Skip to main content
Erschienen in: Computational Mechanics 4/2021

13.07.2021 | Original Paper

Hierarchical modeling of length-dependent force generation in cardiac muscles and associated thermodynamically-consistent numerical schemes

verfasst von: François Kimmig, Philippe Moireau, Dominique Chapelle

Erschienen in: Computational Mechanics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the context of cardiac muscle modeling, the availability of the myosin heads in the sarcomeres varies over the heart cycle contributing to the Frank–Starling mechanism at the organ level. In this paper, we propose a new approach that allows to extend the Huxley’57 muscle contraction model equations to incorporate this variation. This extension is built in a thermodynamically consistent manner, and we also propose adapted numerical methods that satisfy thermodynamical balances at the discrete level. Moreover, this whole approach—both for the model and the numerics—is devised within a hierarchical strategy enabling the coupling of the microscopic sarcomere-level equations with the macroscopic tissue-level description. As an important illustration, coupling our model with a previously proposed simplified heart model, we demonstrate the ability of the modeling and numerical framework to capture the essential features of the Frank–Starling mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Amiad Pavlov D, Landesberg A (2016) The cross-bridge dynamics is determined by two length-independent kinetics: implications on muscle economy and Frank-Starling Law. J Mol Cell Cardiol 90:94–101CrossRef Amiad Pavlov D, Landesberg A (2016) The cross-bridge dynamics is determined by two length-independent kinetics: implications on muscle economy and Frank-Starling Law. J Mol Cell Cardiol 90:94–101CrossRef
2.
Zurück zum Zitat Baillargeon B, Rebelo N, Fox D, Taylor R, Kuhl E (2014) The Living Heart Project: a robust and integrative simulator for human heart function. Eur J Mech Solids 48(C):38–47MathSciNetMATHCrossRef Baillargeon B, Rebelo N, Fox D, Taylor R, Kuhl E (2014) The Living Heart Project: a robust and integrative simulator for human heart function. Eur J Mech Solids 48(C):38–47MathSciNetMATHCrossRef
3.
Zurück zum Zitat Caremani M, Melli L, Dolfi M, Lombardi V, Linari M (2015) Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products. J Physiol 593(15):3313–3332CrossRef Caremani M, Melli L, Dolfi M, Lombardi V, Linari M (2015) Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products. J Physiol 593(15):3313–3332CrossRef
4.
Zurück zum Zitat Caremani M, Pinzauti F, Reconditi M, Piazzesi G, Stienen G, Lombardi V, Linari M (2016) Size and speed of the working stroke of cardiac myosin in situ. Proc Natl Acad Sci 113(13):3675–3680CrossRef Caremani M, Pinzauti F, Reconditi M, Piazzesi G, Stienen G, Lombardi V, Linari M (2016) Size and speed of the working stroke of cardiac myosin in situ. Proc Natl Acad Sci 113(13):3675–3680CrossRef
5.
Zurück zum Zitat Caruel M, Allain J-M, Truskinovsky L (2013a) Muscle as a metamaterial operating near a critical point. Phys Rev Lett 110(24):248103CrossRef Caruel M, Allain J-M, Truskinovsky L (2013a) Muscle as a metamaterial operating near a critical point. Phys Rev Lett 110(24):248103CrossRef
6.
Zurück zum Zitat Caruel M, Chabiniok R, Moireau P, Lecarpentier Y, Chapelle D (2013b) Dimensional reductions of a cardiac model for effective validation and calibration. Biomech Model Mechanobiol 13(4):897–914CrossRef Caruel M, Chabiniok R, Moireau P, Lecarpentier Y, Chapelle D (2013b) Dimensional reductions of a cardiac model for effective validation and calibration. Biomech Model Mechanobiol 13(4):897–914CrossRef
7.
Zurück zum Zitat Caruel M, Moireau P, Chapelle D (2019) Stochastic modeling of chemical–mechanical coupling in striated muscles. Biomech Model Mechanobiol 18(3):563–587CrossRef Caruel M, Moireau P, Chapelle D (2019) Stochastic modeling of chemical–mechanical coupling in striated muscles. Biomech Model Mechanobiol 18(3):563–587CrossRef
8.
