Skip to main content
Erschienen in: The Journal of Supercomputing 10/2019

06.06.2019

Novel design of reversible priority encoder in quantum dot cellular automata based on Toffoli gate and Feynman gate

verfasst von: Jadav Chandra Das, Debashis De

Erschienen in: The Journal of Supercomputing | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In accordance with Moore’s law, the size of complementary metal oxide semiconductor (CMOS)-based devices keep shrinking to augment the density on the chip. This scaling influences the execution of CMOS device due to several constraints like energy dissipation and synchronization of different components of the device. In non-reversible logic gates, power loss is the major concerned. Interest in reversible logic-based circuit design is increased as it offers reduced heat dissipation. Quantum dot cellular automata (QCA) is the possible implementation platform for reversible circuits. An encoder is an important component of memory, for address decoding and encoding. In this article, reversible logic-based architecture of 4 to 2 and 8 to 3 priority encoder is proposed and implemented on QCA platform. To design the encoder circuit, a new QCA layout of Feynman gate and Toffoli gate has been employed. The proposed layout of Feynman gate and Toffoli gate outshines the existing state-of-the-art designs. Quantum cost and circuit cost estimation of those encoder circuits are also performed. QCADesigner tool has been used to validate the performance of the proposed QCA reversible encoders.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4:49–57CrossRef Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4:49–57CrossRef
2.
Zurück zum Zitat Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75:1818–1825CrossRef Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75:1818–1825CrossRef
3.
Zurück zum Zitat Orlov AO, Amlani I, Bernstein GH, Lent CS, Sinder GL (1997) Realization of a functional cell for quantum dot cellular automata. Science 277:928–930CrossRef Orlov AO, Amlani I, Bernstein GH, Lent CS, Sinder GL (1997) Realization of a functional cell for quantum dot cellular automata. Science 277:928–930CrossRef
4.
Zurück zum Zitat Porod W (1997) Quantum-dot devices and quantum-dot cellular automata. Int J Bifurc Chaos 7:2199–2218CrossRef Porod W (1997) Quantum-dot devices and quantum-dot cellular automata. Int J Bifurc Chaos 7:2199–2218CrossRef
5.
Zurück zum Zitat Lent CS, Tougaw P (1997) A device architecture for computing with quantum dots. Proc IEEE 85:541–557CrossRef Lent CS, Tougaw P (1997) A device architecture for computing with quantum dots. Proc IEEE 85:541–557CrossRef
6.
Zurück zum Zitat Porod W, Lent CS, Bernstein GH, Orlov AO, Hamlani I, Snider GL, Merz JL (1999) Quantum-dot cellular automata: computing with coupled quantum dots. Int J Electron 86:549–590CrossRef Porod W, Lent CS, Bernstein GH, Orlov AO, Hamlani I, Snider GL, Merz JL (1999) Quantum-dot cellular automata: computing with coupled quantum dots. Int J Electron 86:549–590CrossRef
7.
Zurück zum Zitat Angizi S, Moaiyeri MH, Farrokhi S, Navi K, Bagherzadeh N (2015) Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst 39:512–520CrossRef Angizi S, Moaiyeri MH, Farrokhi S, Navi K, Bagherzadeh N (2015) Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst 39:512–520CrossRef
8.
Zurück zum Zitat Pudi V, Sridharan K (2015) A bit-serial pipelined architecture for high-performance DHT computation in quantum-dot cellular automata. IEEE Trans Very Large Scale Integr (VLSI) Syst 23:2352–2356CrossRef Pudi V, Sridharan K (2015) A bit-serial pipelined architecture for high-performance DHT computation in quantum-dot cellular automata. IEEE Trans Very Large Scale Integr (VLSI) Syst 23:2352–2356CrossRef
9.
Zurück zum Zitat Blount MA, Simmons JA, Moon JS, Baca WE, Reno JL, Hafich MJ (1998) Double electron layer tunnelling transistor (DELTT). Semicond Sci Technol 13(8A):A180CrossRef Blount MA, Simmons JA, Moon JS, Baca WE, Reno JL, Hafich MJ (1998) Double electron layer tunnelling transistor (DELTT). Semicond Sci Technol 13(8A):A180CrossRef
10.
12.
Zurück zum Zitat Das JC, De D (2017) Nanocommunication network design using QCA reversible crossbar switch. Nano Commun Netw 13:20–33CrossRef Das JC, De D (2017) Nanocommunication network design using QCA reversible crossbar switch. Nano Commun Netw 13:20–33CrossRef
13.
Zurück zum Zitat Das JC, De D (2017) Circuit switching with quantum dot-cellular automata. Nano Commun Netw 14:16–28CrossRef Das JC, De D (2017) Circuit switching with quantum dot-cellular automata. Nano Commun Netw 14:16–28CrossRef
14.
Zurück zum Zitat Debnath B, Das JC, De D (2018) Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks. Nano Commun Netw 15:41–58CrossRef Debnath B, Das JC, De D (2018) Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks. Nano Commun Netw 15:41–58CrossRef
