Skip to main content
Erschienen in: Neural Computing and Applications 6/2018

18.08.2016 | Original Article

Novel generalization of Volterra LMS algorithm to fractional order with application to system identification

verfasst von: Naveed Ishtiaq Chaudhary, Muhammad Asif Zahoor Raja, Muhammad Saeed Aslam, Naseer Ahmed

Erschienen in: Neural Computing and Applications | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, a novel generalization of Volterra least mean square (V-LMS) algorithm to fractional order is presented by exploiting the renowned strength of fractional adaptive signal processing. The fractional derivative term is introduced in weight adaptation mechanism of standard V-LMS to derive the recursive relations for modified V-LMS (MV-LMS) algorithm. The design scheme of MV-LMS algorithm is applied to parameter identification of Box–Jenkins system by taking different values of fractional orders, step-size variations and small to high signal-to-noise ratios. The proposed adaptive variables of MV-LMS are compared from true parameters of Box–Jenkins systems as well as with the results of the V-LMS for each case. The correctness and reliability of the given scheme MV-LMS are also validated from the results of statistical performance measures calculated on large dataset based on multiple independent runs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Oldham KB, Spanier J (1974) The fractional calculus: integrations and differentiations of arbitrary order. Academic Press, New York Oldham KB, Spanier J (1974) The fractional calculus: integrations and differentiations of arbitrary order. Academic Press, New York
3.
Zurück zum Zitat Samko SG, Kilbas AA, Marichev OI (1993) fractional integrals and derivatives: theory and applications. Gordon and Breach, YverdonMATH Samko SG, Kilbas AA, Marichev OI (1993) fractional integrals and derivatives: theory and applications. Gordon and Breach, YverdonMATH
4.
Zurück zum Zitat Jalab HA, Ibrahim RW, Ahmed A (2016) Image denoising algorithm based on the convolution of fractional Tsallis entropy with the Riesz fractional derivative. Neural Comput Appl. doi:10.1007/s00521-016-2331-7 Jalab HA, Ibrahim RW, Ahmed A (2016) Image denoising algorithm based on the convolution of fractional Tsallis entropy with the Riesz fractional derivative. Neural Comput Appl. doi:10.​1007/​s00521-016-2331-7
5.
Zurück zum Zitat Machado JAT (2015) Fractional order description of DNA. Appl Math Model 39(14):4095–4102CrossRef Machado JAT (2015) Fractional order description of DNA. Appl Math Model 39(14):4095–4102CrossRef
6.
Zurück zum Zitat Baskonus HM, Mekkaoui T, Hammouch Z, Bulut H (2015) Active control of a chaotic fractional order economic system. Entropy 17(8):5771–5783CrossRef Baskonus HM, Mekkaoui T, Hammouch Z, Bulut H (2015) Active control of a chaotic fractional order economic system. Entropy 17(8):5771–5783CrossRef
7.
Zurück zum Zitat Baskonus HM, Bulut H (2015) On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method. Open Math 13(1):547–556 Baskonus HM, Bulut H (2015) On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method. Open Math 13(1):547–556
8.
Zurück zum Zitat Baskonus HM, Belgacem FBM, Bulut H (2015) Solutions of nonlinear fractional differential equations systems through an implementation of the variational iteration method. In: Fractional Dynamics. Walter de Gruyter GmbH & Co KG, p 333 Baskonus HM, Belgacem FBM, Bulut H (2015) Solutions of nonlinear fractional differential equations systems through an implementation of the variational iteration method. In: Fractional Dynamics. Walter de Gruyter GmbH & Co KG, p 333
9.
Zurück zum Zitat Bulut H, Baskonus HM, Pandir Y (2013) The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation, abstract and applied analysis, vol 2013. Hindawi Publishing Corporation, Cairo Bulut H, Baskonus HM, Pandir Y (2013) The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation, abstract and applied analysis, vol 2013. Hindawi Publishing Corporation, Cairo
10.
Zurück zum Zitat Hu Y, Fan Y, Wei Y, Wang Y, Liang Q (2016) Subspace-based continuous-time identification of fractional order systems from non-uniformly sampled data. Int J Syst Sci 47(1):122–134 Hu Y, Fan Y, Wei Y, Wang Y, Liang Q (2016) Subspace-based continuous-time identification of fractional order systems from non-uniformly sampled data. Int J Syst Sci 47(1):122–134
11.
