Skip to main content
Erschienen in: Water Resources Management 2/2019

15.11.2018

Novel Grain and Form Roughness Estimator Scheme Incorporating Artificial Intelligence Models

verfasst von: Majid Niazkar, Nasser Talebbeydokhti, Seied Hosein Afzali

Erschienen in: Water Resources Management | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Determination of flow resistance in open channel flows is not only important for practical engineering applications but also challenging because of multiple factors involved. The literature review reveals that despite of various data-driven formulas and schemes, only classic Manning’s resistance equation and Keulegan’s formula have been utilized in practice. It also indicates that sole application of Artificial Intelligence (AI) models facilitates roughness estimation while they have not been used within a systematic roughness estimator scheme. In this study, a new eight-step scheme is developed to predict grain and total Manning’s coefficients when grain and form roughness are the major sources of friction, respectively. The new scheme not only uses a new explicit equation for computing hydraulic radius related to bed for estimating grain roughness coefficient but also utilizes AI models named artificial neural network and genetic programming in the seventh step for estimating form roughness coefficient. It improves R2 for estimating Manning’s grain coefficient and RMSE for estimating discharge by 21% and 64% comparing with that of one of common formulas available in the literature, respectively. Moreover, the new scheme incorporating AI models significantly enhances the accuracy of estimation results for predicting roughness coefficient and discharge comparing with the new scheme using new developed empirical formula based on RMSE, MARE and R2 criteria. The obtained improvement demonstrates that application of AI models as a part of a data-based roughness estimator scheme, like the one suggested, may considerably improve the precision of prediction results of flow resistance and discharge.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alizadeh MJ, Shahheydari H, Kavianpour MR, Shamloo H, Barati R (2017) Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-based Bayesian network. Environ Earth Sci 76(2):86CrossRef Alizadeh MJ, Shahheydari H, Kavianpour MR, Shamloo H, Barati R (2017) Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-based Bayesian network. Environ Earth Sci 76(2):86CrossRef
Zurück zum Zitat Azamathulla HM (2013) Gene-expression programming to predict friction factor for southern Italian rivers. Neural Comput Applic 23(5):1421–1426CrossRef Azamathulla HM (2013) Gene-expression programming to predict friction factor for southern Italian rivers. Neural Comput Applic 23(5):1421–1426CrossRef
Zurück zum Zitat Azamathulla HM, Ghani AA (2010) Genetic programming to predict river pipeline scour. J Pipeline Syst Eng Pract 1(3):127–132CrossRef Azamathulla HM, Ghani AA (2010) Genetic programming to predict river pipeline scour. J Pipeline Syst Eng Pract 1(3):127–132CrossRef
Zurück zum Zitat Azamathulla HM, Ghani AA (2011) Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resour Manag 25(6):1537–1544CrossRef Azamathulla HM, Ghani AA (2011) Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resour Manag 25(6):1537–1544CrossRef
Zurück zum Zitat Barati R, Neyshabouri SAAS, Ahmadi G (2014) Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: an evolutionary approach. Powder Technol 257:11–19CrossRef Barati R, Neyshabouri SAAS, Ahmadi G (2014) Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: an evolutionary approach. Powder Technol 257:11–19CrossRef