15.
Zurück zum Zitat Das JC, De D (2016) Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess Microsyst 42:10–23CrossRef Das JC, De D (2016) Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess Microsyst 42:10–23CrossRef
18.
Zurück zum Zitat Heikalabad SR, Asfestani MN, Hosseinzadeh M (2018) A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 74:1994–2005CrossRef Heikalabad SR, Asfestani MN, Hosseinzadeh M (2018) A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 74:1994–2005CrossRef
19.
Zurück zum Zitat Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504CrossRef Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504CrossRef
20.
Zurück zum Zitat Das JC, De D (2017) Reversible binary subtractor design using quantum dot-cellular automata. Front Inf Technol Electron Eng 18(9):1416–1429CrossRef Das JC, De D (2017) Reversible binary subtractor design using quantum dot-cellular automata. Front Inf Technol Electron Eng 18(9):1416–1429CrossRef
21.
Zurück zum Zitat Anderson NG, Bhanja S (2014) Field-coupled nanocomputing: paradigms, progress, and perspectives, 1st edn. Springer, New York Anderson NG, Bhanja S (2014) Field-coupled nanocomputing: paradigms, progress, and perspectives, 1st edn. Springer, New York
22.
Zurück zum Zitat Liu W, Swartzlander EE Jr, O’Neill M (2013) Design of semiconductor QCA systems. Artech House, NorwoodMATH Liu W, Swartzlander EE Jr, O’Neill M (2013) Design of semiconductor QCA systems. Artech House, NorwoodMATH
23.
Zurück zum Zitat Hennessy K, Lent CS (2001) Clocking of molecular quantum-dot cellular automata. J Vac Sci Technol, B 19(5):1752–1755CrossRef Hennessy K, Lent CS (2001) Clocking of molecular quantum-dot cellular automata. J Vac Sci Technol, B 19(5):1752–1755CrossRef
25.
Zurück zum Zitat Moharrami E, Navimipour NJ (2018) Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int J Theor Phys 57(4):1060–1081MathSciNetCrossRef Moharrami E, Navimipour NJ (2018) Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int J Theor Phys 57(4):1060–1081MathSciNetCrossRef
26.
Zurück zum Zitat Hashemi S, Azghadi MR, Navi K (2019) Design and analysis of efficient QCA reversible adders. J Supercomput 75(4):2106–2125CrossRef Hashemi S, Azghadi MR, Navi K (2019) Design and analysis of efficient QCA reversible adders. J Supercomput 75(4):2106–2125CrossRef
27.
Zurück zum Zitat Sasamal TN, Singh AK, Mohan A (2018) Design of cost-efficient QCA reversible circuits via clock-zone-based crossover. Int J Theor Phys 57(10):3127–3140CrossRef Sasamal TN, Singh AK, Mohan A (2018) Design of cost-efficient QCA reversible circuits via clock-zone-based crossover. Int J Theor Phys 57(10):3127–3140CrossRef
28.
Zurück zum Zitat Salimzadeh F, Heikalabad SR (2019) Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Phys B 556:163–169CrossRef Salimzadeh F, Heikalabad SR (2019) Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Phys B 556:163–169CrossRef
29.
Zurück zum Zitat Singh R, Misra NK, Bhoi B (2019) Implementation of non-restoring reversible divider using a quantum-dot cellular automata. In: Computational Intelligence in Data Mining, Springer, Singapore, pp 459–469 Singh R, Misra NK, Bhoi B (2019) Implementation of non-restoring reversible divider using a quantum-dot cellular automata. In: Computational Intelligence in Data Mining, Springer, Singapore, pp 459–469
31.
Zurück zum Zitat Feynman RP (1985) Quantum mechanical computers. Opt News 11(2):11–20CrossRef Feynman RP (1985) Quantum mechanical computers. Opt News 11(2):11–20CrossRef
32.
Zurück zum Zitat Williams CP (2011) Quantum gates. In: Explorations in Quantum Computing, Texts in Computer Science, Chapter 2, Springer, London Williams CP (2011) Quantum gates. In: Explorations in Quantum Computing, Texts in Computer Science, Chapter 2, Springer, London
33.
Zurück zum Zitat Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCA designer: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31CrossRef Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCA designer: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31CrossRef
34.
Zurück zum Zitat Fredkin E, Toffoli T (2002) Conservative logic in collision-based computing. Springer, Berlin, pp 47–81CrossRef Fredkin E, Toffoli T (2002) Conservative logic in collision-based computing. Springer, Berlin, pp 47–81CrossRef
35.
Zurück zum Zitat Morris Lora M, Ciletti MD (2006) Digital design, 4th edn, Prentice Hall. ISBN 978-0-13-198924-5 Morris Lora M, Ciletti MD (2006) Digital design, 4th edn, Prentice Hall. ISBN 978-0-13-198924-5
36.
Zurück zum Zitat Rahman MA, Khatun F, Sarkar A, Huq MF (2013) Design and implementation of Feynman gate in quantum-dot cellular automata (QCA). Int J Comput Sci Iss 10(1):167–170 Rahman MA, Khatun F, Sarkar A, Huq MF (2013) Design and implementation of Feynman gate in quantum-dot cellular automata (QCA). Int J Comput Sci Iss 10(1):167–170