Zurück zum Zitat Chabiniok R, Moireau P, Lesault P, Rahmouni A, Deux J, Chapelle D (2012) Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 11(5):609–630CrossRef Chabiniok R, Moireau P, Lesault P, Rahmouni A, Deux J, Chapelle D (2012) Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 11(5):609–630CrossRef
9.
Zurück zum Zitat Chabiniok R, Wang V, Hadjicharalambous M, Asner L, Lee J, Sermesant M, Kuhl E, Young A, Moireau P, Nash M, Chapelle D, Nordsletten D (2016) Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface focus 6(2):20150083CrossRef Chabiniok R, Wang V, Hadjicharalambous M, Asner L, Lee J, Sermesant M, Kuhl E, Young A, Moireau P, Nash M, Chapelle D, Nordsletten D (2016) Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface focus 6(2):20150083CrossRef
10.
Zurück zum Zitat Chapelle D, Le Tallec P, Moireau P, Sorine M (2012) Energy-preserving muscle tissue model: formulation and compatible discretizations. J Multiscale Comput Eng Chapelle D, Le Tallec P, Moireau P, Sorine M (2012) Energy-preserving muscle tissue model: formulation and compatible discretizations. J Multiscale Comput Eng
11.
Zurück zum Zitat de Tombe P, Mateja R, Tachampa K, Mou Y, Farman G, Irving T (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48(5):851–858CrossRef de Tombe P, Mateja R, Tachampa K, Mou Y, Farman G, Irving T (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48(5):851–858CrossRef
12.
Zurück zum Zitat de Tombe P, Stienen G (2007) Impact of temperature on cross-bridge cycling kinetics in rat myocardium. J Physiol 584(2):591–600CrossRef de Tombe P, Stienen G (2007) Impact of temperature on cross-bridge cycling kinetics in rat myocardium. J Physiol 584(2):591–600CrossRef
13.
Zurück zum Zitat de Tombe P, ter Keurs H (1992) An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J Physiol 454(1):619–642CrossRef de Tombe P, ter Keurs H (1992) An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J Physiol 454(1):619–642CrossRef
14.
Zurück zum Zitat de Tombe P, ter Keurs H (2016) Cardiac muscle mechanics: sarcomere length matters. J Mol Cell Cardiol 91(C):148–150CrossRef de Tombe P, ter Keurs H (2016) Cardiac muscle mechanics: sarcomere length matters. J Mol Cell Cardiol 91(C):148–150CrossRef
15.
Zurück zum Zitat Dobesh D, Konhilas J, de Tombe P (2002) Cooperative activation in cardiac muscle: impact of sarcomere length. AJP Heart Circ Physiol 282(3):H1055–H1062CrossRef Dobesh D, Konhilas J, de Tombe P (2002) Cooperative activation in cardiac muscle: impact of sarcomere length. AJP Heart Circ Physiol 282(3):H1055–H1062CrossRef
16.
Zurück zum Zitat Eisenberg E, Hill T (1978) A cross-bridge model of muscle contraction. Prog Biophys Mol Biol 33(1):55–82 Eisenberg E, Hill T (1978) A cross-bridge model of muscle contraction. Prog Biophys Mol Biol 33(1):55–82
17.
Zurück zum Zitat Eisenberg E, Hill T, Chen Y (1980) Cross-bridge model of muscle contraction. Quantitative analysis. Biophys J 29(2):195–227CrossRef Eisenberg E, Hill T, Chen Y (1980) Cross-bridge model of muscle contraction. Quantitative analysis. Biophys J 29(2):195–227CrossRef
18.
Zurück zum Zitat Frank O (1895) Zur Dynamik des Herzmuskels, volume 32. Zeitschrift für Biologie Frank O (1895) Zur Dynamik des Herzmuskels, volume 32. Zeitschrift für Biologie
19.
