Skip to main content
Erschienen in: Computational Mechanics 4/2021

17.06.2021 | Original Paper

Dynamics of double emulsion interfaces under the combined effects of electric field and shear flow

verfasst von: Roozbeh Saghatchi, Murat Ozbulut, Mehmet Yildiz

Erschienen in: Computational Mechanics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the dynamics of a 2D double emulsion under the combined effects of the electric field and shear flow are studied by using an incompressible smoothed particle hydrodynamics (ISPH) method. Six different systems are used, each corresponding to different electrical properties. The effects of capillary and electrical capillary numbers, and core to shell radius ratio on the deformation and orientation angle of core and shell droplets are discussed thoroughly. It is shown that the deformation is highly dependent on these values, as well as the electrical properties. Electric force components and hydrodynamic stresses on the core-shell and shell-medium interfaces are calculated and discussed in detail. It is demonstrated that in some systems, a breakup occurs, which can be circumvented by changing the capillary and electrical capillary numbers as well as the core to shell droplet radius ratio. Finally, different breakup forms are investigated comprehensively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pontrelli G, Carr EJ, Tiribocchi A, Succi S (2020) Modeling drug delivery from multiple emulsions. Phys Rev E 102:023114MathSciNetCrossRef Pontrelli G, Carr EJ, Tiribocchi A, Succi S (2020) Modeling drug delivery from multiple emulsions. Phys Rev E 102:023114MathSciNetCrossRef
2.
Zurück zum Zitat Paximada P, Howarth M, Dubey BN (2021) Double emulsions fortified with plant and milk proteins as fat replacers in cheese. J Food Eng 288:110229CrossRef Paximada P, Howarth M, Dubey BN (2021) Double emulsions fortified with plant and milk proteins as fat replacers in cheese. J Food Eng 288:110229CrossRef
3.
Zurück zum Zitat Tarnowska M, Briançon S, Resende de Azevedo J, Chevalier Y, Arquier D, Barratier C, Bolzinger M-A (2020) The effect of vehicle on skin absorption of Mg\(^{2+}\) and Ca\(^{2+}\) from thermal spring water. Int J Cosmet Sci 42(3):248–258CrossRef Tarnowska M, Briançon S, Resende de Azevedo J, Chevalier Y, Arquier D, Barratier C, Bolzinger M-A (2020) The effect of vehicle on skin absorption of Mg\(^{2+}\) and Ca\(^{2+}\) from thermal spring water. Int J Cosmet Sci 42(3):248–258CrossRef
4.
Zurück zum Zitat Raghuraman B, Tirmizi N, Wiencek J (1994) Emulsion liquid membranes for wastewater treatment: Equilibrium models for some typical metal-extractant systems. Environ Sci Technol 28(6):1090–1098 PMID: 22176234CrossRef Raghuraman B, Tirmizi N, Wiencek J (1994) Emulsion liquid membranes for wastewater treatment: Equilibrium models for some typical metal-extractant systems. Environ Sci Technol 28(6):1090–1098 PMID: 22176234CrossRef
5.
Zurück zum Zitat Taylor GI (1964) Disintegration of water drops in an electric field. Proc R Soc Lond Ser A Math Phys Sci 280(1382):383–397MATH Taylor GI (1964) Disintegration of water drops in an electric field. Proc R Soc Lond Ser A Math Phys Sci 280(1382):383–397MATH
6.
Zurück zum Zitat Allan RS, Mason SG, Marion LE (1962) Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops. Proc R Soc Lond Ser A Math Phys Sci 267(1328):45–61 Allan RS, Mason SG, Marion LE (1962) Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops. Proc R Soc Lond Ser A Math Phys Sci 267(1328):45–61
7.
Zurück zum Zitat Taylor GI, McEwan AD, de Jong LNJ (1966) Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc R Soc Lond Ser A Math Phys Sci 291(1425):159–166 Taylor GI, McEwan AD, de Jong LNJ (1966) Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc R Soc Lond Ser A Math Phys Sci 291(1425):159–166
8.