Zurück zum Zitat Bouzeriba A, Boulkroune A, Bouden T (2016) Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control. Neural Comput Appl 27(5):1349–1360CrossRefMATH Bouzeriba A, Boulkroune A, Bouden T (2016) Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control. Neural Comput Appl 27(5):1349–1360CrossRefMATH
12.
Zurück zum Zitat Ortigueira MD (2000) Introduction to fractional linear systems. Part 2: discrete-time case. IEE Proc Vis Image Signal Process 147(1):71–78CrossRef Ortigueira MD (2000) Introduction to fractional linear systems. Part 2: discrete-time case. IEE Proc Vis Image Signal Process 147(1):71–78CrossRef
13.
Zurück zum Zitat Ortigueira MD, Machado JAT (2003) Fractional signal processing and applications. Signal Process 83(11):2285–2286CrossRef Ortigueira MD, Machado JAT (2003) Fractional signal processing and applications. Signal Process 83(11):2285–2286CrossRef
14.
Zurück zum Zitat Ortigueira MD, Machado JAT (2006) Fractional calculus applications in signals and systems. Signal Process 86(10):2503–2504CrossRefMATH Ortigueira MD, Machado JAT (2006) Fractional calculus applications in signals and systems. Signal Process 86(10):2503–2504CrossRefMATH
15.
Zurück zum Zitat Ortigueira MD, Ionescu CM, Machado JT, Trujillo JJ (2015) Fractional signal processing and applications. Signal Process 107:197CrossRef Ortigueira MD, Ionescu CM, Machado JT, Trujillo JJ (2015) Fractional signal processing and applications. Signal Process 107:197CrossRef
16.
Zurück zum Zitat Zahoor RMA, Qureshi IM (2009) A modified least mean square algorithm using fractional derivative and its application to system identification. Eur J Sci Res 35(1):14–21 Zahoor RMA, Qureshi IM (2009) A modified least mean square algorithm using fractional derivative and its application to system identification. Eur J Sci Res 35(1):14–21
17.
Zurück zum Zitat Shah SM, Samar R, Raja MAZ, Chambers JA (2014) Fractional normalised filtered-error least mean squares algorithm for application in active noise control systems. Electron Lett 50(14):973–975. doi:10.1049/el.2014.1275 CrossRef Shah SM, Samar R, Raja MAZ, Chambers JA (2014) Fractional normalised filtered-error least mean squares algorithm for application in active noise control systems. Electron Lett 50(14):973–975. doi:10.​1049/​el.​2014.​1275 CrossRef
18.
Zurück zum Zitat Chaudhary NI, Raja MAZ, Khan JA, Aslam MS (2013) Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Sci World J 2013:1–13CrossRef Chaudhary NI, Raja MAZ, Khan JA, Aslam MS (2013) Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Sci World J 2013:1–13CrossRef
19.
Zurück zum Zitat Raja MAZ, Chaudhary NI (2015) Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process 107:327–339CrossRef Raja MAZ, Chaudhary NI (2015) Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process 107:327–339CrossRef
20.
Zurück zum Zitat Chaudhary NI, Raja MAZ (2015) Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn 79:1385–1397MathSciNetCrossRefMATH Chaudhary NI, Raja MAZ (2015) Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn 79:1385–1397MathSciNetCrossRefMATH
22.
Zurück zum Zitat Aslam MS, Raja MAZ (2015) A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional Signal Processing approach. Signal Process 107:433–443CrossRef Aslam MS, Raja MAZ (2015) A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional Signal Processing approach. Signal Process 107:433–443CrossRef
23.
Zurück zum Zitat Geravanchizadeh M, Osgouei SG (2011) Dual-channel speech enhancement using normalized fractional least-mean-squares algorithm. In: 19th Iranian conf. electri. eng. (ICEE). IEEE, May 2011, pp 1–5 Geravanchizadeh M, Osgouei SG (2011) Dual-channel speech enhancement using normalized fractional least-mean-squares algorithm. In: 19th Iranian conf. electri. eng. (ICEE). IEEE, May 2011, pp 1–5
24.
Zurück zum Zitat Osgouei SG, Geravanchizadeh M (2010) Speech enhancement using convex combination of fractional least-mean-squares algorithm. 5th International symposium telecommunication (IST). IEEE, Dec 2010, pp 869–872 Osgouei SG, Geravanchizadeh M (2010) Speech enhancement using convex combination of fractional least-mean-squares algorithm. 5th International symposium telecommunication (IST). IEEE, Dec 2010, pp 869–872
25.