Zurück zum Zitat Gsell M, Augustin C, Prassl A, Karabelas E, Fernandes J, Kelm M, Goubergrits L, Kuehne T, Plank G (2018) Assessment of wall stresses and mechanical heart power in the left ventricle: finite element modeling versus Laplace analysis. Int J Numer Methods Biomed Eng 34(12):e3147MathSciNetCrossRef Gsell M, Augustin C, Prassl A, Karabelas E, Fernandes J, Kelm M, Goubergrits L, Kuehne T, Plank G (2018) Assessment of wall stresses and mechanical heart power in the left ventricle: finite element modeling versus Laplace analysis. Int J Numer Methods Biomed Eng 34(12):e3147MathSciNetCrossRef
20.
Zurück zum Zitat Hill T (1977) Free energy transduction in biology. Academic Press, New York Hill T (1977) Free energy transduction in biology. Academic Press, New York
21.
Zurück zum Zitat Hirschvogel M, Bassilious M, Jagschies L, Wildhirt S, Gee M (2017) A monolithic 3D–0D coupled closed-loop model of the heart and the vascular system: experiment-based parameter estimation for patient-specific cardiac mechanics. Int J Numer Methods Biomed Eng 84(3):e2842-22MathSciNet Hirschvogel M, Bassilious M, Jagschies L, Wildhirt S, Gee M (2017) A monolithic 3D–0D coupled closed-loop model of the heart and the vascular system: experiment-based parameter estimation for patient-specific cardiac mechanics. Int J Numer Methods Biomed Eng 84(3):e2842-22MathSciNet
22.
Zurück zum Zitat Hussan J, de Tombe PP, Rice JJ (2006) A spatially detailed myofilament model as a basis for large-scale biological simulations. IBM J Res 50(6):583–600CrossRef Hussan J, de Tombe PP, Rice JJ (2006) A spatially detailed myofilament model as a basis for large-scale biological simulations. IBM J Res 50(6):583–600CrossRef
23.
Zurück zum Zitat Huxley A (1957) Muscle structures and theories of contraction. Prog Biophys Chem 7:255–318CrossRef Huxley A (1957) Muscle structures and theories of contraction. Prog Biophys Chem 7:255–318CrossRef
24.
Zurück zum Zitat Huxley A, Simmons R (1971) Proposed mechanism of force generation in striated muscle. Nature Huxley A, Simmons R (1971) Proposed mechanism of force generation in striated muscle. Nature
25.
Zurück zum Zitat Kentish J, Ter Keurs H, Ricciardi L, Bucx J, Noble M (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58(6):755–768CrossRef Kentish J, Ter Keurs H, Ricciardi L, Bucx J, Noble M (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58(6):755–768CrossRef
26.
Zurück zum Zitat Kimmig F, Caruel M (2019) Hierarchical modeling of muscle contraction. submitted Kimmig F, Caruel M (2019) Hierarchical modeling of muscle contraction. submitted
27.
Zurück zum Zitat Kimmig F, Chapelle D, Moireau P (2019) Thermodynamic properties of muscle contraction models and associated discrete-time principles. Adv Model Simul Eng Sci 6(1):6CrossRef Kimmig F, Chapelle D, Moireau P (2019) Thermodynamic properties of muscle contraction models and associated discrete-time principles. Adv Model Simul Eng Sci 6(1):6CrossRef
28.
Zurück zum Zitat Le Bris C, Lelievre T (2009) Multiscale modelling of complex fluids: a mathematical initiation. In Multiscale modeling and simulation in science. Springer, pp 49–137 Le Bris C, Lelievre T (2009) Multiscale modelling of complex fluids: a mathematical initiation. In Multiscale modeling and simulation in science. Springer, pp 49–137
29.
Zurück zum Zitat Le Gall A, Vallée F, Mebazaa A, Chapelle D, Gayat E, Chabiniok R (2020) Monitoring of cardiovascular physiology augmented by a patient-specific biomechanical model during general anaesthesia. a proof of concept study. PLoS ONE 15(5):e0232830CrossRef Le Gall A, Vallée F, Mebazaa A, Chapelle D, Gayat E, Chabiniok R (2020) Monitoring of cardiovascular physiology augmented by a patient-specific biomechanical model during general anaesthesia. a proof of concept study. PLoS ONE 15(5):e0232830CrossRef
30.