Zurück zum Zitat Lac E, Homsy GM (2007) Axisymmetric deformation and stability of a viscous drop in a steady electric field. J Fluid Mech 590:239–264MathSciNetMATHCrossRef Lac E, Homsy GM (2007) Axisymmetric deformation and stability of a viscous drop in a steady electric field. J Fluid Mech 590:239–264MathSciNetMATHCrossRef
9.
Zurück zum Zitat Marrivada Nanchara Reddy and Asghar Esmaeeli (2009) The EHD-driven fluid flow and deformation of a liquid jet by a transverse electric field. Int J Multiph Flow 35(11):1051–1065CrossRef Marrivada Nanchara Reddy and Asghar Esmaeeli (2009) The EHD-driven fluid flow and deformation of a liquid jet by a transverse electric field. Int J Multiph Flow 35(11):1051–1065CrossRef
10.
Zurück zum Zitat Shadloo MS, Rahmat A, Yildiz M (2013) A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid. Comput Mech 52(3):693–707MathSciNetMATHCrossRef Shadloo MS, Rahmat A, Yildiz M (2013) A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid. Comput Mech 52(3):693–707MathSciNetMATHCrossRef
11.
Zurück zum Zitat Xu J-J, Shi W, Hu W-F, Huang J-J (2020) A level-set immersed interface method for simulating the electrohydrodynamics. J Comput Phys 400:108956MathSciNetMATHCrossRef Xu J-J, Shi W, Hu W-F, Huang J-J (2020) A level-set immersed interface method for simulating the electrohydrodynamics. J Comput Phys 400:108956MathSciNetMATHCrossRef
12.
Zurück zum Zitat de Bruijn RA (1989) Deformation and breakup of drops in simple shear flows. PhD thesis, TUE, Department of Applied Physics de Bruijn RA (1989) Deformation and breakup of drops in simple shear flows. PhD thesis, TUE, Department of Applied Physics
13.
Zurück zum Zitat Sheth KS, Pozrikidis C (1995) Effects of inertia on the deformation of liquid drops in simple shear flow. Comput Fluids 24(2):101–119MATHCrossRef Sheth KS, Pozrikidis C (1995) Effects of inertia on the deformation of liquid drops in simple shear flow. Comput Fluids 24(2):101–119MATHCrossRef
14.
Zurück zum Zitat Chinyoka T, Renardy YY, Renardy M, Khismatullin DB (2005) Two-dimensional study of drop deformation under simple shear for Oldroyd-B liquids. J Non-Newtonian Fluid Mech 130(1):45–56MATHCrossRef Chinyoka T, Renardy YY, Renardy M, Khismatullin DB (2005) Two-dimensional study of drop deformation under simple shear for Oldroyd-B liquids. J Non-Newtonian Fluid Mech 130(1):45–56MATHCrossRef
15.
Zurück zum Zitat Mählmann S, Papageorgiou DT (2009) Numerical study of electric field effects on the deformation of two-dimensional liquid drops in simple shear flow at arbitrary Reynolds number. J Fluid Mech 626:367–393MathSciNetMATHCrossRef Mählmann S, Papageorgiou DT (2009) Numerical study of electric field effects on the deformation of two-dimensional liquid drops in simple shear flow at arbitrary Reynolds number. J Fluid Mech 626:367–393MathSciNetMATHCrossRef
16.
Zurück zum Zitat Zainali A, Tofighi N, Shadloo MS, Yildiz M (2013) Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method. Comput Methods Appl Mech Eng 254:99–113MathSciNetMATHCrossRef Zainali A, Tofighi N, Shadloo MS, Yildiz M (2013) Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method. Comput Methods Appl Mech Eng 254:99–113MathSciNetMATHCrossRef
17.
