Skip to main content
Erschienen in: Energy Systems 1/2023

05.08.2021 | Original Paper

Nonlinear pitch angle control of an onshore wind turbine by considering the aerodynamic nonlinearities and deriving an aeroelastic model

verfasst von: Farshad Golnary, Hamed Moradi, K. T. Tse

Erschienen in: Energy Systems | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the control problem of a wind turbine in region 3 (where the wind velocity is between the rated wind velocity and cut out wind velocity) has been investigated by considering the aerodynamic nonlinear behavior of the wind-structure interaction. The model has been developed by using the blade element momentum (BEM) theory to obtain the aerodynamic torque and aerodynamic loads in edgewise and flapwise directions. For validation, the aerodynamic behavior of the onshore NREL 5 MW turbine has been compared with the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) aeroelastic code in terms of the power coefficient. Wind speed is modelled as a three-dimensional profile with Kaimal spectrum distribution. The wind profile data is modeled in the frequency domain by the Kaimal spectrum distribution function. Then, an inverse Fourier transformation is needed to convert the data into the time domain. In the next, the sliding mode approach is applied to the three DOFs model of the drivetrain system which includes the rotor speed, low-speed shaft angle, and pitch angle. Finally, to consider the complete behavior of the onshore wind turbine, an eleven DOFs model is obtained. This model considers three DOFs for the flapwise vibrations of the blades, another three DOFs for the edgewise vibrations of the wind turbine, two DOFs for the side-side and fore-aft vibrations of the tower, and three DOFs for the drive-train system of the wind turbine. The performance of the proposed sliding mode control methods has been compared with the conventional PID controller for the above-rated wind velocity region. Results demonstrate that the wind turbine performance has been improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Council, Global Wind Energy: GWEC global wind report 2016. Global Wind Energy Council, Bonn (2017) Council, Global Wind Energy: GWEC global wind report 2016. Global Wind Energy Council, Bonn (2017)
4.
Zurück zum Zitat Barambones, O., Cortajarena, J.A., Calvo, I., de Durana, J.M.G., Alkorta, P., Karami-Mollaee, A.: Variable speed wind turbine control scheme using a robust wind torque estimation. Renew. Energy 133, 354–366 (2019)MATHCrossRef Barambones, O., Cortajarena, J.A., Calvo, I., de Durana, J.M.G., Alkorta, P., Karami-Mollaee, A.: Variable speed wind turbine control scheme using a robust wind torque estimation. Renew. Energy 133, 354–366 (2019)MATHCrossRef
5.
Zurück zum Zitat Zappalá, D., Sarma, N., Djurović, S., Crabtree, C.J., Mohammad, A., Tavner, P.J.: Electrical and mechanical diagnostic indicators of wind turbine induction generator rotor faults. Renew. Energy 131, 14–24 (2019)CrossRef Zappalá, D., Sarma, N., Djurović, S., Crabtree, C.J., Mohammad, A., Tavner, P.J.: Electrical and mechanical diagnostic indicators of wind turbine induction generator rotor faults. Renew. Energy 131, 14–24 (2019)CrossRef
6.
Zurück zum Zitat Tong, W.: Wind power generation and wind turbine design. WIT press (2010) Tong, W.: Wind power generation and wind turbine design. WIT press (2010)
7.
Zurück zum Zitat Bossanyi, E.A.: Wind turbine control for load reduction. Wind Energy 6(3), 229–244 (2003)CrossRef Bossanyi, E.A.: Wind turbine control for load reduction. Wind Energy 6(3), 229–244 (2003)CrossRef
8.
Zurück zum Zitat Bianchi, F.D., De Battista, H., Mantz, R.J.: Wind turbine control systems: principles, modelling and gain scheduling design. Springer Science & Business Media, Berlin (2006) Bianchi, F.D., De Battista, H., Mantz, R.J.: Wind turbine control systems: principles, modelling and gain scheduling design. Springer Science & Business Media, Berlin (2006)
9.