Zurück zum Zitat Månsson A (2010) Actomyosin-ADP states, interhead cooperativity, and the force-velocity relation of skeletal muscle. Biophys J 98(7):1237–1246CrossRef Månsson A (2010) Actomyosin-ADP states, interhead cooperativity, and the force-velocity relation of skeletal muscle. Biophys J 98(7):1237–1246CrossRef
31.
Zurück zum Zitat Marcucci L, Truskinovsky L (2010) Mechanics of the power stroke in myosin II. Phys Rev E 81(5):051915–051918MathSciNetCrossRef Marcucci L, Truskinovsky L (2010) Mechanics of the power stroke in myosin II. Phys Rev E 81(5):051915–051918MathSciNetCrossRef
32.
Zurück zum Zitat Marcucci L, Washio T, Yanagida T (2016) Including thermal fluctuations in actomyosin stable states increases the predicted force per motor and macroscopic efficiency in muscle modelling. PLoS Comput Biol 12(9):e1005083CrossRef Marcucci L, Washio T, Yanagida T (2016) Including thermal fluctuations in actomyosin stable states increases the predicted force per motor and macroscopic efficiency in muscle modelling. PLoS Comput Biol 12(9):e1005083CrossRef
33.
Zurück zum Zitat Marcucci L, Washio T, Yanagida T (2017) Titin-mediated thick filament activation, through a mechanosensing mechanism, introduces sarcomere-length dependencies in mathematical models of rat trabecula and whole ventricle. Sci Rep 1–10 Marcucci L, Washio T, Yanagida T (2017) Titin-mediated thick filament activation, through a mechanosensing mechanism, introduces sarcomere-length dependencies in mathematical models of rat trabecula and whole ventricle. Sci Rep 1–10
34.
Zurück zum Zitat Marcucci L, Yanagida T (2012) From single molecule fluctuations to muscle contraction: a Brownian model of A.F. Huxley’s hypotheses. PLoS ONE 7(7):e40042-8CrossRef Marcucci L, Yanagida T (2012) From single molecule fluctuations to muscle contraction: a Brownian model of A.F. Huxley’s hypotheses. PLoS ONE 7(7):e40042-8CrossRef
35.
Zurück zum Zitat Mateja R, de Tombe P (2012) Myofilament length-dependent activation develops within 5 ms in Guinea–Pig myocardium. Biophys J 103(1):L13–L15CrossRef Mateja R, de Tombe P (2012) Myofilament length-dependent activation develops within 5 ms in Guinea–Pig myocardium. Biophys J 103(1):L13–L15CrossRef
36.
Zurück zum Zitat Niestrawska J, Augustin C, Plank G (2020) Computational modeling of cardiac growth and remodeling in pressure overloaded hearts—linking microstructure to organ phenotype. Acta Biomater 106:34–53CrossRef Niestrawska J, Augustin C, Plank G (2020) Computational modeling of cardiac growth and remodeling in pressure overloaded hearts—linking microstructure to organ phenotype. Acta Biomater 106:34–53CrossRef
37.
Zurück zum Zitat Patterson S, Starling E (1914) On the mechanical factors which determine the output of the ventricles. J Physiol 48(5):357–379CrossRef Patterson S, Starling E (1914) On the mechanical factors which determine the output of the ventricles. J Physiol 48(5):357–379CrossRef
38.
Zurück zum Zitat Pertici I, Bongini L, Melli L, Bianchi G, Salvi L, Falorsi G, Squarci C, Bozó T, Cojoc D, Kellermayer M, Lombardi V, Bianco P (2018) A myosin II nanomachine mimicking the striated muscle. Nat Commun 1–10 Pertici I, Bongini L, Melli L, Bianchi G, Salvi L, Falorsi G, Squarci C, Bozó T, Cojoc D, Kellermayer M, Lombardi V, Bianco P (2018) A myosin II nanomachine mimicking the striated muscle. Nat Commun 1–10
39.
Zurück zum Zitat Peskin C (1975) Mathematical aspects of heart physiology. Courant Institute of Mathematical Sciences - NYU Peskin C (1975) Mathematical aspects of heart physiology. Courant Institute of Mathematical Sciences - NYU
40.
