef Chen J-S, Hillman M, Chi S-W (2017) Meshfree methods: progress made after 20 years. J Eng Mech 143(4):04017001CrossRef
11.
Zurück zum Zitat Chen J-S, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95(5):387–418MathSciNetMATHCrossRef Chen J-S, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95(5):387–418MathSciNetMATHCrossRef
12.
Zurück zum Zitat Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227MathSciNetMATHCrossRef Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227MathSciNetMATHCrossRef
13.
Zurück zum Zitat Chen J-S, Wang H-P (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468MathSciNetMATHCrossRef Chen J-S, Wang H-P (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468MathSciNetMATHCrossRef
14.
Zurück zum Zitat Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466MATHCrossRef Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466MATHCrossRef
15.
Zurück zum Zitat Chen J-S, Yoon S, Wu C-T (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(12):2587–2615MATHCrossRef Chen J-S, Yoon S, Wu C-T (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(12):2587–2615MATHCrossRef
16.
Zurück zum Zitat Chen J-S, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193(27–29):2827–2844MATHCrossRef Chen J-S, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193(27–29):2827–2844MATHCrossRef
17.
Zurück zum Zitat Ching HK, Yen SC (2006) Transient thermoelastic deformations of 2-D functionally graded beams under nonuniformly convective heat supply. Compos Struct 73(4):381–393CrossRef Ching HK, Yen SC (2006) Transient thermoelastic deformations of 2-D functionally graded beams under nonuniformly convective heat supply. Compos Struct 73(4):381–393CrossRef
18.
Zurück zum Zitat Danilouskaya V (1950) Thermal stresses in elastic half space due to sudden heating of its boundary. Pelageya Yakovlevna Kochina 14:316–321 Danilouskaya V (1950) Thermal stresses in elastic half space due to sudden heating of its boundary. Pelageya Yakovlevna Kochina 14:316–321
19.
Zurück zum Zitat Danilouskaya V (1952) On a dynamic problem of thermoelasticity. Prikladnaya Matematika i Mekhanika 16:341–344 Danilouskaya V (1952) On a dynamic problem of thermoelasticity. Prikladnaya Matematika i Mekhanika 16:341–344
20.
Zurück zum Zitat Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23(3):219–230MathSciNetMATHCrossRef Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23(3):219–230MathSciNetMATHCrossRef
21.
Zurück zum Zitat Duan Q, Li X, Zhang H, Belytschko T (2012) Second-order accurate derivatives and integration schemes for meshfree methods. Int J Numer Methods Eng 92(4):399–424MathSciNetMATHCrossRef Duan Q, Li X, Zhang H, Belytschko T (2012) Second-order accurate derivatives and integration schemes for meshfree methods. Int J Numer Methods Eng 92(4):399–424MathSciNetMATHCrossRef
22.
Zurück zum Zitat Fries T-P, Belytschko T (2008) Convergence and stabilization of stress-point integration in mesh-free and particle methods. Int J Numer Methods Eng 74(7):1067–1087MathSciNetMATHCrossRef Fries T-P, Belytschko T (2008) Convergence and stabilization of stress-point integration in mesh-free and particle methods. Int J Numer Methods Eng 74(7):1067–1087MathSciNetMATHCrossRef
23.
Zurück zum Zitat Hasanpour K, Mirzaei D (2018) A fast meshfree technique for the coupled thermoelasticity problem. Acta Mech 229(6):2657–2673MathSciNetMATHCrossRef Hasanpour K, Mirzaei D (2018) A fast meshfree technique for the coupled thermoelasticity problem. Acta Mech 229(6):2657–2673MathSciNetMATHCrossRef
24.
Zurück zum Zitat Hillman M, Chen J-S (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107:603–630MathSciNetMATHCrossRef Hillman M, Chen J-S (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107:603–630MathSciNetMATHCrossRef
25.
Zurück zum Zitat Hillman M, Chen J-S (2016) Nodally integrated implicit gradient reproducing kernel particle method for convection dominated problems. Comput Methods Appl Mech Eng 299:381–400MathSciNetMATHCrossRef Hillman M, Chen J-S (2016) Nodally integrated implicit gradient reproducing kernel particle method for convection dominated problems. Comput Methods Appl Mech Eng 299:381–400MathSciNetMATHCrossRef
26.
Zurück zum Zitat Hillman M, Chen J-S (2018) Performance comparison of nodally integrated galerkin meshfree methods and nodally collocated strong form meshfree methods. In Advances in Computational Plasticity, Vol. 46, pages 145–164. Springer Hillman M, Chen J-S (2018) Performance comparison of nodally integrated galerkin meshfree methods and nodally collocated strong form meshfree methods. In Advances in Computational Plasticity, Vol. 46, pages 145–164. Springer
27.