Zurück zum Zitat Amani A, Balcázar N, Castro J, Oliva A (2019) Numerical study of droplet deformation in shear flow using a conservative level-set method. Chem Eng Sci 207:153–171CrossRef Amani A, Balcázar N, Castro J, Oliva A (2019) Numerical study of droplet deformation in shear flow using a conservative level-set method. Chem Eng Sci 207:153–171CrossRef
18.
Zurück zum Zitat Tsukada T, Mayama J, Sato M, Hozawa M (1997) Theoretical and experimental studies on the behavior of a compound drop under a uniform DC electric field. J Chem Eng Jpn 30(2):215–222CrossRef Tsukada T, Mayama J, Sato M, Hozawa M (1997) Theoretical and experimental studies on the behavior of a compound drop under a uniform DC electric field. J Chem Eng Jpn 30(2):215–222CrossRef
19.
Zurück zum Zitat Spasic AM, Jovanovic JM, Manojlovic V, Jovanovic M (2016) Breaking of double emulsions based on electrohydrodynamics principles. J Colloid Interface Sci 479:165–172CrossRef Spasic AM, Jovanovic JM, Manojlovic V, Jovanovic M (2016) Breaking of double emulsions based on electrohydrodynamics principles. J Colloid Interface Sci 479:165–172CrossRef
20.
Zurück zum Zitat Santra S, Das S, Chakraborty S (2020) Electrically modulated dynamics of a compound droplet in a confined microfluidic environment. J Fluid Mech 882:A23MATHCrossRef Santra S, Das S, Chakraborty S (2020) Electrically modulated dynamics of a compound droplet in a confined microfluidic environment. J Fluid Mech 882:A23MATHCrossRef
21.
Zurück zum Zitat Abbasi MS, Song R, Kim H, Lee J (2019) Multimodal breakup of a double emulsion droplet under an electric field. Soft Matter 15:2292–2300CrossRef Abbasi MS, Song R, Kim H, Lee J (2019) Multimodal breakup of a double emulsion droplet under an electric field. Soft Matter 15:2292–2300CrossRef
22.
Zurück zum Zitat Hua H, Shin J, Kim J (2014) Dynamics of a compound droplet in shear flow. Int J Heat Fluid Flow 50:63–71CrossRef Hua H, Shin J, Kim J (2014) Dynamics of a compound droplet in shear flow. Int J Heat Fluid Flow 50:63–71CrossRef
23.
Zurück zum Zitat Chen Y, Liu X, Shi M (2013) Hydrodynamics of double emulsion droplet in shear flow. Appl Phys Lett 102(5):051609CrossRef Chen Y, Liu X, Shi M (2013) Hydrodynamics of double emulsion droplet in shear flow. Appl Phys Lett 102(5):051609CrossRef
24.
25.
Zurück zum Zitat Almasi F, Shadloo MS, Hadjadj A, Ozbulut M, Tofighi N, Yildiz M (2019) Numerical simulations of multi-phase electro-hydrodynamics flows using a simple incompressible smoothed particle hydrodynamics method. Comput Math Appl Almasi F, Shadloo MS, Hadjadj A, Ozbulut M, Tofighi N, Yildiz M (2019) Numerical simulations of multi-phase electro-hydrodynamics flows using a simple incompressible smoothed particle hydrodynamics method. Comput Math Appl
26.
Zurück zum Zitat Santra S, Mandal S, Chakraborty S (2019) Confinement effect on electrically induced dynamics of a droplet in shear flow. Phys Rev E 100:033101CrossRef Santra S, Mandal S, Chakraborty S (2019) Confinement effect on electrically induced dynamics of a droplet in shear flow. Phys Rev E 100:033101CrossRef
27.
Zurück zum Zitat Nath B, Borthakur MP, Biswas G (2020) Electric field induced dynamics of viscoplastic droplets in shear flow. Phys Fluids 32(9):092110CrossRef Nath B, Borthakur MP, Biswas G (2020) Electric field induced dynamics of viscoplastic droplets in shear flow. Phys Fluids 32(9):092110CrossRef
28.
