Skip to main content
Erschienen in: Computational Mechanics 2/2020

07.11.2019 | Original Paper

Free surface tension in incompressible smoothed particle hydrodynamcis (ISPH)

verfasst von: Jan-Philipp Fürstenau, Christian Weißenfels, Peter Wriggers

Erschienen in: Computational Mechanics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work a Dirichlet pressure boundary condition for incompressible Smoothed Particle Hydrodynamics (SPH) is presented for free surfaces under surface tension. These free surfaces occur when the surrounding phase in simulations is neglected for computational reasons while the effects of the surface tension shall remain. We demonstrate capabilities of the boundary condition by comparing it to an approach from the literature. The simulations show that our approach provides a higher stability to the free surface, being capable of capturing static and transient processes as much as bubble coalescence. Furthermore a new approach is presented to compute the curvature more exactly for three-dimensional cases in order to stabilize the simulation, which is applicable for weakly compressible SPH and incompressible SPH simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229(13):5011–5021CrossRef Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229(13):5011–5021CrossRef
2.
Zurück zum Zitat Aly AM, Asai M, Sonda Y (2013) Modelling of surface tension force for free surface flows in ISPH method. Int J Numer Methods Heat Fluid Flow 23(3):479–498MathSciNetCrossRef Aly AM, Asai M, Sonda Y (2013) Modelling of surface tension force for free surface flows in ISPH method. Int J Numer Methods Heat Fluid Flow 23(3):479–498MathSciNetCrossRef
3.
Zurück zum Zitat Blank M, Nair P, Pöschel T (2019) Capillary viscous flow and melting dynamics: coupled simulations for additive manufacturing applications. Int J Heat Mass Transf 131:1232–1246CrossRef Blank M, Nair P, Pöschel T (2019) Capillary viscous flow and melting dynamics: coupled simulations for additive manufacturing applications. Int J Heat Mass Transf 131:1232–1246CrossRef
4.
Zurück zum Zitat Bøckmann A, Shipilova O, Skeie G (2012) Incompressible SPH for free surface flows. Comput Fluids 67:138–151MathSciNetCrossRef Bøckmann A, Shipilova O, Skeie G (2012) Incompressible SPH for free surface flows. Comput Fluids 67:138–151MathSciNetCrossRef
5.
Zurück zum Zitat Brackbill J, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetCrossRef Brackbill J, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetCrossRef
6.
Zurück zum Zitat Cleary PW (1998) Modelling confined multi-material heat and mass flows using SPH. Appl Math Modell 22(12):981–993CrossRef Cleary PW (1998) Modelling confined multi-material heat and mass flows using SPH. Appl Math Modell 22(12):981–993CrossRef
7.
Zurück zum Zitat Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148(1):227–264MathSciNetCrossRef Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148(1):227–264MathSciNetCrossRef
9.
Zurück zum Zitat Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475CrossRef Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475CrossRef
10.
Zurück zum Zitat Crespo AJ, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) Dualsphysics: open-source parallel cfd solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216CrossRef Crespo AJ, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) Dualsphysics: open-source parallel cfd solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216CrossRef
12.
Zurück zum Zitat Fürstenau JP, Avci B, Wriggers P (2016) A numerical review of multi-fluid SPH algorithms for high density ratios. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation. Modeling and simulation in science, engineering and technology. Birkhäuser, Cham, pp 139–150 Fürstenau JP, Avci B, Wriggers P (2016) A numerical review of multi-fluid SPH algorithms for high density ratios. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation. Modeling and simulation in science, engineering and technology. Birkhäuser, Cham, pp 139–150
13.
Zurück zum Zitat Fürstenau JP, Avci B, Wriggers P (2017) A comparative numerical study of pressure-poisson-equation discretization strategies for SPH. In: 12th international SPHERIC workshop, Ourense, Spain, pp 1–8 Fürstenau JP, Avci B, Wriggers P (2017) A comparative numerical study of pressure-poisson-equation discretization strategies for SPH. In: 12th international SPHERIC workshop, Ourense, Spain, pp 1–8
14.
Zurück zum Zitat Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389CrossRef Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389CrossRef
15.
Zurück zum Zitat Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228(22):8380–8393MathSciNetCrossRef Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228(22):8380–8393MathSciNetCrossRef
16.