Zurück zum Zitat Hillman M, Chen J-S, Chi S-W (2014) Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput Part Mech 1(3):245–256CrossRef Hillman M, Chen J-S, Chi S-W (2014) Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput Part Mech 1(3):245–256CrossRef
28.
Zurück zum Zitat Hillman M, Lin K-C (2021) Consistent weak forms for meshfree methods: Full realization of \(h\)-refinement, \(p\)-refinement, and \(a\)-refinement in strong-type essential boundary condition enforcement. Comput Methods Appl Mech Eng 373:113448MathSciNetMATHCrossRef Hillman M, Lin K-C (2021) Consistent weak forms for meshfree methods: Full realization of \(h\)-refinement, \(p\)-refinement, and \(a\)-refinement in strong-type essential boundary condition enforcement. Comput Methods Appl Mech Eng 373:113448MathSciNetMATHCrossRef
29.
Zurück zum Zitat Hosseini-Tehrani P, Eslami MR (2000) BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity. Eng Anal Bound Elem 24(3):249–257MATHCrossRef Hosseini-Tehrani P, Eslami MR (2000) BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity. Eng Anal Bound Elem 24(3):249–257MATHCrossRef
30.
Zurück zum Zitat Hu H-Y, Lai C-K, Chen J-S (2009) A study on convergence and complexity of reproducing kernel collocation method. Interact Multiscale Mech 2(3):295–319CrossRef Hu H-Y, Lai C-K, Chen J-S (2009) A study on convergence and complexity of reproducing kernel collocation method. Interact Multiscale Mech 2(3):295–319CrossRef
31.
Zurück zum Zitat Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola
32.
Zurück zum Zitat Tamma KK, Railkar SB (1988) On heat displacement based hybrid transfinite element formulations for uncoupled/coupled thermally induced stress wave propagation. Comput Struct 30:1025–1036MATHCrossRef Tamma KK, Railkar SB (1988) On heat displacement based hybrid transfinite element formulations for uncoupled/coupled thermally induced stress wave propagation. Comput Struct 30:1025–1036MATHCrossRef
33.
Zurück zum Zitat Keramidas GA, Ting EC (1976) A finite element formulation for thermal stress analysis. Part I: variational formulation. Nucl Eng Des 39(2–3):267–275CrossRef Keramidas GA, Ting EC (1976) A finite element formulation for thermal stress analysis. Part I: variational formulation. Nucl Eng Des 39(2–3):267–275CrossRef
34.
Zurück zum Zitat Keramidas GA, Ting EC (1976) A finite element formulation for thermal stress analysis. Part II: finite element formulation. Nucl Eng Des 39(2–3):277–287CrossRef Keramidas GA, Ting EC (1976) A finite element formulation for thermal stress analysis. Part II: finite element formulation. Nucl Eng Des 39(2–3):277–287CrossRef
35.
36.
Zurück zum Zitat Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part I—formulation and theory. Int J Numer Methods Eng 288(July 1998):251–288MATHCrossRef Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part I—formulation and theory. Int J Numer Methods Eng 288(July 1998):251–288MATHCrossRef
37.
Zurück zum Zitat Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, Part II—applications. Int J Numer Methods Eng 45(3):289–317CrossRef Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, Part II—applications. Int J Numer Methods Eng 45(3):289–317CrossRef
38.
Zurück zum Zitat Liu G-R, Zhang GY, Wang YY, Zhong ZH, Li GY, Han X (2007) A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int J Solids Struct 44(11–12):3840–3860MATHCrossRef Liu G-R, Zhang GY, Wang YY, Zhong ZH, Li GY, Han X (2007) A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int J Solids Struct 44(11–12):3840–3860MATHCrossRef
39.
40.
Zurück zum Zitat Liu W-K, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (i) methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154MathSciNetMATHCrossRef Liu W-K, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (i) methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154MathSciNetMATHCrossRef
41.
Zurück zum Zitat Liu WK, Ong JS-J, Uras RA (1985) Finite element stabilization matrices—a unification approach. Comput Methods Appl Mech Eng 53(1):13–46MathSciNetMATHCrossRef Liu WK, Ong JS-J, Uras RA (1985) Finite element stabilization matrices—a unification approach. Comput Methods Appl Mech Eng 53(1):13–46MathSciNetMATHCrossRef
42.
Zurück zum Zitat Mahdavi A, Chi S-W, Atif MM (2020) A two-field semi-Lagrangian reproducing kernel model for impact and penetration simulation into geo-materials. Comput Part Mech 7(2):351–364CrossRef Mahdavi A, Chi S-W, Atif MM (2020) A two-field semi-Lagrangian reproducing kernel model for impact and penetration simulation into geo-materials. Comput Part Mech 7(2):351–364CrossRef
43.