Zurück zum Zitat Brownlie WR (1981) Prediction of flow depth and sediment discharge in open channels, report no. KH-R-43A. W.M.Kech Laboratory of Hydraulics and Water Resources. California institute of Technology, 1–232 Brownlie WR (1981) Prediction of flow depth and sediment discharge in open channels, report no. KH-R-43A. W.M.Kech Laboratory of Hydraulics and Water Resources. California institute of Technology, 1–232
Zurück zum Zitat Einstein HA, Barbarossa N (1952) River channel roughness. Trans ASCE 117:1121–1146 Einstein HA, Barbarossa N (1952) River channel roughness. Trans ASCE 117:1121–1146
Zurück zum Zitat Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial streams. Teknisk Vorlag, Copenhagen, Denmark Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial streams. Teknisk Vorlag, Copenhagen, Denmark
Zurück zum Zitat Ferguson R (2010) Time to abandon the Manning equation? Earth Surf Proc Land 35:1873–1876 Ferguson R (2010) Time to abandon the Manning equation? Earth Surf Proc Land 35:1873–1876
Zurück zum Zitat Ferguson R (2013) Reach-scale flow resistance, In: Shroder, J. (Editor in Chief), Wohl, E. (Ed.), Treatise on geomorphology. Academic Press, San Diego, CA, vol. 9, Fluvial Geomorphology, 50–68 Ferguson R (2013) Reach-scale flow resistance, In: Shroder, J. (Editor in Chief), Wohl, E. (Ed.), Treatise on geomorphology. Academic Press, San Diego, CA, vol. 9, Fluvial Geomorphology, 50–68
Zurück zum Zitat Francone FD (1998) Discipulus owner’s manual. Machine Learning Technologies, Inc, Littleton, Colorado Francone FD (1998) Discipulus owner’s manual. Machine Learning Technologies, Inc, Littleton, Colorado
Zurück zum Zitat Garcia MH (2008) Sediment engineering: processes, management, modelling and practice. American Society of Civil Engineers, New York, USACrossRef Garcia MH (2008) Sediment engineering: processes, management, modelling and practice. American Society of Civil Engineers, New York, USACrossRef
Zurück zum Zitat Ghani AA, Zakaria NA, Kiat CC, Ariffin J, Hasan ZA, Abdul Ghaffar AB (2007) Revised equations for Manning's coefficient for sand-bed Rivers. Int J River Basin Manag 5(4):329–346CrossRef Ghani AA, Zakaria NA, Kiat CC, Ariffin J, Hasan ZA, Abdul Ghaffar AB (2007) Revised equations for Manning's coefficient for sand-bed Rivers. Int J River Basin Manag 5(4):329–346CrossRef
Zurück zum Zitat Hager WH, Giudice GD (2001) Discussion of “movable bed roughness in alluvial rivers”. J Hydraul Eng ASCE 127(7):627–628CrossRef Hager WH, Giudice GD (2001) Discussion of “movable bed roughness in alluvial rivers”. J Hydraul Eng ASCE 127(7):627–628CrossRef
Zurück zum Zitat Haghiabi AH (2016) Prediction of river pipeline scour depth using multivariate adaptive regression splines. J Pipeline Syst Eng Pract 8(1):04016015CrossRef Haghiabi AH (2016) Prediction of river pipeline scour depth using multivariate adaptive regression splines. J Pipeline Syst Eng Pract 8(1):04016015CrossRef
Zurück zum Zitat Hosseini K, Nodoushan EJ, Barati R, Shahheydari H (2016) Optimal design of labyrinth spillways using meta-heuristic algorithms. KSCE J Civ Eng 20(1):468–477CrossRef Hosseini K, Nodoushan EJ, Barati R, Shahheydari H (2016) Optimal design of labyrinth spillways using meta-heuristic algorithms. KSCE J Civ Eng 20(1):468–477CrossRef
Zurück zum Zitat Izadifar Z, Elshorbagy A (2010) Prediction of hourly actual evapotranspiration using neural network, genetic programming, and statistical models. Hydrol Process 24(23):3413–3425CrossRef Izadifar Z, Elshorbagy A (2010) Prediction of hourly actual evapotranspiration using neural network, genetic programming, and statistical models. Hydrol Process 24(23):3413–3425CrossRef
Zurück zum Zitat Karim F (1995) Bed configuration and hydraulic resistance in alluvial-channel flows. J Hydraul Eng ASCE 121(1):15–25CrossRef Karim F (1995) Bed configuration and hydraulic resistance in alluvial-channel flows. J Hydraul Eng ASCE 121(1):15–25CrossRef
