Skip to main content
Erschienen in: Wireless Personal Communications 1/2020

22.04.2020

Novel Fault Management Framework Using Markov Chain in Wireless Sensor Networks: FMMC

verfasst von: Elham Moridi, Majid Haghparast, Mehdi Hosseinzadeh, Somayyeh Jafarali Jassbi

Erschienen in: Wireless Personal Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to using wireless sensor nodes (WSNs) in inaccessible areas and applying limitations in making nodes to reduce costs, these networks are prone to faults. The performance and efficiency of the networks should not be affected by faults so that fault tolerance is a required feature. To improve fault tolerance and ensure optimal performance of network, fault detection and recovery or fault management is essential. This paper represents a fault management framework based on clustering algorithms to detect and recover faults in WSNs. In the proposed method, on self-detecting and diagnosing faults, all faults are modeled through Markov chain. In recovery phase, the status of nodes is defined based on the type of fault so that the faults are recovered. The results of simulation reveal that the proposed fault management framework results in improved energy consumption, increased number of alive nodes, improved detection accuracy, and reduced false alarm rate compared with other frameworks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bora, D. J., Kumar, N., & Dutta, R. (2019). Implementation of wireless MEMS sensor network for detection of gait events. IET Wireless Sensor Systems, 9(1), 48–52. Bora, D. J., Kumar, N., & Dutta, R. (2019). Implementation of wireless MEMS sensor network for detection of gait events. IET Wireless Sensor Systems, 9(1), 48–52.
2.
Zurück zum Zitat Azharuddin, M., & Jana, P. K. (2015). A distributed algorithm for energy efficient and fault tolerant routing in wireless sensor networks. Wireless Networks, 21(1), 251–267. Azharuddin, M., & Jana, P. K. (2015). A distributed algorithm for energy efficient and fault tolerant routing in wireless sensor networks. Wireless Networks, 21(1), 251–267.
3.
Zurück zum Zitat Saihi, M., et al. (2018). Hidden Gaussian Markov model for distributed fault detection in wireless sensor networks. Transactions of the Institute of Measurement and Control, 40(6), 1788–1798. Saihi, M., et al. (2018). Hidden Gaussian Markov model for distributed fault detection in wireless sensor networks. Transactions of the Institute of Measurement and Control, 40(6), 1788–1798.
4.
Zurück zum Zitat Havedanloo, S., & Karimi, H. R. (2013). Improving the performance metric of wireless sensor networks with clustering Markov chain model and multilevel fusion. Mathematical Problems in Engineering. Havedanloo, S., & Karimi, H. R. (2013). Improving the performance metric of wireless sensor networks with clustering Markov chain model and multilevel fusion. Mathematical Problems in Engineering.
5.
Zurück zum Zitat Elsayed, W. M., Sabbeh, S. F., & Riad, A. M. (2018). A distributed fault tolerance mechanism for self-maintenance of clusters in wireless sensor networks. Arabian Journal for Science and Engineering, 43(12), 6891–6907. Elsayed, W. M., Sabbeh, S. F., & Riad, A. M. (2018). A distributed fault tolerance mechanism for self-maintenance of clusters in wireless sensor networks. Arabian Journal for Science and Engineering, 43(12), 6891–6907.
6.
Zurück zum Zitat Tan, Q., et al. (2019). Interference-aware lifetime maximization with joint routing and charging in wireless sensor networks. CCF Transactions on Networking, 2(3), 188–206. Tan, Q., et al. (2019). Interference-aware lifetime maximization with joint routing and charging in wireless sensor networks. CCF Transactions on Networking, 2(3), 188–206.
7.
Zurück zum Zitat Sahoo, M. N., & Khilar, P. M. (2014). Diagnosis of wireless sensor networks in presence of permanent and intermittent faults. Wireless Personal Communications, 78(2), 1571–1591. Sahoo, M. N., & Khilar, P. M. (2014). Diagnosis of wireless sensor networks in presence of permanent and intermittent faults. Wireless Personal Communications, 78(2), 1571–1591.