Zurück zum Zitat Mahdavi A, Chi S-W, Zhu H (2019) A gradient reproducing kernel collocation method for high order differential equations. Comput Mech 64(5):1421–1454MathSciNetMATHCrossRef Mahdavi A, Chi S-W, Zhu H (2019) A gradient reproducing kernel collocation method for high order differential equations. Comput Mech 64(5):1421–1454MathSciNetMATHCrossRef
44.
Zurück zum Zitat Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Comput Methods Appl Mech Eng 373:113521MathSciNetMATHCrossRef Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Comput Methods Appl Mech Eng 373:113521MathSciNetMATHCrossRef
45.
Zurück zum Zitat Nagashima T (1999) Node-by-node meshless approach and its applications to structural analyses. Int J Numer Methods Eng 46(3):341–385MATHCrossRef Nagashima T (1999) Node-by-node meshless approach and its applications to structural analyses. Int J Numer Methods Eng 46(3):341–385MATHCrossRef
46.
Zurück zum Zitat Nickell JL, Robert E, Sackman R (1968) Approximate solutions in linear, coupled thermoelasticity. J Appl Mech 35(2):255–266MATHCrossRef Nickell JL, Robert E, Sackman R (1968) Approximate solutions in linear, coupled thermoelasticity. J Appl Mech 35(2):255–266MATHCrossRef
47.
Zurück zum Zitat Nowacki W (1975) Dynamic problems of thermoelasticity. Springer, New YorkMATH Nowacki W (1975) Dynamic problems of thermoelasticity. Springer, New YorkMATH
48.
Zurück zum Zitat Prevost J-H, Tao D (1983) Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times. J Appl Mech 50(4a):817–822MATHCrossRef Prevost J-H, Tao D (1983) Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times. J Appl Mech 50(4a):817–822MATHCrossRef
49.
Zurück zum Zitat Puso MA, Chen J-S, Zywicz E, Elmer W (2008) Meshfree and finite element nodal integration methods. Int J Numer Methods Eng 74(3):416–446MathSciNetMATHCrossRef Puso MA, Chen J-S, Zywicz E, Elmer W (2008) Meshfree and finite element nodal integration methods. Int J Numer Methods Eng 74(3):416–446MathSciNetMATHCrossRef
50.
Zurück zum Zitat Qian LF, Batra RC (2004) Transient thermoelastic deformations of a thick functionally graded plate. J Therm Stresses 27(8):705–740CrossRef Qian LF, Batra RC (2004) Transient thermoelastic deformations of a thick functionally graded plate. J Therm Stresses 27(8):705–740CrossRef
51.
Zurück zum Zitat Randles PW, Libersky LD (2000) Normalized SPH with stress points. Int J Numer Methods Eng 48(May 1999):1445–1462MATHCrossRef Randles PW, Libersky LD (2000) Normalized SPH with stress points. Int J Numer Methods Eng 48(May 1999):1445–1462MATHCrossRef
52.
Zurück zum Zitat Rüter M, Hillman M, Chen J-S (2013) Corrected stabilized non-conforming nodal integration in meshfree methods. In Meshfree methods for partial differential equations VI, pages 75–92. Springer Rüter M, Hillman M, Chen J-S (2013) Corrected stabilized non-conforming nodal integration in meshfree methods. In Meshfree methods for partial differential equations VI, pages 75–92. Springer
53.
Zurück zum Zitat Siriaksorn T, Chi S-W, Foster C, Mahdavi A (2018) \(u\)-\(p\) semi-Lagrangian reproducing kernel formulation for landslide modeling. Int J Numer Anal Methods Geomech 42(2):231–255CrossRef Siriaksorn T, Chi S-W, Foster C, Mahdavi A (2018) \(u\)-\(p\) semi-Lagrangian reproducing kernel formulation for landslide modeling. Int J Numer Anal Methods Geomech 42(2):231–255CrossRef
54.
Zurück zum Zitat Sladek J, Sladek V, Solek P, Tan CL, Zhang C (2009) Two- and three-dimensional transient thermoelastic analysis by the MLPG method. Computer Modeling in Engineering and Sciences 47 Sladek J, Sladek V, Solek P, Tan CL, Zhang C (2009) Two- and three-dimensional transient thermoelastic analysis by the MLPG method. Computer Modeling in Engineering and Sciences 47
55.
Zurück zum Zitat Sládek V, Sládek J (1985) Boundary element method in micropolar thermoelasticity. Part II: boundary integro-differential equations. Eng Anal 2(2):81–91MATHCrossRef Sládek V, Sládek J (1985) Boundary element method in micropolar thermoelasticity. Part II: boundary integro-differential equations. Eng Anal 2(2):81–91MATHCrossRef
56.