Zurück zum Zitat Santra S, Das S, Chakraborty S (2019) Electric field-induced pinch-off of a compound droplet in Poiseuille flow. Phys Fluids 31(6):062004CrossRef Santra S, Das S, Chakraborty S (2019) Electric field-induced pinch-off of a compound droplet in Poiseuille flow. Phys Fluids 31(6):062004CrossRef
29.
Zurück zum Zitat Santra S, Panigrahi DP, Das S, Chakraborty S (2020) Shape evolution of compound droplet in combined presence of electric field and extensional flow. Phys Rev Fluids 5:063602CrossRef Santra S, Panigrahi DP, Das S, Chakraborty S (2020) Shape evolution of compound droplet in combined presence of electric field and extensional flow. Phys Rev Fluids 5:063602CrossRef
30.
Zurück zum Zitat Lee HM, Choi SB, Kim JH, Lee JS (2020) Interfacial behavior of surfactant-covered double emulsion in extensional flow. Phys Rev E 102:053104CrossRef Lee HM, Choi SB, Kim JH, Lee JS (2020) Interfacial behavior of surfactant-covered double emulsion in extensional flow. Phys Rev E 102:053104CrossRef
31.
Zurück zum Zitat Santra S, Jana A, Chakraborty S (2020) Electric field modulated deformation dynamics of a compound drop in the presence of confined shear flow. Phys Fluids 32(12):122006CrossRef Santra S, Jana A, Chakraborty S (2020) Electric field modulated deformation dynamics of a compound drop in the presence of confined shear flow. Phys Fluids 32(12):122006CrossRef
32.
Zurück zum Zitat Borthakur MP, Nath B, Biswas G (2021) Dynamics of a compound droplet under the combined influence of electric field and shear flow. Phys Rev Fluids 6:023603CrossRef Borthakur MP, Nath B, Biswas G (2021) Dynamics of a compound droplet under the combined influence of electric field and shear flow. Phys Rev Fluids 6:023603CrossRef
33.
Zurück zum Zitat Shadloo MS, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34MathSciNetMATHCrossRef Shadloo MS, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34MathSciNetMATHCrossRef
34.
Zurück zum Zitat Fürstenau JP, Weißenfels C, Wriggers P (2020) Free surface tension in incompressible smoothed particle hydrodynamcis (ISPH). Comput Mech 65:487–502MathSciNetCrossRef Fürstenau JP, Weißenfels C, Wriggers P (2020) Free surface tension in incompressible smoothed particle hydrodynamcis (ISPH). Comput Mech 65:487–502MathSciNetCrossRef
35.
Zurück zum Zitat Huang C, Liu MB (2020) Modeling hydrate-bearing sediment with a mixed smoothed particle hydrodynamics. Comput Mech 66:877–891MathSciNetMATHCrossRef Huang C, Liu MB (2020) Modeling hydrate-bearing sediment with a mixed smoothed particle hydrodynamics. Comput Mech 66:877–891MathSciNetMATHCrossRef
36.
Zurück zum Zitat Roghair I, Musterd M, van den Ende D, Kleijn C, Kreutzer M, Mugele F (2015) A numerical technique to simulate display pixels based on electrowetting. Microfluid Nanofluidics 19(2):465–482CrossRef Roghair I, Musterd M, van den Ende D, Kleijn C, Kreutzer M, Mugele F (2015) A numerical technique to simulate display pixels based on electrowetting. Microfluid Nanofluidics 19(2):465–482CrossRef
37.
39.
Zurück zum Zitat Eringen AC, Maugin GA (2012) Electrodynamics of continua II: fluids and complex media. Springer, Berlin Eringen AC, Maugin GA (2012) Electrodynamics of continua II: fluids and complex media. Springer, Berlin
40.
Zurück zum Zitat Saville DA (1997) Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Ann Rev Fluid Mech 29(1):27–64MathSciNetCrossRef Saville DA (1997) Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Ann Rev Fluid Mech 29(1):27–64MathSciNetCrossRef
41.