Zurück zum Zitat Boukhezzar, B., Lupu, L., Siguerdidjane, H., Hand, M.: Multivariable control strategy for variable speed, variable pitch wind turbines. Renew. Energy 32(8), 1273–1287 (2007)CrossRef Boukhezzar, B., Lupu, L., Siguerdidjane, H., Hand, M.: Multivariable control strategy for variable speed, variable pitch wind turbines. Renew. Energy 32(8), 1273–1287 (2007)CrossRef
10.
Zurück zum Zitat Boukhezzar, B., Siguerdidjane, H.: Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Convers. Manage. 50(4), 885–892 (2009)CrossRef Boukhezzar, B., Siguerdidjane, H.: Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Convers. Manage. 50(4), 885–892 (2009)CrossRef
11.
Zurück zum Zitat Boukhezzar, B., Siguerdidjane, H.: Nonlinear control of a variable-speed wind turbine using a two-mass model. IEEE Trans. Energy Convers. 26(1), 149–162 (2010)CrossRef Boukhezzar, B., Siguerdidjane, H.: Nonlinear control of a variable-speed wind turbine using a two-mass model. IEEE Trans. Energy Convers. 26(1), 149–162 (2010)CrossRef
12.
Zurück zum Zitat Boukhezzar, B., Siguerdidjane, H.: Nonlinear control of variable speed wind turbines without wind speed measurement. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 3456–3461, IEEE (2005) Boukhezzar, B., Siguerdidjane, H.: Nonlinear control of variable speed wind turbines without wind speed measurement. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 3456–3461, IEEE (2005)
14.
Zurück zum Zitat Kaviani, H., Nejat, A.: Aeroacoustic and aerodynamic optimization of a MW class HAWT using MOPSO algorithm. Energy 140, 1198–1215 (2017)CrossRef Kaviani, H., Nejat, A.: Aeroacoustic and aerodynamic optimization of a MW class HAWT using MOPSO algorithm. Energy 140, 1198–1215 (2017)CrossRef
15.
Zurück zum Zitat Kaviani, H.R., Nejat, A.: Aerodynamic noise prediction of a MW-class HAWT using shear wind profile. J. Wind Eng. Ind. Aerodyn. 168, 164–176 (2017)CrossRef Kaviani, H.R., Nejat, A.: Aerodynamic noise prediction of a MW-class HAWT using shear wind profile. J. Wind Eng. Ind. Aerodyn. 168, 164–176 (2017)CrossRef
16.
Zurück zum Zitat Abo-Khalil, A.G., Lee, D.C.: MPPT control of wind generation systems based on estimated wind speed using SVR. IEEE Trans. Industr. Electron. 55(3), 1489–1490 (2008)CrossRef Abo-Khalil, A.G., Lee, D.C.: MPPT control of wind generation systems based on estimated wind speed using SVR. IEEE Trans. Industr. Electron. 55(3), 1489–1490 (2008)CrossRef
17.
Zurück zum Zitat Golnary, F., Moradi, H.: Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed. Appl. Math. Model. 65, 566–585 (2019)MathSciNetMATHCrossRef Golnary, F., Moradi, H.: Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed. Appl. Math. Model. 65, 566–585 (2019)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Hughes, F.M., Anaya-Lara, O., Jenkins, N., Strbac, G.: Control of DFIG-based wind generation for power network support. IEEE Trans. Power Syst. 20(4), 1958–1966 (2005)CrossRef Hughes, F.M., Anaya-Lara, O., Jenkins, N., Strbac, G.: Control of DFIG-based wind generation for power network support. IEEE Trans. Power Syst. 20(4), 1958–1966 (2005)CrossRef
19.