Zurück zum Zitat Piazzesi G, Lombardi V (1995) A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys J 68:1966–1979CrossRef Piazzesi G, Lombardi V (1995) A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys J 68:1966–1979CrossRef
41.
Zurück zum Zitat Pinzauti F, Pertici I, Reconditi M, Narayanan T, Stienen G, Piazzesi G, Lombardi V, Linari M, Caremani M (2018) The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration. J Physiol 596(13):2581–2596CrossRef Pinzauti F, Pertici I, Reconditi M, Narayanan T, Stienen G, Piazzesi G, Lombardi V, Linari M, Caremani M (2018) The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration. J Physiol 596(13):2581–2596CrossRef
42.
Zurück zum Zitat Quarteroni A, Lassila T, Rossi S, Ruiz-Baier R (2017) Integrated heart-coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput Methods Appl Mech Eng 314:345–407MathSciNetMATHCrossRef Quarteroni A, Lassila T, Rossi S, Ruiz-Baier R (2017) Integrated heart-coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput Methods Appl Mech Eng 314:345–407MathSciNetMATHCrossRef
43.
Zurück zum Zitat Reconditi M, Caremani M, Pinzauti F, Powers J, Narayanan T, Stienen G, Linari M, Lombardi V, Piazzesi G (2017) Myosin filament activation in the heart is tuned to the mechanical task. Proc Natl Acad Sci 3240–3245 Reconditi M, Caremani M, Pinzauti F, Powers J, Narayanan T, Stienen G, Linari M, Lombardi V, Piazzesi G (2017) Myosin filament activation in the heart is tuned to the mechanical task. Proc Natl Acad Sci 3240–3245
44.
Zurück zum Zitat Regazzoni F, Dede’ L, Quarteroni A (2018) Active contraction of cardiac cells: a reduced model for sarcomere dynamics with cooperative interactions. Biomech Model Mechanobiol 1–24 Regazzoni F, Dede’ L, Quarteroni A (2018) Active contraction of cardiac cells: a reduced model for sarcomere dynamics with cooperative interactions. Biomech Model Mechanobiol 1–24
45.
Zurück zum Zitat Regazzoni F, Dedè L, Quarteroni A (2020) Biophysically detailed mathematical models of multiscale cardiac active mechanics. PLoS Comput Biol 16(10):e1008294CrossRef Regazzoni F, Dedè L, Quarteroni A (2020) Biophysically detailed mathematical models of multiscale cardiac active mechanics. PLoS Comput Biol 16(10):e1008294CrossRef
46.
Zurück zum Zitat Rice J, de Tombe P (2004) Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle. Prog Biophys Mol Biol 85(2–3):179–195CrossRef Rice J, de Tombe P (2004) Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle. Prog Biophys Mol Biol 85(2–3):179–195CrossRef
47.
Zurück zum Zitat Rice J, Stolovitzky G, Tu Y, de Tombe P (2003) Ising model of cardiac thin filament activation with nearest-neighbor cooperative interactions. Biophys J 84(2):897–909CrossRef Rice J, Stolovitzky G, Tu Y, de Tombe P (2003) Ising model of cardiac thin filament activation with nearest-neighbor cooperative interactions. Biophys J 84(2):897–909CrossRef
48.
Zurück zum Zitat Rice J, Wang F, Bers D, de Tombe P (2008) Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 95(5):2368–2390CrossRef Rice J, Wang F, Bers D, de Tombe P (2008) Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 95(5):2368–2390CrossRef
49.
Zurück zum Zitat Rossi S, Lassila T, Ruiz-Baier R, Sequeira A, Quarteroni A (2014) Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. Eur J Mech Solids 48(C):129–142MathSciNetMATHCrossRef Rossi S, Lassila T, Ruiz-Baier R, Sequeira A, Quarteroni A (2014) Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. Eur J Mech Solids 48(C):129–142MathSciNetMATHCrossRef
50.
