Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2021

29.06.2021

Nondestructive Characterization of Laser Powder Bed Fusion Components Using High-Frequency Phased Array Ultrasonic Testing

verfasst von: Farhang Honarvar, Sagar Patel, Mihaela Vlasea, Hossein Amini, Ahmad Varvani-Farahani

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of metal additive manufacturing (AM) technologies is growing rapidly in many industries owing to their ability to produce complex designs, to light-weight critical components, and to consolidate assemblies. Laser powder bed fusion (LPBF) is a metal AM technology that offers finer feature resolution when compared with other metal AM technologies, with ongoing challenges in controlling the process to guarantee defect-free parts. Manufacturing of end-use products via LPBF with a high degree of internal feature design complexity results in an increased demand for demonstrating the performance of various nondestructive evaluation (NDE) tools. In this work, the use of high-frequency (50 MHz) phased array ultrasonic testing (PAUT) for the nondestructive evaluation of a cubic AlSi10Mg sample manufactured by the LPBF process is demonstrated. Artificial internal features with various sizes and shapes are implanted into this sample. The sample is tested offline by high-frequency PAUT from different directions and the position and shape of defects are evaluated. The sample is then subjected to X-ray computed tomography (XCT) and the results are compared with those obtained by ultrasonic testing. Very good agreement is observed between PAUT and XCT results and defects with dimensions as small as 0.75 mm are successfully identified.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat “ASTM ISO/ASTM52900-15 Standard Terminology for Additive Manufacturing: General Principles—Terminology,” ASTM International, West Conshohocken, PA, 2015. “ASTM ISO/ASTM52900-15 Standard Terminology for Additive Manufacturing: General Principles—Terminology,” ASTM International, West Conshohocken, PA, 2015.
2.
Zurück zum Zitat T. Wohlers, I. Campbell, O. Diegel, J. Kowen, and R. Huff, “Wohlers Report 2019: Additive Manufacturing and 3D Printing State of the Industry–Annual Worldwide Progress Report, Wohlers Associates,” Fort Collins CO, 2019. T. Wohlers, I. Campbell, O. Diegel, J. Kowen, and R. Huff, “Wohlers Report 2019: Additive Manufacturing and 3D Printing State of the Industry–Annual Worldwide Progress Report, Wohlers Associates,” Fort Collins CO, 2019.
3.
Zurück zum Zitat I. Gibson, D.W. Rosen and B. Stucker, Additive Manufacturing Technologies, Springer, 2014. I. Gibson, D.W. Rosen and B. Stucker, Additive Manufacturing Technologies, Springer, 2014.
5.
Zurück zum Zitat A. Du Plessis, I. Yadroitsev, I. Yadroitsava and S.G. Le Roux, X-ray Microcomputed Tomography in Additive Manufacturing: a Review of the Current Technology and APPLICATIONS, 3D Print Addit. Manuf., 2018, 5(3), p 227–247.CrossRef A. Du Plessis, I. Yadroitsev, I. Yadroitsava and S.G. Le Roux, X-ray Microcomputed Tomography in Additive Manufacturing: a Review of the Current Technology and APPLICATIONS, 3D Print Addit. Manuf., 2018, 5(3), p 227–247.CrossRef
7.
Zurück zum Zitat H. Rieder, A. Dillhöfer, M. Spies, J. Bamberg, and T. Hess, “Online Monitoring of Additive Manufacturing Processes Using Ultrasound,” in European Conference on Non-Destructive Testing, Prague, Czech Republic, 2014, pp. 6–10. H. Rieder, A. Dillhöfer, M. Spies, J. Bamberg, and T. Hess, “Online Monitoring of Additive Manufacturing Processes Using Ultrasound,” in European Conference on Non-Destructive Testing, Prague, Czech Republic, 2014, pp. 6–10.
8.