Zurück zum Zitat Akhtar P, Yasin M (2012) Performance analysis of bessel beamformer and LMS algorithm for smart antenna array in mobile communication system, Emerging Trends Appl. Info. Comm. Tech. Springer, Berlin, pp 52–61 Akhtar P, Yasin M (2012) Performance analysis of bessel beamformer and LMS algorithm for smart antenna array in mobile communication system, Emerging Trends Appl. Info. Comm. Tech. Springer, Berlin, pp 52–61
26.
Zurück zum Zitat Tang Y, Han Z, Wang Y, Zhang L, Lian Q (2016) A changing forgetting factor RLS for online identification of nonlinear systems based on ELM—Hammerstein model. Neural Comput Appl. doi:10.1007/s00521-016-2394-5 Tang Y, Han Z, Wang Y, Zhang L, Lian Q (2016) A changing forgetting factor RLS for online identification of nonlinear systems based on ELM—Hammerstein model. Neural Comput Appl. doi:10.​1007/​s00521-016-2394-5
27.
Zurück zum Zitat Taouali O, Elaissi I, Messaoud H (2012) Online identification of nonlinear system using reduced kernel principal component analysis. Neural Comput Appl 21(1):161–169CrossRef Taouali O, Elaissi I, Messaoud H (2012) Online identification of nonlinear system using reduced kernel principal component analysis. Neural Comput Appl 21(1):161–169CrossRef
28.
Zurück zum Zitat Ugalde HMR, Carmona JC, Reyes-Reyes J, Alvarado VM, Mantilla J (2015) Computational cost improvement of neural network models in black box nonlinear system identification. Neurocomputing 166:96–108CrossRef Ugalde HMR, Carmona JC, Reyes-Reyes J, Alvarado VM, Mantilla J (2015) Computational cost improvement of neural network models in black box nonlinear system identification. Neurocomputing 166:96–108CrossRef
29.
Zurück zum Zitat Ugalde HMR, Carmona JC, Reyes-Reyes J, Alvarado VM, Corbier C (2015) Balanced simplicity—accuracy neural network model families for system identification. Neural Comput Appl 26(1):171–186CrossRef Ugalde HMR, Carmona JC, Reyes-Reyes J, Alvarado VM, Corbier C (2015) Balanced simplicity—accuracy neural network model families for system identification. Neural Comput Appl 26(1):171–186CrossRef
30.
Zurück zum Zitat Corbier C, El Badaoui M, Ugalde HMR (2015) Huberian approach for reduced order ARMA modeling of neurodegenerative disorder signal. Signal Process 113:273–284CrossRef Corbier C, El Badaoui M, Ugalde HMR (2015) Huberian approach for reduced order ARMA modeling of neurodegenerative disorder signal. Signal Process 113:273–284CrossRef
31.
Zurück zum Zitat Sadeghzadeh A (2014) Performance analysis for uncertain multivariable systems obtained by system identification. Int J Syst Sci 45(3):547–555MathSciNetCrossRefMATH Sadeghzadeh A (2014) Performance analysis for uncertain multivariable systems obtained by system identification. Int J Syst Sci 45(3):547–555MathSciNetCrossRefMATH
32.
Zurück zum Zitat Ding F (2013) System identification—new theory and methods. Science, Beijing Ding F (2013) System identification—new theory and methods. Science, Beijing
33.
Zurück zum Zitat Ding F, Deng K, Liu X (2014) Decomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noise. Circuits Syst Signal Process 33(9):2881–2893MathSciNetCrossRef Ding F, Deng K, Liu X (2014) Decomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noise. Circuits Syst Signal Process 33(9):2881–2893MathSciNetCrossRef
34.
Zurück zum Zitat Guo Y, Guo LZ, Billings SA, Wei HL (2016) Identification of continuous-time models for nonlinear dynamic systems from discrete data. Int J Syst Sci 47(12):3044–3054 Guo Y, Guo LZ, Billings SA, Wei HL (2016) Identification of continuous-time models for nonlinear dynamic systems from discrete data. Int J Syst Sci 47(12):3044–3054
35.
Zurück zum Zitat Ding F (2014) Combined state and least squares parameter estimation algorithms for dynamic systems. Appl Math Model 38(1):403–412MathSciNetCrossRef Ding F (2014) Combined state and least squares parameter estimation algorithms for dynamic systems. Appl Math Model 38(1):403–412MathSciNetCrossRef
36.