Zurück zum Zitat Hao, F. E. N. G., Lei, P. A. N., Xiu-fang, P. E. N. G., Tian-wei, Z.: Coordinated control strategy of mppt and pitch angle of wind turbine generator based on neural network. In: 2019 IEEE Sustainable Power and Energy Conference (iSPEC), pp. 99–104, IEEE (2019) Hao, F. E. N. G., Lei, P. A. N., Xiu-fang, P. E. N. G., Tian-wei, Z.: Coordinated control strategy of mppt and pitch angle of wind turbine generator based on neural network. In: 2019 IEEE Sustainable Power and Energy Conference (iSPEC), pp. 99–104, IEEE (2019)
20.
Zurück zum Zitat Tapia, A., Tapia, G., Ostolaza, J.X., Saenz, J.R.: Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans. Energy Convers. 18(2), 194–204 (2003)CrossRef Tapia, A., Tapia, G., Ostolaza, J.X., Saenz, J.R.: Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans. Energy Convers. 18(2), 194–204 (2003)CrossRef
22.
Zurück zum Zitat Bektache, A., Boukhezzar, B.: Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization. Int. J. Electr. Power Energy Syst. 101, 92–102 (2018)CrossRef Bektache, A., Boukhezzar, B.: Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization. Int. J. Electr. Power Energy Syst. 101, 92–102 (2018)CrossRef
23.
Zurück zum Zitat Nayeh, R.F., Moradi, H., Vossoughi, G.: Multivariable robust control of a horizontal wind turbine under various operating modes and uncertainties: a comparison on sliding mode and H∞ control. Int. J. Elect. Power Energy Syst. 115, 105474 (2020)CrossRef Nayeh, R.F., Moradi, H., Vossoughi, G.: Multivariable robust control of a horizontal wind turbine under various operating modes and uncertainties: a comparison on sliding mode and H∞ control. Int. J. Elect. Power Energy Syst. 115, 105474 (2020)CrossRef
24.
Zurück zum Zitat Corradini, M.L., Ippoliti, G., Orlando, G.J.C.E.P.: An observer-based blade-pitch controller of wind turbines in high wind speeds. Control. Eng. Pract. 58, 186–192 (2017)CrossRef Corradini, M.L., Ippoliti, G., Orlando, G.J.C.E.P.: An observer-based blade-pitch controller of wind turbines in high wind speeds. Control. Eng. Pract. 58, 186–192 (2017)CrossRef
25.
Zurück zum Zitat Chen, P., Han, D., Tan, F., Wang, J.: Reinforcement-based robust variable pitch control of wind turbines. IEEE Access. 8, 20493–20502 (2020)CrossRef Chen, P., Han, D., Tan, F., Wang, J.: Reinforcement-based robust variable pitch control of wind turbines. IEEE Access. 8, 20493–20502 (2020)CrossRef
26.
Zurück zum Zitat Kong, X., Ma, L., Liu, X., Abdelbaky, M.A., Wu, Q.: Wind turbine control using nonlinear economic model predictive control over all operating regions. Energies 13(1), 184 (2020)CrossRef Kong, X., Ma, L., Liu, X., Abdelbaky, M.A., Wu, Q.: Wind turbine control using nonlinear economic model predictive control over all operating regions. Energies 13(1), 184 (2020)CrossRef
27.
Zurück zum Zitat Lin, Z., Chen, Z., Liu, J., Wu, Q.: Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy. Appl. Energy 236, 307–317 (2019)CrossRef Lin, Z., Chen, Z., Liu, J., Wu, Q.: Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy. Appl. Energy 236, 307–317 (2019)CrossRef
28.
Zurück zum Zitat Zhang, Z., Nielsen, S.R., Blaabjerg, F., Zhou, D.: Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque. Energies 7(11), 7746–7772 (2014)CrossRef Zhang, Z., Nielsen, S.R., Blaabjerg, F., Zhou, D.: Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque. Energies 7(11), 7746–7772 (2014)CrossRef
29.