8.
Zurück zum Zitat Chanak, P., & Banerjee, I. (2016). Fuzzy rule-based faulty node classification and management scheme for large scale wireless sensor networks. Expert Systems with Applications, 45, 307–321. Chanak, P., & Banerjee, I. (2016). Fuzzy rule-based faulty node classification and management scheme for large scale wireless sensor networks. Expert Systems with Applications, 45, 307–321.
9.
Zurück zum Zitat Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899. Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.
10.
Zurück zum Zitat Branch, S. R. (2018). A survey of fault tolerance management frameworks, fault detection and recovery techniques for WSNs. International Journal of Future Generation Communication and Networking, 11(4), 33–50. Branch, S. R. (2018). A survey of fault tolerance management frameworks, fault detection and recovery techniques for WSNs. International Journal of Future Generation Communication and Networking, 11(4), 33–50.
11.
Zurück zum Zitat Yue, Y.-G., & He, P. (2018). A comprehensive survey on the reliability of mobile wireless sensor networks: Taxonomy, challenges, and future directions. Information Fusion, 44, 188–204. Yue, Y.-G., & He, P. (2018). A comprehensive survey on the reliability of mobile wireless sensor networks: Taxonomy, challenges, and future directions. Information Fusion, 44, 188–204.
12.
Zurück zum Zitat Silva, F. A. (2014). Industrial wireless sensor networks: Applications, protocols, and standards [book news]. IEEE Industrial Electronics Magazine, 8(4), 67–68. Silva, F. A. (2014). Industrial wireless sensor networks: Applications, protocols, and standards [book news]. IEEE Industrial Electronics Magazine, 8(4), 67–68.
13.
Zurück zum Zitat Saleh, I., El-Sayed, H., & Eltoweissy, M. (2006). A fault tolerance management framework for wireless sensor networks. In 2006 innovations in information technology. IEEE. Saleh, I., El-Sayed, H., & Eltoweissy, M. (2006). A fault tolerance management framework for wireless sensor networks. In 2006 innovations in information technology. IEEE.
14.
Zurück zum Zitat Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. (2017). Increasing lifetime and fault tolerance capability in wireless sensor networks by providing a novel management framework. Wireless Personal Communications, 92(2), 603–622. Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. (2017). Increasing lifetime and fault tolerance capability in wireless sensor networks by providing a novel management framework. Wireless Personal Communications, 92(2), 603–622.
15.
Zurück zum Zitat Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. (2019). EFT: Novel fault tolerant management framework for wireless sensor networks. Wireless Personal Communications pp. 1–19. Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. (2019). EFT: Novel fault tolerant management framework for wireless sensor networks. Wireless Personal Communications pp. 1–19.
16.
Zurück zum Zitat Babaie, S., & Rasi, T. (2011). DCMC: Decentralized and cellular mechanism for improving fault management in clustered wireless sensor networks. International Journal of Computer Science and Information Security, 9(11), 158. Babaie, S., & Rasi, T. (2011). DCMC: Decentralized and cellular mechanism for improving fault management in clustered wireless sensor networks. International Journal of Computer Science and Information Security, 9(11), 158.
17.
Zurück zum Zitat Asim, M., Mokhtar, H., & Merabti, M. (2009). A cellular approach to fault detection and recovery in wireless sensor networks. In 2009 third international conference on sensor technologies and applications. IEEE. Asim, M., Mokhtar, H., & Merabti, M. (2009). A cellular approach to fault detection and recovery in wireless sensor networks. In 2009 third international conference on sensor technologies and applications. IEEE.
18.
Zurück zum Zitat Afsar, M. (2015). A comprehensive fault-tolerant framework for wireless sensor networks. Security and Communication Networks, 8(17), 3247–3261. Afsar, M. (2015). A comprehensive fault-tolerant framework for wireless sensor networks. Security and Communication Networks, 8(17), 3247–3261.
19.