Zurück zum Zitat Sequeira V, Velden J (2017) The Frank–Starling Law: a jigsaw of titin proportions. Biophys Rev 9(3):259–267CrossRef Sequeira V, Velden J (2017) The Frank–Starling Law: a jigsaw of titin proportions. Biophys Rev 9(3):259–267CrossRef
51.
Zurück zum Zitat Silverthorn D, Ober W, Garrison C, Silverthorn A (2009) Human physiology: an integrated approach. Pearson Silverthorn D, Ober W, Garrison C, Silverthorn A (2009) Human physiology: an integrated approach. Pearson
52.
Zurück zum Zitat Sugiura S, Washio T, Hatano A, Okada J, Watanabe H, Hisada T (2012) Multi-scale simulations of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator. Prog Biophys Mol Biol 110(2–3):380–389CrossRef Sugiura S, Washio T, Hatano A, Okada J, Watanabe H, Hisada T (2012) Multi-scale simulations of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator. Prog Biophys Mol Biol 110(2–3):380–389CrossRef
53.
Zurück zum Zitat ter Keurs H, Shinozaki T, Zhang Y, Zhang M, Wakayama Y, Sugai Y, Kagaya Y, Miura M, Boyden P, Stuyvers B, Landesberg A (2008) Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias. Prog Biophys Mol Biol 97(2–3):312–331CrossRef ter Keurs H, Shinozaki T, Zhang Y, Zhang M, Wakayama Y, Sugai Y, Kagaya Y, Miura M, Boyden P, Stuyvers B, Landesberg A (2008) Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias. Prog Biophys Mol Biol 97(2–3):312–331CrossRef
54.
Zurück zum Zitat van der Velden J, de Jong J, Owen V, Burton P, Stienen G (2000) Effect of protein kinase A on calcium sensitivity of force and its sarcomere length dependence in human cardiomyocytes. Cardiovasc Res 46(3):487–495CrossRef van der Velden J, de Jong J, Owen V, Burton P, Stienen G (2000) Effect of protein kinase A on calcium sensitivity of force and its sarcomere length dependence in human cardiomyocytes. Cardiovasc Res 46(3):487–495CrossRef
55.
Zurück zum Zitat Wannenburg T, Janssen P, Fan D, de Tombe P (1997) The Frank–Starling mechanism is not mediated by changes in rate of cross-bridge detachment. Am J Physiol 273(5 Pt 2):H2428-35 Wannenburg T, Janssen P, Fan D, de Tombe P (1997) The Frank–Starling mechanism is not mediated by changes in rate of cross-bridge detachment. Am J Physiol 273(5 Pt 2):H2428-35
56.
Zurück zum Zitat Washio T, Okada J-I, Sugiura S, Hisada T (2011) Approximation for cooperative interactions of a spatially-detailed cardiac sarcomere model. Cell Mol Bioeng 5(1):113–126CrossRef Washio T, Okada J-I, Sugiura S, Hisada T (2011) Approximation for cooperative interactions of a spatially-detailed cardiac sarcomere model. Cell Mol Bioeng 5(1):113–126CrossRef
57.
Zurück zum Zitat Zahalak G, Motabarzadeh I (1997) A re-examination of calcium activation in the Huxley cross-bridge model. J Biomech Eng 119(1):20–29CrossRef Zahalak G, Motabarzadeh I (1997) A re-examination of calcium activation in the Huxley cross-bridge model. J Biomech Eng 119(1):20–29CrossRef
58.
Zurück zum Zitat Zahalak GI (2000) The two-state cross-bridge model of muscle is an asymptotic limit of multi-state models. J Theor Biol Zahalak GI (2000) The two-state cross-bridge model of muscle is an asymptotic limit of multi-state models. J Theor Biol
Metadaten
Titel
Hierarchical modeling of length-dependent force generation in cardiac muscles and associated thermodynamically-consistent numerical schemes
verfasst von
François Kimmig
Philippe Moireau
Dominique Chapelle
Publikationsdatum
13.07.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2021
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02051-z

Weitere Artikel der Ausgabe 4/2021

Computational Mechanics 4/2021 Zur Ausgabe

Neuer Inhalt