Zurück zum Zitat Zhang, Z., Fitzgerald, B.: Tuned mass-damper-inerter (TMDI) for suppressing edgewise vibrations of wind turbine blades. Eng. Struct. 221, 110928 (2020)CrossRef Zhang, Z., Fitzgerald, B.: Tuned mass-damper-inerter (TMDI) for suppressing edgewise vibrations of wind turbine blades. Eng. Struct. 221, 110928 (2020)CrossRef
30.
Zurück zum Zitat Golnary, F., Moradi, H.: Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation. Renew. Energy 127, 495–508 (2018)CrossRef Golnary, F., Moradi, H.: Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation. Renew. Energy 127, 495–508 (2018)CrossRef
31.
Zurück zum Zitat Mérida, J., Aguilar, L.T., Dávila, J.: Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization. Renew. Energy 71, 715–728 (2014)CrossRef Mérida, J., Aguilar, L.T., Dávila, J.: Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization. Renew. Energy 71, 715–728 (2014)CrossRef
32.
Zurück zum Zitat Moodi, H., Bustan, D.: Wind turbine control using TS systems with nonlinear consequent parts. Energy 172, 922–931 (2019)CrossRef Moodi, H., Bustan, D.: Wind turbine control using TS systems with nonlinear consequent parts. Energy 172, 922–931 (2019)CrossRef
33.
Zurück zum Zitat Venkaiah, P., Sarkar, B.K.: Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller. Renew. Energy 147, 55–68 (2020)CrossRef Venkaiah, P., Sarkar, B.K.: Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller. Renew. Energy 147, 55–68 (2020)CrossRef
34.
Zurück zum Zitat Hansen, M.O.: Aerodynamics of wind turbines. Routledge, London (2015)CrossRef Hansen, M.O.: Aerodynamics of wind turbines. Routledge, London (2015)CrossRef
35.
Zurück zum Zitat Chaviaropoulos, P.K., Hansen, M.O.: Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver. J. Fluids Eng. 122(2), 330–336 (2000)CrossRef Chaviaropoulos, P.K., Hansen, M.O.: Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver. J. Fluids Eng. 122(2), 330–336 (2000)CrossRef
36.
Zurück zum Zitat Glauert, H.: Airplane propellers. In Aerodynamic theory, pp. 169–360. Springer, Berlin (1935)CrossRef Glauert, H.: Airplane propellers. In Aerodynamic theory, pp. 169–360. Springer, Berlin (1935)CrossRef
37.
Zurück zum Zitat Bossanyi, E., Burton, T., Sharpe, D., Jenkins, N.: Wind energy handbook. Wiley, Hoboken (2000) Bossanyi, E., Burton, T., Sharpe, D., Jenkins, N.: Wind energy handbook. Wiley, Hoboken (2000)
38.
Zurück zum Zitat Jonkman, B.J.: TurbSim user’s guide: version 1.50 (No. NREL/TP-500-46198). National Renewable Energy Lab(NREL), Golden (2009)CrossRef Jonkman, B.J.: TurbSim user’s guide: version 1.50 (No. NREL/TP-500-46198). National Renewable Energy Lab(NREL), Golden (2009)CrossRef
39.
Zurück zum Zitat Yarmohammadi, M.J., Sadeghzadeh, A., Taghizadeh, M.: Gain-scheduled control of wind turbine exploiting inexact wind speed measurement for full operating range. Renew. Energy 149, 890–901 (2020)CrossRef Yarmohammadi, M.J., Sadeghzadeh, A., Taghizadeh, M.: Gain-scheduled control of wind turbine exploiting inexact wind speed measurement for full operating range. Renew. Energy 149, 890–901 (2020)CrossRef
40.
Zurück zum Zitat Perruquetti, W., Barbot, J.P.: Sliding mode control in engineering. CRC Press, Boca Raton (2002)CrossRef Perruquetti, W., Barbot, J.P.: Sliding mode control in engineering. CRC Press, Boca Raton (2002)CrossRef
41.
42.