Zurück zum Zitat Gu Y, Feng D, Li J (2014) State filtering and parameter estimation for linear systems with d-step state-delay. IET Signal Process 8(6):639–646CrossRef Gu Y, Feng D, Li J (2014) State filtering and parameter estimation for linear systems with d-step state-delay. IET Signal Process 8(6):639–646CrossRef
37.
Zurück zum Zitat Ding F (2013) Coupled-least-squares identification for multivariable systems. Control Theory Appl IET 7(1):68–79MathSciNetCrossRef Ding F (2013) Coupled-least-squares identification for multivariable systems. Control Theory Appl IET 7(1):68–79MathSciNetCrossRef
38.
Zurück zum Zitat Ding F, Liu X, Chu J (2013) Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl 7(2):176–184MathSciNetCrossRef Ding F, Liu X, Chu J (2013) Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl 7(2):176–184MathSciNetCrossRef
39.
Zurück zum Zitat Ding F, Shi Y, Chen T (2007) Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst Control Lett 56(5):373–380MathSciNetCrossRefMATH Ding F, Shi Y, Chen T (2007) Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst Control Lett 56(5):373–380MathSciNetCrossRefMATH
40.
Zurück zum Zitat Ding F, Liu PX, Liu G (2010) Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digit Signal Process 20(3):664–677CrossRef Ding F, Liu PX, Liu G (2010) Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digit Signal Process 20(3):664–677CrossRef
41.
Zurück zum Zitat Wang DQ et al (2010) Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems. Math Comput Model 52(1):309–317MathSciNetCrossRefMATH Wang DQ et al (2010) Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems. Math Comput Model 52(1):309–317MathSciNetCrossRefMATH
42.
Zurück zum Zitat Wang DQ (2011) Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl 5(14):1648–1657MathSciNetCrossRef Wang DQ (2011) Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl 5(14):1648–1657MathSciNetCrossRef
43.
Zurück zum Zitat Wang D, Chu Y, Ding F (2010) Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems. Comput Math Appl 59(9):3092–3098MathSciNetCrossRefMATH Wang D, Chu Y, Ding F (2010) Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems. Comput Math Appl 59(9):3092–3098MathSciNetCrossRefMATH
44.
Zurück zum Zitat Zhang Z, Jia J, Ding R (2012) Hierarchical least squares based iterative estimation algorithm for multivariable Box–Jenkins-like systems using the auxiliary model. Appl Math Comput 218(9):5580–5587MathSciNetMATH Zhang Z, Jia J, Ding R (2012) Hierarchical least squares based iterative estimation algorithm for multivariable Box–Jenkins-like systems using the auxiliary model. Appl Math Comput 218(9):5580–5587MathSciNetMATH
45.
Zurück zum Zitat Ding F, Duan H (2013) Two-stage parameter estimation algorithms for Box–Jenkins systems. IET Signal Process 7(8):646–654CrossRef Ding F, Duan H (2013) Two-stage parameter estimation algorithms for Box–Jenkins systems. IET Signal Process 7(8):646–654CrossRef
46.
Zurück zum Zitat Wang D, Yang G, Ding R (2010) Gradient-based iterative parameter estimation for Box–Jenkins systems. Comput Math Appl 60(5):1200–1208MathSciNetCrossRefMATH Wang D, Yang G, Ding R (2010) Gradient-based iterative parameter estimation for Box–Jenkins systems. Comput Math Appl 60(5):1200–1208MathSciNetCrossRefMATH
47.
Zurück zum Zitat Liu Y, Wang D, Ding F (2010) Least squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data. Digit Signal Process 20(5):1458–1467CrossRef Liu Y, Wang D, Ding F (2010) Least squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data. Digit Signal Process 20(5):1458–1467CrossRef
48.
Zurück zum Zitat Raja MAZ, Chaudhary NI (2014) Adaptive strategies for parameter estimation of Box–Jenkins systems. IET Signal Process 8(9):968–980CrossRef Raja MAZ, Chaudhary NI (2014) Adaptive strategies for parameter estimation of Box–Jenkins systems. IET Signal Process 8(9):968–980CrossRef
49.
Zurück zum Zitat Guérin A, Faucon G, Bouquin-Jeannes L (2003) Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Trans Speech Audio Process 11(6):672–683CrossRef Guérin A, Faucon G, Bouquin-Jeannes L (2003) Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Trans Speech Audio Process 11(6):672–683CrossRef
50.
Zurück zum Zitat Mateo J et al (2013) Robust volterra filter design for enhancement of electroencephalogram signal processing. Circuits Syst Signal Process 32(1):233–253MathSciNetCrossRef Mateo J et al (2013) Robust volterra filter design for enhancement of electroencephalogram signal processing. Circuits Syst Signal Process 32(1):233–253MathSciNetCrossRef
51.