Zurück zum Zitat Reich FA, Rickert W, Müller WH (2018) An investigation into electromagnetic force models: differences in global and local effects demonstrated by selected problems. Contin Mech Thermodyn 30:233–266MathSciNetMATHCrossRef Reich FA, Rickert W, Müller WH (2018) An investigation into electromagnetic force models: differences in global and local effects demonstrated by selected problems. Contin Mech Thermodyn 30:233–266MathSciNetMATHCrossRef
42.
Zurück zum Zitat Das D, Saintillan D (2021) A three-dimensional small-deformation theory for electrohydrodynamics of dielectric drops. J Fluid Mech 914:A22MathSciNetMATHCrossRef Das D, Saintillan D (2021) A three-dimensional small-deformation theory for electrohydrodynamics of dielectric drops. J Fluid Mech 914:A22MathSciNetMATHCrossRef
43.
Zurück zum Zitat Saghatchi R, Ghazanfarian J, Gorji-Bandpy M (2014) Numerical simulation of water-entry and sedimentation of an elliptic cylinder using smoothed-particle hydrodynamics method. J Offshore Mech Arctic Eng 136(3):031801CrossRef Saghatchi R, Ghazanfarian J, Gorji-Bandpy M (2014) Numerical simulation of water-entry and sedimentation of an elliptic cylinder using smoothed-particle hydrodynamics method. J Offshore Mech Arctic Eng 136(3):031801CrossRef
44.
Zurück zum Zitat Ozbulut M, Tofighi N, Goren O, Yildiz M (2017) Investigation of wave characteristics in oscillatory motion of partially filled rectangular tanks. J Fluids Eng 140(4):041204CrossRef Ozbulut M, Tofighi N, Goren O, Yildiz M (2017) Investigation of wave characteristics in oscillatory motion of partially filled rectangular tanks. J Fluids Eng 140(4):041204CrossRef
45.
Zurück zum Zitat Ghazanfarian J, Saghatchi R, Gorji-Bandpy M (2015) Turbulent fluid-structure interaction of water-entry/exit of a rotating circular cylinder using SPH method. Int J Mod Phys C 26(08):1550088MathSciNetCrossRef Ghazanfarian J, Saghatchi R, Gorji-Bandpy M (2015) Turbulent fluid-structure interaction of water-entry/exit of a rotating circular cylinder using SPH method. Int J Mod Phys C 26(08):1550088MathSciNetCrossRef
46.
Zurück zum Zitat Ghazanfarian J, Saghatchi R, Gorji-Bandpy M (2016) SPH simulation of turbulent flow past a high-frequency in-line oscillating cylinder near free-surface. Int J Mod Phys C 27(12):1650152MathSciNetCrossRef Ghazanfarian J, Saghatchi R, Gorji-Bandpy M (2016) SPH simulation of turbulent flow past a high-frequency in-line oscillating cylinder near free-surface. Int J Mod Phys C 27(12):1650152MathSciNetCrossRef
47.
Zurück zum Zitat Zainali A, Tofighi N, Shadloo MS, Yildiz M (2013) Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method. Comput Methods Appl Mech Eng 254:99–113MathSciNetMATHCrossRef Zainali A, Tofighi N, Shadloo MS, Yildiz M (2013) Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method. Comput Methods Appl Mech Eng 254:99–113MathSciNetMATHCrossRef
48.
Zurück zum Zitat Rook R, Yildiz M, Dost S (2007) Modeling transient heat transfer using SPH and implicit time integration. Numer Heat Transf Part B Fundam 51(1):1–23CrossRef Rook R, Yildiz M, Dost S (2007) Modeling transient heat transfer using SPH and implicit time integration. Numer Heat Transf Part B Fundam 51(1):1–23CrossRef
49.