Zurück zum Zitat Sternberg ELI, Chakravorty JG (1958) On inertia effects in a transient thermoelastic problem. Brown University, Providence Sternberg ELI, Chakravorty JG (1958) On inertia effects in a transient thermoelastic problem. Brown University, Providence
57.
Zurück zum Zitat Tanaka M, Matsumoto T, Moradi M (1995) Application of boundary element method to 3-D problems of coupled thermoelasticity. Eng Anal Bound Elem 16(4):297–303CrossRef Tanaka M, Matsumoto T, Moradi M (1995) Application of boundary element method to 3-D problems of coupled thermoelasticity. Eng Anal Bound Elem 16(4):297–303CrossRef
58.
Zurück zum Zitat Thornton EA (1996) Thermal structures for aerospace applications. American Institute of Aeronautics and Astronautics, New YorkCrossRef Thornton EA (1996) Thermal structures for aerospace applications. American Institute of Aeronautics and Astronautics, New YorkCrossRef
59.
Zurück zum Zitat Tosaka N, Suh IG (1991) Boundary element analysis of dynamic coupled thermoelasticity problems. Comput Mech 8(5):331–342 Tosaka N, Suh IG (1991) Boundary element analysis of dynamic coupled thermoelasticity problems. Comput Mech 8(5):331–342
60.
Zurück zum Zitat Wang D, Wu J (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672MathSciNetMATHCrossRef Wang D, Wu J (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672MathSciNetMATHCrossRef
61.
Zurück zum Zitat Wei H, Chen J-S, Beckwith F, Baek J (2020) A naturally stabilized semi-Lagrangian meshfree formulation for multiphase porous media with application to landslide modeling. J Eng Mech 146(4):04020012CrossRef Wei H, Chen J-S, Beckwith F, Baek J (2020) A naturally stabilized semi-Lagrangian meshfree formulation for multiphase porous media with application to landslide modeling. J Eng Mech 146(4):04020012CrossRef
62.
Zurück zum Zitat Wei H, Chen J-S, Hillman M (2016) A stabilized nodally integrated meshfree formulation for fully coupled hydro-mechanical analysis of fluid-saturated porous media. Comput Fluids 141:105–115MathSciNetMATHCrossRef Wei H, Chen J-S, Hillman M (2016) A stabilized nodally integrated meshfree formulation for fully coupled hydro-mechanical analysis of fluid-saturated porous media. Comput Fluids 141:105–115MathSciNetMATHCrossRef
63.
Zurück zum Zitat Wu C-T, Chi S-W, Koishi M, Wu Y (2016) Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses. Int J Numer Methods Eng 107(1):3–30 Wu C-T, Chi S-W, Koishi M, Wu Y (2016) Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses. Int J Numer Methods Eng 107(1):3–30
64.
Zurück zum Zitat Wu C-T, Koishi M, Hu W (2015) A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method. Computational Mechanics Wu C-T, Koishi M, Hu W (2015) A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method. Computational Mechanics
65.
Zurück zum Zitat Wu CT, Wu Y, Lyu D, Pan X, Hu W (2020) The momentum-consistent smoothed particle Galerkin (MC-SPG) method for simulating the extreme thread forming in the flow drill screw-driving process. Comput Part Mech 7(2):177–191CrossRef Wu CT, Wu Y, Lyu D, Pan X, Hu W (2020) The momentum-consistent smoothed particle Galerkin (MC-SPG) method for simulating the extreme thread forming in the flow drill screw-driving process. Comput Part Mech 7(2):177–191CrossRef
66.
Zurück zum Zitat Wu J, Wang D (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631MathSciNetMATHCrossRef Wu J, Wang D (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631MathSciNetMATHCrossRef
67.
Zurück zum Zitat Zheng BJ, Gao XW, Yang K, Zhang CZ (2015) A novel meshless local Petrov-Galerkin method for dynamic coupled thermoelasticity analysis under thermal and mechanical shock loading. Eng Anal Bound Elem 60:154–161MathSciNetMATHCrossRef Zheng BJ, Gao XW, Yang K, Zhang CZ (2015) A novel meshless local Petrov-Galerkin method for dynamic coupled thermoelasticity analysis under thermal and mechanical shock loading. Eng Anal Bound Elem 60:154–161MathSciNetMATHCrossRef
Metadaten
Titel
Nodally integrated thermomechanical RKPM: Part I—Thermoelasticity
verfasst von
Michael Hillman
Kuan-Chung Lin
Publikationsdatum
07.07.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2021
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02047-9

Weitere Artikel der Ausgabe 4/2021

Computational Mechanics 4/2021 Zur Ausgabe

Neuer Inhalt