Zurück zum Zitat Tan L, Jiang J (2001) Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans Signal Process 49(8):1667–1676CrossRef Tan L, Jiang J (2001) Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans Signal Process 49(8):1667–1676CrossRef
52.
Zurück zum Zitat Linlin G, Puthusserypady S (2004) Performance analysis of Volterra-based nonlinear adaptive blind multiuser detectors for DS-CDMA systems. Signal Process 84(10):1941–1956CrossRefMATH Linlin G, Puthusserypady S (2004) Performance analysis of Volterra-based nonlinear adaptive blind multiuser detectors for DS-CDMA systems. Signal Process 84(10):1941–1956CrossRefMATH
53.
Zurück zum Zitat Sigrist Z, Grivel E, Alcoverro B (2012) Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method. Signal Process 92(4):1010–1020CrossRef Sigrist Z, Grivel E, Alcoverro B (2012) Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method. Signal Process 92(4):1010–1020CrossRef
54.
Zurück zum Zitat Pires ES et al (2010) Particle swarm optimization with fractional-order velocity. Nonlinear Dyn 61(1-2):295–301CrossRefMATH Pires ES et al (2010) Particle swarm optimization with fractional-order velocity. Nonlinear Dyn 61(1-2):295–301CrossRefMATH
55.
Zurück zum Zitat Ghamisi P, Couceiro MS, Benediktsson JA (2015) A novel feature selection approach based on FODPSO and SVM. IEEE Trans Geosci Remote Sens 53(5):2935–2947 Ghamisi P, Couceiro MS, Benediktsson JA (2015) A novel feature selection approach based on FODPSO and SVM. IEEE Trans Geosci Remote Sens 53(5):2935–2947
56.
Zurück zum Zitat Couceiro MS et al (2012) Introducing the fractional-order Darwinian PSO. SIVIP 6(3):343–350CrossRef Couceiro MS et al (2012) Introducing the fractional-order Darwinian PSO. SIVIP 6(3):343–350CrossRef
57.
Zurück zum Zitat Ghamisi P et al (2014) Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans Geosci Remote Sens 52(5):2382–2394CrossRef Ghamisi P et al (2014) Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans Geosci Remote Sens 52(5):2382–2394CrossRef
58.
Zurück zum Zitat Couceiro MS et al (2012) A fuzzified systematic adjustment of the robotic Darwinian PSO. Robot Auton Syst 60(12):1625–1639CrossRef Couceiro MS et al (2012) A fuzzified systematic adjustment of the robotic Darwinian PSO. Robot Auton Syst 60(12):1625–1639CrossRef
59.
Zurück zum Zitat Shoaib B, Qureshi IM (2014) A modified fractional least mean square algorithm for chaotic and nonstationary time series prediction. Chin Phys B 23(3):030502CrossRef Shoaib B, Qureshi IM (2014) A modified fractional least mean square algorithm for chaotic and nonstationary time series prediction. Chin Phys B 23(3):030502CrossRef
60.
Zurück zum Zitat Shoaib B, Qureshi IM, Shafqatullah I (2014) Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction. Chin Phys B 23(5):050503CrossRef Shoaib B, Qureshi IM, Shafqatullah I (2014) Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction. Chin Phys B 23(5):050503CrossRef
61.
Zurück zum Zitat Chaudhary NI, Raja MAZ, Khan AUR (2015) Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems. Nonlinear Dyn 82(4):1811–1830 Chaudhary NI, Raja MAZ, Khan AUR (2015) Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems. Nonlinear Dyn 82(4):1811–1830
62.
Zurück zum Zitat Tan Y, He Z, Tian B (2015) Generalization of modified LMS algorithm to fractional order. IEEE Signal Process Lett 122(9):1244–1248 Tan Y, He Z, Tian B (2015) Generalization of modified LMS algorithm to fractional order. IEEE Signal Process Lett 122(9):1244–1248
Metadaten
Titel
Novel generalization of Volterra LMS algorithm to fractional order with application to system identification
verfasst von
Naveed Ishtiaq Chaudhary
Muhammad Asif Zahoor Raja
Muhammad Saeed Aslam
Naseer Ahmed
Publikationsdatum
18.08.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 6/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2548-5

Weitere Artikel der Ausgabe 6/2018

Neural Computing and Applications 6/2018 Zur Ausgabe