Zurück zum Zitat Saghatchi R, Ghazanfarian J (2015) A novel SPH method for the solution of dual-phase-lag model with temperature-jump boundary condition in nanoscale. Appl Math Model 39(3):1063–1073MathSciNetMATHCrossRef Saghatchi R, Ghazanfarian J (2015) A novel SPH method for the solution of dual-phase-lag model with temperature-jump boundary condition in nanoscale. Appl Math Model 39(3):1063–1073MathSciNetMATHCrossRef
50.
Zurück zum Zitat Ghazanfarian J, Saghatchi R, Patil DV (2015) Implementation of smoothed-particle hydrodynamics for non-linear Pennes’ bioheat transfer equation. Appl Math Comput 259:21–31MathSciNetMATH Ghazanfarian J, Saghatchi R, Patil DV (2015) Implementation of smoothed-particle hydrodynamics for non-linear Pennes’ bioheat transfer equation. Appl Math Comput 259:21–31MathSciNetMATH
51.
Zurück zum Zitat Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149(1):135–143MATH Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149(1):135–143MATH
52.
Zurück zum Zitat Monaghan JJ, Kocharyan A (1995) SPH simulation of multiphase flow. Comput Phys Commun 87(1–2):225–235MATHCrossRef Monaghan JJ, Kocharyan A (1995) SPH simulation of multiphase flow. Comput Phys Commun 87(1–2):225–235MATHCrossRef
53.
Zurück zum Zitat Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353MATHCrossRef Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353MATHCrossRef
54.
Zurück zum Zitat Tofighi N, Yildiz M (2013) Numerical simulation of single droplet dynamics in three-phase flows using ISPH. Comput Math Appl 66(4):525–536MathSciNetMATHCrossRef Tofighi N, Yildiz M (2013) Numerical simulation of single droplet dynamics in three-phase flows using ISPH. Comput Math Appl 66(4):525–536MathSciNetMATHCrossRef
55.
Zurück zum Zitat Ozbulut M, Yildiz M, Goren O (2014) A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows. Int J Mech Sci 79:56–65CrossRef Ozbulut M, Yildiz M, Goren O (2014) A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows. Int J Mech Sci 79:56–65CrossRef
56.
Zurück zum Zitat Ozbulut M, Ramezanzadeh S, Yildiz M, Goren O (2020) Modelling of wave generation in a numerical tank by SPH method. J Ocean Eng Mar Energy 6:2198–6452CrossRef Ozbulut M, Ramezanzadeh S, Yildiz M, Goren O (2020) Modelling of wave generation in a numerical tank by SPH method. J Ocean Eng Mar Energy 6:2198–6452CrossRef
57.
Zurück zum Zitat Kolukisa DC, Ozbulut M, Pesman E, Yildiz M (2020) Development of computationally efficient augmented Lagrangian SPH for incompressible flows and its quantitative comparison with WCSPH simulating flow past a circular cylinder. Int J Numer Methods Eng 121(18):4187–4207MathSciNetCrossRef Kolukisa DC, Ozbulut M, Pesman E, Yildiz M (2020) Development of computationally efficient augmented Lagrangian SPH for incompressible flows and its quantitative comparison with WCSPH simulating flow past a circular cylinder. Int J Numer Methods Eng 121(18):4187–4207MathSciNetCrossRef
58.
Zurück zum Zitat Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200(9):1008–1020 Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200(9):1008–1020
59.
Zurück zum Zitat Tofighi N, Ozbulut M, Rahmat A, Feng JJ, Yildiz M (2015) An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids. J Comput Phys 297:207–220MathSciNetMATHCrossRef Tofighi N, Ozbulut M, Rahmat A, Feng JJ, Yildiz M (2015) An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids. J Comput Phys 297:207–220MathSciNetMATHCrossRef
60.
Zurück zum Zitat Yildiz M, Rook RA, Suleman A (2009) SPH with the multiple boundary tangent method. Int J Numer Methods Eng 77(10):1416–1438MathSciNetMATHCrossRef Yildiz M, Rook RA, Suleman A (2009) SPH with the multiple boundary tangent method. Int J Numer Methods Eng 77(10):1416–1438MathSciNetMATHCrossRef
61.