Zurück zum Zitat Jassbi, S. J., & Moridi, E. (2019). Fault tolerance and energy efficient clustering algorithm in wireless sensor networks: FTEC. Wireless Personal Communications pp. 1–19. Jassbi, S. J., & Moridi, E. (2019). Fault tolerance and energy efficient clustering algorithm in wireless sensor networks: FTEC. Wireless Personal Communications pp. 1–19.
20.
Zurück zum Zitat Deniz, F., et al. (2016). An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks. Ad Hoc Networks, 44, 104–117. Deniz, F., et al. (2016). An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks. Ad Hoc Networks, 44, 104–117.
21.
Zurück zum Zitat Sharma, K. P., & Sharma, T. P. (2017). rDFD: Reactive distributed fault detection in wireless sensor networks. Wireless Networks, 23(4), 1145–1160. Sharma, K. P., & Sharma, T. P. (2017). rDFD: Reactive distributed fault detection in wireless sensor networks. Wireless Networks, 23(4), 1145–1160.
22.
Zurück zum Zitat Yu, M., Mokhtar, H., & Merabti, M. (2008). Self-managed fault management in wireless sensor networks. In 2008 the second international conference on mobile ubiquitous computing, systems, services and technologies. IEEE. Yu, M., Mokhtar, H., & Merabti, M. (2008). Self-managed fault management in wireless sensor networks. In 2008 the second international conference on mobile ubiquitous computing, systems, services and technologies. IEEE.
23.
Zurück zum Zitat Mitra, S., & De Sarkar, A. (2014). Energy aware fault tolerant framework in wireless sensor network. In 2014 applications and innovations in mobile computing (AIMoC). IEEE. Mitra, S., & De Sarkar, A. (2014). Energy aware fault tolerant framework in wireless sensor network. In 2014 applications and innovations in mobile computing (AIMoC). IEEE.
24.
Zurück zum Zitat Gilbert, E. P. K., et al. (2019). Trust aware fault tolerant prediction model for wireless sensor network based measurements in Smart Grid environment. Sustainable Computing: Informatics and Systems, 23, 29–37. Gilbert, E. P. K., et al. (2019). Trust aware fault tolerant prediction model for wireless sensor network based measurements in Smart Grid environment. Sustainable Computing: Informatics and Systems, 23, 29–37.
25.
Zurück zum Zitat Muhammed, T., Mehmood, R., & Albeshri, A. (2017). Enabling reliable and resilient IoT based smart city applications. In International conference on smart cities, infrastructure, technologies and applications. Springer. Muhammed, T., Mehmood, R., & Albeshri, A. (2017). Enabling reliable and resilient IoT based smart city applications. In International conference on smart cities, infrastructure, technologies and applications. Springer.
26.
Zurück zum Zitat Mohapatra, H., Rath, A. K. (2019). Fault tolerance through energy balanced cluster formation (EBCF) in WSN. In Smart innovations in communication and computational sciences (pp. 313–321), Springer. Mohapatra, H., Rath, A. K. (2019). Fault tolerance through energy balanced cluster formation (EBCF) in WSN. In Smart innovations in communication and computational sciences (pp. 313–321), Springer.
27.
Zurück zum Zitat Wang, J., & Liu, B. (2017). Online fault-tolerant dynamic event region detection in sensor networks via trust model. In 2017 IEEE wireless communications and networking conference (WCNC). IEEE. Wang, J., & Liu, B. (2017). Online fault-tolerant dynamic event region detection in sensor networks via trust model. In 2017 IEEE wireless communications and networking conference (WCNC). IEEE.
28.
Zurück zum Zitat Hou, L., & Bergmann, N. W. (2012). Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 61(10), 2787–2798. Hou, L., & Bergmann, N. W. (2012). Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 61(10), 2787–2798.
29.
Zurück zum Zitat Yu, M., Mokhtar, H., & Merabti, M. (2007). Fault management in wireless sensor networks. IEEE Wireless Communications, 14(6), 13–19. Yu, M., Mokhtar, H., & Merabti, M. (2007). Fault management in wireless sensor networks. IEEE Wireless Communications, 14(6), 13–19.