37.
Zurück zum Zitat Kunalan D, Cheong CL, Chau CF, Ghazali AB (2014) Design of a 4-bit adder using reversible logic in quantum-dot cellular automata (QCA). In: IEEE International Conference on Semiconductor Electronics, pp 60–63 Kunalan D, Cheong CL, Chau CF, Ghazali AB (2014) Design of a 4-bit adder using reversible logic in quantum-dot cellular automata (QCA). In: IEEE International Conference on Semiconductor Electronics, pp 60–63
38.
Zurück zum Zitat Biswas P, Gupta N, Patidar N (2014) Basic reversible logic gates and its QCA implementation. Int J Eng Res Appl 4(6):12–16 Biswas P, Gupta N, Patidar N (2014) Basic reversible logic gates and its QCA implementation. Int J Eng Res Appl 4(6):12–16
39.
Zurück zum Zitat Ma X (2008) Physical/biochemical inspired computing models for reliable nano-technology systems. PhD Thesis, Northeastern University, Boston, Massachusetts, United States Ma X (2008) Physical/biochemical inspired computing models for reliable nano-technology systems. PhD Thesis, Northeastern University, Boston, Massachusetts, United States
40.
Zurück zum Zitat Mohammadi Z, Mohammadi M (2014) Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quant Inform Process 13(9):2127–2147MathSciNetCrossRef Mohammadi Z, Mohammadi M (2014) Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quant Inform Process 13(9):2127–2147MathSciNetCrossRef
41.
Zurück zum Zitat Shabeena S, Pathak J (2015) Design and verification of reversible logic gates using quantum dot cellular automata. Int J Comput Appl 114(4):39–42 Shabeena S, Pathak J (2015) Design and verification of reversible logic gates using quantum dot cellular automata. Int J Comput Appl 114(4):39–42
42.
Zurück zum Zitat Ghosal S, Chakraborty K, Mandal B (2017) A comparative study of reversible circuits using QDCA and formulation of new universal reversible gate. In: Deyasi et al (eds) Computational Science and Engineering, pp 19–25 Ghosal S, Chakraborty K, Mandal B (2017) A comparative study of reversible circuits using QDCA and formulation of new universal reversible gate. In: Deyasi et al (eds) Computational Science and Engineering, pp 19–25
43.
Zurück zum Zitat Naghibzadeh A, Houshmand M (2017) Design and simulation of a reversible ALU by using QCA cells with the aim of improving evaluation parameters. J Comput Electron 16(3):883–895CrossRef Naghibzadeh A, Houshmand M (2017) Design and simulation of a reversible ALU by using QCA cells with the aim of improving evaluation parameters. J Comput Electron 16(3):883–895CrossRef
44.
Zurück zum Zitat Bella AB, Sundararajan PN (2017) Design of reversible decoder using QCA technology. J Netw Commun Emerg Technol (JNCET) 7(3):7–11 Bella AB, Sundararajan PN (2017) Design of reversible decoder using QCA technology. J Netw Commun Emerg Technol (JNCET) 7(3):7–11
45.
Zurück zum Zitat Kianpour M, Sabbaghi-Nadooshan R (2017) Novel 8-bit reversible full adder/subtractor using a QCA reversible gate. J Comput Electron 16:459CrossRef Kianpour M, Sabbaghi-Nadooshan R (2017) Novel 8-bit reversible full adder/subtractor using a QCA reversible gate. J Comput Electron 16:459CrossRef
46.
Zurück zum Zitat Bahar AN, Habib M, Biswas NK (2013) A novel presentation of Toffoli gate in quantum-dot cellular automata (QCA). Int J Comput Appl 82(10):1–4 Bahar AN, Habib M, Biswas NK (2013) A novel presentation of Toffoli gate in quantum-dot cellular automata (QCA). Int J Comput Appl 82(10):1–4
47.
Zurück zum Zitat Cvetkovska B, Kostadinovska I, Danek J (2013) Implementing the Toffoli gate in quantum-dot cellular automata. In: Final Report for Seminar Work in Unconventional Information Processing Methods and Platforms Course, University of Ljubljana, Slovenia Cvetkovska B, Kostadinovska I, Danek J (2013) Implementing the Toffoli gate in quantum-dot cellular automata. In: Final Report for Seminar Work in Unconventional Information Processing Methods and Platforms Course, University of Ljubljana, Slovenia
48.
Zurück zum Zitat Garg U, Jain R (2016) Design and performance analysis of reversible RSG gate using QCA. Int J Comput Appl 139(12):37–41 Garg U, Jain R (2016) Design and performance analysis of reversible RSG gate using QCA. Int J Comput Appl 139(12):37–41
Metadaten
Titel
Novel design of reversible priority encoder in quantum dot cellular automata based on Toffoli gate and Feynman gate
verfasst von
Jadav Chandra Das
Debashis De
Publikationsdatum
06.06.2019
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 10/2019
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-019-02904-8

Weitere Artikel der Ausgabe 10/2019

The Journal of Supercomputing 10/2019 Zur Ausgabe