Zurück zum Zitat Tofighi N, Yildiz M (2013) Numerical simulation of single droplet dynamics in three-phase flows using ISPH. Comput Math Appl 66(4):525–536MathSciNetMATHCrossRef Tofighi N, Yildiz M (2013) Numerical simulation of single droplet dynamics in three-phase flows using ISPH. Comput Math Appl 66(4):525–536MathSciNetMATHCrossRef
62.
Zurück zum Zitat Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631CrossRef Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631CrossRef
63.
Zurück zum Zitat Deshpande SS, Anumolu L, Trujillo MF (2012) Evaluating the performance of the two-phase flow solver interFoam. Comput Sci Discov 5(1):014016CrossRef Deshpande SS, Anumolu L, Trujillo MF (2012) Evaluating the performance of the two-phase flow solver interFoam. Comput Sci Discov 5(1):014016CrossRef
64.
Zurück zum Zitat Feng JQ, Scott TC (1996) A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J Fluid Mech 311:289–326MATHCrossRef Feng JQ, Scott TC (1996) A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J Fluid Mech 311:289–326MATHCrossRef
65.
Zurück zum Zitat Zhang J, Kwok DY (2005) A 2d lattice Boltzmann study on electrohydrodynamic drop deformation with the leaky dielectric theory. J Comput Phys 206(1):150–161MATHCrossRef Zhang J, Kwok DY (2005) A 2d lattice Boltzmann study on electrohydrodynamic drop deformation with the leaky dielectric theory. J Comput Phys 206(1):150–161MATHCrossRef
66.
Zurück zum Zitat Song Y, Shum HC (2012) Monodisperse w/w/w double emulsion induced by phase separation. Langmuir 28(33):12054–12059 (PMID: 22849828)CrossRef Song Y, Shum HC (2012) Monodisperse w/w/w double emulsion induced by phase separation. Langmuir 28(33):12054–12059 (PMID: 22849828)CrossRef
67.
Zurück zum Zitat Opalski AS, Makuch K, Derzsi L, Garstecki P (2020) Split or slip–passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system. RSC Adv 10:23058–23065CrossRef Opalski AS, Makuch K, Derzsi L, Garstecki P (2020) Split or slip–passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system. RSC Adv 10:23058–23065CrossRef
68.
Zurück zum Zitat Tsukada T, Yamamoto Y, Katayama T, Hozawa M (1994) Effect of an electric field on the behavior of a drop moving in a quiescent liquid. J Chem Eng Jpn 27(5):662–666CrossRef Tsukada T, Yamamoto Y, Katayama T, Hozawa M (1994) Effect of an electric field on the behavior of a drop moving in a quiescent liquid. J Chem Eng Jpn 27(5):662–666CrossRef
69.
Zurück zum Zitat Hunt TP, Issadore D, Brown KA, Lee H, Westervelt RM (2009) Integrated circuit/microfluidic chips for dielectric manipulation. Caister Academic Press, Wymondham Hunt TP, Issadore D, Brown KA, Lee H, Westervelt RM (2009) Integrated circuit/microfluidic chips for dielectric manipulation. Caister Academic Press, Wymondham
70.
Zurück zum Zitat Saghatchi R, Rahmat A, Yildiz M (2020) Electrohydrodynamics of a droplet in a highly confined domain: a numerical study. Phys Fluids 32(12):123305CrossRef Saghatchi R, Rahmat A, Yildiz M (2020) Electrohydrodynamics of a droplet in a highly confined domain: a numerical study. Phys Fluids 32(12):123305CrossRef
Metadaten
Titel
Dynamics of double emulsion interfaces under the combined effects of electric field and shear flow
verfasst von
Roozbeh Saghatchi
Murat Ozbulut
Mehmet Yildiz
Publikationsdatum
17.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2021
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02045-x

Weitere Artikel der Ausgabe 4/2021

Computational Mechanics 4/2021 Zur Ausgabe

Neuer Inhalt