30.
Zurück zum Zitat Raposo, D., et al. (2017). A taxonomy of faults for wireless sensor networks. Journal of Network and Systems Management, 25(3), 591–611. Raposo, D., et al. (2017). A taxonomy of faults for wireless sensor networks. Journal of Network and Systems Management, 25(3), 591–611.
31.
Zurück zum Zitat Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. New York: Wiley. Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. New York: Wiley.
32.
Zurück zum Zitat Koren, I., & Krishna, C. M. (2010). Fault-tolerant systems. London: Elsevier.MATH Koren, I., & Krishna, C. M. (2010). Fault-tolerant systems. London: Elsevier.MATH
33.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.
34.
Zurück zum Zitat Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Energy efficient multipath routing for wireless sensor networks: A genetic algorithm approach. In 2016 international conference on advances in computing, communications and informatics (ICACCI). IEEE. Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Energy efficient multipath routing for wireless sensor networks: A genetic algorithm approach. In 2016 international conference on advances in computing, communications and informatics (ICACCI). IEEE.
35.
Zurück zum Zitat Gilbert, E. N. (1960). Capacity of a burst-noise channel. Bell System Technical Journal, 39(5), 1253–1265.MathSciNet Gilbert, E. N. (1960). Capacity of a burst-noise channel. Bell System Technical Journal, 39(5), 1253–1265.MathSciNet
36.
Zurück zum Zitat Elliott, E. O. (1963). Estimates of error rates for codes on burst-noise channels. The Bell System Technical Journal, 42(5), 1977–1997. Elliott, E. O. (1963). Estimates of error rates for codes on burst-noise channels. The Bell System Technical Journal, 42(5), 1977–1997.
37.
Zurück zum Zitat Bein, D., Bein, W. W., & Malladi, S. (2005). Fault tolerant coverage model for sensor networks. In International conference on computational science. Springer. Bein, D., Bein, W. W., & Malladi, S. (2005). Fault tolerant coverage model for sensor networks. In International conference on computational science. Springer.
38.
Zurück zum Zitat Hu, S., & Li, G. (2018). Fault-tolerant clustering topology evolution mechanism of wireless sensor networks. IEEE Access, 6, 28085–28096. Hu, S., & Li, G. (2018). Fault-tolerant clustering topology evolution mechanism of wireless sensor networks. IEEE Access, 6, 28085–28096.
39.
Zurück zum Zitat Sahoo, M. N., & Khilar, P. M. (2014). Distributed diagnosis of permanent and intermittent faults in wireless sensor networks. In Advanced computing, networking and informatics-volume 2 (pp. 133–141), Springer. Sahoo, M. N., & Khilar, P. M. (2014). Distributed diagnosis of permanent and intermittent faults in wireless sensor networks. In Advanced computing, networking and informatics-volume 2 (pp. 133–141), Springer.
40.
Zurück zum Zitat Rout, R. R., Krishna, M. S., & Gupta, S. (2016). Markov decision process-based switching algorithm for sustainable rechargeable wireless sensor networks. IEEE Sensors Journal, 16(8), 2788–2797. Rout, R. R., Krishna, M. S., & Gupta, S. (2016). Markov decision process-based switching algorithm for sustainable rechargeable wireless sensor networks. IEEE Sensors Journal, 16(8), 2788–2797.
41.
Zurück zum Zitat Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences. IEEE. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences. IEEE.
42.
Zurück zum Zitat Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 4, 366–379. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 4, 366–379.
Metadaten
Titel
Novel Fault Management Framework Using Markov Chain in Wireless Sensor Networks: FMMC
verfasst von
Elham Moridi
Majid Haghparast
Mehdi Hosseinzadeh
Somayyeh Jafarali Jassbi
Publikationsdatum
22.04.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07383-2

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe

Neuer Inhalt