Zurück zum Zitat Hirschler M, Kunz P, Huber M, Hahn F, Nieken U (2016) Open boundary conditions for ISPH and their application to micro-flow. J Comput Phys 307:614–633MathSciNetCrossRef Hirschler M, Kunz P, Huber M, Hahn F, Nieken U (2016) Open boundary conditions for ISPH and their application to micro-flow. J Comput Phys 307:614–633MathSciNetCrossRef
17.
Zurück zum Zitat Hirschler M, Oger G, Nieken U, Le Touzé D (2017) Modeling of droplet collisions using smoothed particle hydrodynamics. Int J Multiph Flow 95:175–187MathSciNetCrossRef Hirschler M, Oger G, Nieken U, Le Touzé D (2017) Modeling of droplet collisions using smoothed particle hydrodynamics. Int J Multiph Flow 95:175–187MathSciNetCrossRef
19.
Zurück zum Zitat Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213(2):844–861MathSciNetCrossRef Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213(2):844–861MathSciNetCrossRef
20.
Zurück zum Zitat Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Gr 20(3):426–435CrossRef Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Gr 20(3):426–435CrossRef
21.
Zurück zum Zitat Landau L, Lifshitz E (1959) Course of theoretical physics. Fluid mechanics, vol 6. Elsevier, London Landau L, Lifshitz E (1959) Course of theoretical physics. Fluid mechanics, vol 6. Elsevier, London
22.
Zurück zum Zitat Lind S, Xu R, Stansby P, Rogers B (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231(4):1499–1523MathSciNetCrossRef Lind S, Xu R, Stansby P, Rogers B (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231(4):1499–1523MathSciNetCrossRef
23.
Zurück zum Zitat Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRef Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRef
25.
Zurück zum Zitat Monaghan J, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetCrossRef Monaghan J, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetCrossRef
27.
Zurück zum Zitat Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30(1):543–574CrossRef Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30(1):543–574CrossRef
28.
Zurück zum Zitat Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353CrossRef Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353CrossRef
29.
Zurück zum Zitat Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226CrossRef Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226CrossRef
30.
31.
Zurück zum Zitat Nair P, Tomar G (2019) Simulations of gas-liquid compressible-incompressible systems using SPH. Comput Fluids 179:301–308MathSciNetCrossRef Nair P, Tomar G (2019) Simulations of gas-liquid compressible-incompressible systems using SPH. Comput Fluids 179:301–308MathSciNetCrossRef
32.
Zurück zum Zitat Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225(2):1472–1492MathSciNetCrossRef Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225(2):1472–1492MathSciNetCrossRef
33.
Zurück zum Zitat Rider WJ (1995) Approximate projection methods for incompressible flow: implementation, variants and robustness. In: LANL UNCLASSIFIED REPORT LA-UR-94-2000, LOS ALAMOS NATIONAL LABORATORY. Citeseer Rider WJ (1995) Approximate projection methods for incompressible flow: implementation, variants and robustness. In: LANL UNCLASSIFIED REPORT LA-UR-94-2000, LOS ALAMOS NATIONAL LABORATORY. Citeseer
34.
Zurück zum Zitat Russell M, Souto-Iglesias A, Zohdi T (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187MathSciNetCrossRef Russell M, Souto-Iglesias A, Zohdi T (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187MathSciNetCrossRef
35.
Zurück zum Zitat Shao S, Lo EY (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26(7):787–800CrossRef Shao S, Lo EY (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26(7):787–800CrossRef
36.
Zurück zum Zitat Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference. ACM, pp 517–524 Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference. ACM, pp 517–524
37.
Zurück zum Zitat Szewc K, Tanière A, Pozorski J, Minier JP (2012) A study on application of smoothed particle hydrodynamics to multi-phase flows. Int J Nonlinear Sci Numer Simul 13(6):383–395MathSciNetCrossRef Szewc K, Tanière A, Pozorski J, Minier JP (2012) A study on application of smoothed particle hydrodynamics to multi-phase flows. Int J Nonlinear Sci Numer Simul 13(6):383–395MathSciNetCrossRef
39.
Zurück zum Zitat Zhang M (2010) Simulation of surface tension in 2d and 3d with smoothed particle hydrodynamics method. J Comput Phys 229(19):7238–7259MathSciNetCrossRef Zhang M (2010) Simulation of surface tension in 2d and 3d with smoothed particle hydrodynamics method. J Comput Phys 229(19):7238–7259MathSciNetCrossRef
Metadaten
Titel
Free surface tension in incompressible smoothed particle hydrodynamcis (ISPH)
verfasst von
Jan-Philipp Fürstenau
Christian Weißenfels
Peter Wriggers
Publikationsdatum
07.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2020
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01780-6

Weitere Artikel der Ausgabe 2/2020

Computational Mechanics 2/2020 Zur Ausgabe

Neuer Inhalt