Zurück zum Zitat Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding mode control and observation. Springer, New York (2014)CrossRef Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding mode control and observation. Springer, New York (2014)CrossRef
43.
44.
Zurück zum Zitat Slotine, J.J.E., Li, W.: Applied nonlinear control (Vol. 199, No. 1). Prentice hall, Englewood Cliffs (1991) Slotine, J.J.E., Li, W.: Applied nonlinear control (Vol. 199, No. 1). Prentice hall, Englewood Cliffs (1991)
45.
Zurück zum Zitat Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060). National Renewable Energy Lab (NREL), Golden (2009)CrossRef Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060). National Renewable Energy Lab (NREL), Golden (2009)CrossRef
46.
Zurück zum Zitat Zhang, Z., Nielsen, S.R., Basu, B., Li, J.: Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations. J. Fluids Struct. 59, 252–269 (2015)CrossRef Zhang, Z., Nielsen, S.R., Basu, B., Li, J.: Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations. J. Fluids Struct. 59, 252–269 (2015)CrossRef
47.
Zurück zum Zitat Manikandan, R., Saha, N.: Dynamic modelling and non-linear control of TLP supported offshore wind turbine under environmental loads. Mar. Struct. 64, 263–294 (2019)CrossRef Manikandan, R., Saha, N.: Dynamic modelling and non-linear control of TLP supported offshore wind turbine under environmental loads. Mar. Struct. 64, 263–294 (2019)CrossRef
48.
Zurück zum Zitat Sun, C.: Semi-active control of monopile offshore wind turbines under multi-hazards. Mech. Syst. Signal Process. 99, 285–305 (2018)CrossRef Sun, C.: Semi-active control of monopile offshore wind turbines under multi-hazards. Mech. Syst. Signal Process. 99, 285–305 (2018)CrossRef
49.
Zurück zum Zitat Sun, C., Jahangiri, V., Sun, H.: Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations. Smart Struct. Syst. 24(1), 53–65 (2019) Sun, C., Jahangiri, V., Sun, H.: Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations. Smart Struct. Syst. 24(1), 53–65 (2019)
50.
Zurück zum Zitat Jahangiri, V., Sun, C.: Integrated bi-directional vibration control and energy harvesting of monopile offshore wind turbines. Ocean Eng. 178, 260–269 (2018)CrossRef Jahangiri, V., Sun, C.: Integrated bi-directional vibration control and energy harvesting of monopile offshore wind turbines. Ocean Eng. 178, 260–269 (2018)CrossRef
51.
Zurück zum Zitat Greenwood, D.T.: Advanced dynamics. Cambridge University Press, Cambridge (2006) Greenwood, D.T.: Advanced dynamics. Cambridge University Press, Cambridge (2006)
52.
Zurück zum Zitat Rao, S.S.: Vibration of continuous systems, vol. 464. Wiley, New York (2007) Rao, S.S.: Vibration of continuous systems, vol. 464. Wiley, New York (2007)
53.
Zurück zum Zitat Howland, M.F., González, C.M., Martínez, J.J.P., Quesada, J.B., Larranaga, F.P., Yadav, N.K., Dabiri, J.O.: Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment. J. Renew. Sustain. Energy. 12(6), 063307 (2020)CrossRef Howland, M.F., González, C.M., Martínez, J.J.P., Quesada, J.B., Larranaga, F.P., Yadav, N.K., Dabiri, J.O.: Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment. J. Renew. Sustain. Energy. 12(6), 063307 (2020)CrossRef
Metadaten
Titel
Nonlinear pitch angle control of an onshore wind turbine by considering the aerodynamic nonlinearities and deriving an aeroelastic model
verfasst von
Farshad Golnary
Hamed Moradi
K. T. Tse
Publikationsdatum
05.08.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 1/2023
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-021-00469-1

Weitere Artikel der Ausgabe 1/2023

Energy Systems 1/2023 Zur Ausgabe