Zurück zum Zitat H. Rieder, M. Spies, J. Bamberg, and B. Henkel, “On-and offline Ultrasonic Characterization of Components Built by SLM Additive Manufacturing,” in AIP Conference Proceedings, Minnesota, US, 2015, vol. 1706, no. 1, p. 130002. H. Rieder, M. Spies, J. Bamberg, and B. Henkel, “On-and offline Ultrasonic Characterization of Components Built by SLM Additive Manufacturing,” in AIP Conference Proceedings, Minnesota, US, 2015, vol. 1706, no. 1, p. 130002.
9.
Zurück zum Zitat H. Rieder, M. Spies, J. Bamberg and B. Henkel, On-and Offline Ultrasonic Inspection of Additively Manufactured Components, World Conf. Non-Destruct. Test., 2016, 2016, p 1–8. H. Rieder, M. Spies, J. Bamberg and B. Henkel, On-and Offline Ultrasonic Inspection of Additively Manufactured Components, World Conf. Non-Destruct. Test., 2016, 2016, p 1–8.
11.
Zurück zum Zitat M. Roy, K. Walton, J. B. Harley, and M. Skliar, “Ultrasonic Evaluation of Segmental Variability in Additively Manufactured Metal Components,” 2018, pp. 1–4. M. Roy, K. Walton, J. B. Harley, and M. Skliar, “Ultrasonic Evaluation of Segmental Variability in Additively Manufactured Metal Components,” 2018, pp. 1–4.
12.
13.
Zurück zum Zitat T. Sol, S. Hayun, D. Noiman, E. Tiferet, O. Yeheskel and O. Tevet, Nondestructive Ultrasonic Evaluation of Additively Manufactured AlSi10Mg Samples, Addit. Manuf., 2018, 22, p 700–707. T. Sol, S. Hayun, D. Noiman, E. Tiferet, O. Yeheskel and O. Tevet, Nondestructive Ultrasonic Evaluation of Additively Manufactured AlSi10Mg Samples, Addit. Manuf., 2018, 22, p 700–707.
14.
Zurück zum Zitat Y. Song, X. Zi, Y. Fu, X. Li, C. Chen and K. Zhou, Nondestructive Testing of Additively Manufactured Material Based on Ultrasonic Scattering Measurement, Measurement, 2018, 118, p 105–112.CrossRef Y. Song, X. Zi, Y. Fu, X. Li, C. Chen and K. Zhou, Nondestructive Testing of Additively Manufactured Material Based on Ultrasonic Scattering Measurement, Measurement, 2018, 118, p 105–112.CrossRef
18.
Zurück zum Zitat T. Stratoudaki, Y. Javadi, W. Kerr, P. D. Wilcox, D. Pieris, and M. Clark, “Laser Induced Phased Arrays for Remote Ultrasonic Imaging of Additive Manufactured Components,” 2018, pp. 174–182. T. Stratoudaki, Y. Javadi, W. Kerr, P. D. Wilcox, D. Pieris, and M. Clark, “Laser Induced Phased Arrays for Remote Ultrasonic Imaging of Additive Manufactured Components,” 2018, pp. 174–182.
20.
Zurück zum Zitat M. Caminero, I. García-Moreno, G. Rodríguez and J. Chacón, Internal Damage Evaluation of Composite Structures Using Phased Array Ultrasonic Technique: Impact Damage Assessment in CFRP and 3D Printed Reinforced Composites, Compos. Part B Eng., 2019, 165, p 131–142.CrossRef M. Caminero, I. García-Moreno, G. Rodríguez and J. Chacón, Internal Damage Evaluation of Composite Structures Using Phased Array Ultrasonic Technique: Impact Damage Assessment in CFRP and 3D Printed Reinforced Composites, Compos. Part B Eng., 2019, 165, p 131–142.CrossRef
21.
Zurück zum Zitat G.E. Bean, D.B. Witkin, T.D. McLouth, D.N. Patel and R.J. Zaldivar, Effect of Laser Focus Shift on Surface Quality and Density of Inconel 718 Parts Produced via Selective Laser Melting, Addit. Manuf., 2018, 22, p 207–215. G.E. Bean, D.B. Witkin, T.D. McLouth, D.N. Patel and R.J. Zaldivar, Effect of Laser Focus Shift on Surface Quality and Density of Inconel 718 Parts Produced via Selective Laser Melting, Addit. Manuf., 2018, 22, p 207–215.
Metadaten
Titel
Nondestructive Characterization of Laser Powder Bed Fusion Components Using High-Frequency Phased Array Ultrasonic Testing
verfasst von
Farhang Honarvar
Sagar Patel
Mihaela Vlasea
Hossein Amini
Ahmad Varvani-Farahani
Publikationsdatum
29.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05988-7

Weitere Artikel der Ausgabe 9/2021

Journal of Materials Engineering and Performance 9/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.