Zurück zum Zitat Kitsikoudis V, Sidiropoulos E, Iliadis L, Hrissanthou V (2015) A machine learning approach for the mean flow velocity prediction in alluvial channels. Water Resour Manag 29(12):4379–4395CrossRef Kitsikoudis V, Sidiropoulos E, Iliadis L, Hrissanthou V (2015) A machine learning approach for the mean flow velocity prediction in alluvial channels. Water Resour Manag 29(12):4379–4395CrossRef
Zurück zum Zitat Kumar B, Bhatla A (2010) Genetic algorithm optimized neural network prediction of friction factor in a mobile bed channel. J Intell Syst 19(4):315–336 Kumar B, Bhatla A (2010) Genetic algorithm optimized neural network prediction of friction factor in a mobile bed channel. J Intell Syst 19(4):315–336
Zurück zum Zitat Kumar B, Rao AR (2010) Metamodeling approach to predict friction factor of alluvial channel. Comput Electron Agric 70(1):144–150CrossRef Kumar B, Rao AR (2010) Metamodeling approach to predict friction factor of alluvial channel. Comput Electron Agric 70(1):144–150CrossRef
Zurück zum Zitat Lopez R, Barragan J, Angels Colomar M (2007) Flow resistance equations without explicit estimation of the resistance coefficient for coarse-grained rivers. J Hydrol 33(8):113–121CrossRef Lopez R, Barragan J, Angels Colomar M (2007) Flow resistance equations without explicit estimation of the resistance coefficient for coarse-grained rivers. J Hydrol 33(8):113–121CrossRef
Zurück zum Zitat McKay SK, Fischenich JC (2011) Robust prediction of hydraulic roughness, ERDC/CHL CHETN-VII-11. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi McKay SK, Fischenich JC (2011) Robust prediction of hydraulic roughness, ERDC/CHL CHETN-VII-11. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi
Zurück zum Zitat Millar RG (1999) Grain and form resistance in gravel-bed rivers. J Hydraul Res 37:303–312CrossRef Millar RG (1999) Grain and form resistance in gravel-bed rivers. J Hydraul Res 37:303–312CrossRef
Zurück zum Zitat Motamedi A, Afzalimehr H, Singh VP (2009) Estimation of friction factor in open channels. J Hydrol Eng 15(3):249–254CrossRef Motamedi A, Afzalimehr H, Singh VP (2009) Estimation of friction factor in open channels. J Hydrol Eng 15(3):249–254CrossRef
Zurück zum Zitat Niazkar M, Afzali SH (2015) Optimum Design of Lined Channel Sections. Water Resour Manag 2(6):1921–1932CrossRef Niazkar M, Afzali SH (2015) Optimum Design of Lined Channel Sections. Water Resour Manag 2(6):1921–1932CrossRef
Zurück zum Zitat Niazkar M, Afzali SH (2016) Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model. Water Resour Manag 30(13):4713–4730CrossRef Niazkar M, Afzali SH (2016) Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model. Water Resour Manag 30(13):4713–4730CrossRef
Zurück zum Zitat Rabunal JR, Puertas J, Suarez J, Rivero D (2007) Determination of the unit hydrograph of a typical urban basin genetic programming and artificial neural networks. Hydrol Process 21(4):476–485CrossRef Rabunal JR, Puertas J, Suarez J, Rivero D (2007) Determination of the unit hydrograph of a typical urban basin genetic programming and artificial neural networks. Hydrol Process 21(4):476–485CrossRef
Zurück zum Zitat Recking A (2006) An experimental study of grain sorting effects on bedload, In Report no. 2006-ISAL-00113. Institut National des Sciences Appliquées de Lyon France Recking A (2006) An experimental study of grain sorting effects on bedload, In Report no. 2006-ISAL-00113. Institut National des Sciences Appliquées de Lyon France
Zurück zum Zitat Recking A, Frey P, Paquier A, Belleudy P, Champagne JY (2008) Feedback between bed load transport and flow resistance in gravel and cobble bed rivers. Water Resour Res 44(5):W05412CrossRef Recking A, Frey P, Paquier A, Belleudy P, Champagne JY (2008) Feedback between bed load transport and flow resistance in gravel and cobble bed rivers. Water Resour Res 44(5):W05412CrossRef
Zurück zum Zitat Rickenmann D, Recking A (2011) Evaluation of flow resistance in gravel-bed rivers through a large field data set. Water Resour Res 47(7):W07538CrossRef Rickenmann D, Recking A (2011) Evaluation of flow resistance in gravel-bed rivers through a large field data set. Water Resour Res 47(7):W07538CrossRef
Zurück zum Zitat Sivapragasam C, Maheswaran R, Venkatesh V (2008) Genetic programming approach for flood routing in natural channels. Hydrol Process 22(5):623–628CrossRef Sivapragasam C, Maheswaran R, Venkatesh V (2008) Genetic programming approach for flood routing in natural channels. Hydrol Process 22(5):623–628CrossRef
Zurück zum Zitat van Rijn LC (1984) Sediment transport. Part III: bed forms and alluvial roughness. J Hydraul Eng ASCE 110(12):1733–1754CrossRef van Rijn LC (1984) Sediment transport. Part III: bed forms and alluvial roughness. J Hydraul Eng ASCE 110(12):1733–1754CrossRef
Zurück zum Zitat Vanoni VA, Brooks NH (1957) Laboratory studies of the roughness and suspended load of alluvial streams sedimentation laboratory, California Institute of Technology, Pasadena, California, report no. e-68 Vanoni VA, Brooks NH (1957) Laboratory studies of the roughness and suspended load of alluvial streams sedimentation laboratory, California Institute of Technology, Pasadena, California, report no. e-68
Zurück zum Zitat Wu W, Wang SS (1999a) Movable bed roughness in alluvial rivers. J Hydraul Eng ASCE 125(12):1309–1312CrossRef Wu W, Wang SS (1999a) Movable bed roughness in alluvial rivers. J Hydraul Eng ASCE 125(12):1309–1312CrossRef
Zurück zum Zitat Wu W, Wang SS (1999b) Closure to “movable bed roughness in alluvial rivers”. J Hydraul Eng ASCE 127(7):628–629CrossRef Wu W, Wang SS (1999b) Closure to “movable bed roughness in alluvial rivers”. J Hydraul Eng ASCE 127(7):628–629CrossRef
Zurück zum Zitat Yang CT (2003) Sediment transport: theory and practice, original edition McGraw-hill, reprint edition by Krieger publication company, Malabar, FL Yang CT (2003) Sediment transport: theory and practice, original edition McGraw-hill, reprint edition by Krieger publication company, Malabar, FL
Zurück zum Zitat Yang S-Q, Tan S-K, Lim S-Y (2005) Flow resistance and bed form geometry in a wide alluvial channel. Water Resour Res 41:W09419 Yang S-Q, Tan S-K, Lim S-Y (2005) Flow resistance and bed form geometry in a wide alluvial channel. Water Resour Res 41:W09419
Zurück zum Zitat Yazdani MR, Zolfaghari AA (2017) Monthly River forecasting using instance-based learning methods and climatic parameters. J Hydrol Eng 22(6):04017002CrossRef Yazdani MR, Zolfaghari AA (2017) Monthly River forecasting using instance-based learning methods and climatic parameters. J Hydrol Eng 22(6):04017002CrossRef
Zurück zum Zitat Yen BC (2002) Open channel flow resistance. J Hydraul Eng ASCE 128(1):20–39CrossRef Yen BC (2002) Open channel flow resistance. J Hydraul Eng ASCE 128(1):20–39CrossRef
Zurück zum Zitat Yu G, Lim SY (2003) Modified manning formula for flow in alluvial channels with sand-beds. J Hydraul Res 41(6):597–608CrossRef Yu G, Lim SY (2003) Modified manning formula for flow in alluvial channels with sand-beds. J Hydraul Res 41(6):597–608CrossRef
Zurück zum Zitat Yuhong Z, Wenxin H (2009) Application of artificial neural network to predict the friction factor of open channel flow. Commun Nonlinear Sci Numer Simul 14:2373–2378CrossRef Yuhong Z, Wenxin H (2009) Application of artificial neural network to predict the friction factor of open channel flow. Commun Nonlinear Sci Numer Simul 14:2373–2378CrossRef
Metadaten
Titel
Novel Grain and Form Roughness Estimator Scheme Incorporating Artificial Intelligence Models
verfasst von
Majid Niazkar
Nasser Talebbeydokhti
Seied Hosein Afzali
Publikationsdatum
15.11.2018
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 2/2019
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-018-2141-z

Weitere Artikel der Ausgabe 2/2019

Water Resources Management 2/2019 Zur Ausgabe