Skip to main content
Erschienen in: Microsystem Technologies 12/2016

19.10.2015 | Technical Paper

Numerical analysis of non Newtonian fluid flow in a low voltage cascade electroosmotic micropump

Erschienen in: Microsystem Technologies | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In microfluidic devices, many fluids have non-Newtonian behaviors, especially biofluids. The viscosity of these fluids mostly depends on the shear rate. Sometimes the non-Newtonian fluids should be transferred by micropumps in lab-on-chip devices. Previous researchers investigated the flow rate in simple electroosmotic flow micropumps which have a simple channel geometry. In the present study, the effects of non-Newtonian properties of fluid in a low voltage cascade electroosmotic micropump are numerically investigated using the power law model. The micropump is modeled in two dimensional with one symmetric step and has a more complex geometry than previous studies. The numerical results show that, the non-Newtonian behavior of fluid affects flow rate in the micropump. The flow rate decreases if the fluid is dilatant. Also, it increases if the fluid is pseudoplastic. Moreover, the pressure which is needed to stop the electroosmotic flow rate in the micropump is calculated. Results show that, the back pressure has a slight change as the fluid has non-Newtonian behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15:647–666CrossRef Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15:647–666CrossRef
Zurück zum Zitat Berli LA (2010) Output pressure and efficiency of electrokinetic pumping of non-Newtonian fluids. Microfluid Nanofluid 8:197–207CrossRef Berli LA (2010) Output pressure and efficiency of electrokinetic pumping of non-Newtonian fluids. Microfluid Nanofluid 8:197–207CrossRef
Zurück zum Zitat Brask A, Goranovic G, Bruus H (2003) Theoretical analysis of the lowvoltage cascade electroosmotic pump. Sens Actuators B 92:127–132CrossRef Brask A, Goranovic G, Bruus H (2003) Theoretical analysis of the lowvoltage cascade electroosmotic pump. Sens Actuators B 92:127–132CrossRef
Zurück zum Zitat Cho CC, Chen CL, Chen CK (2010) Electrokinetically-driven nonnewtonian fluid flow in rough microchannel with complex-wavy surface. J Nonnewton Fluid Mech 173–174:13–20 Cho CC, Chen CL, Chen CK (2010) Electrokinetically-driven nonnewtonian fluid flow in rough microchannel with complex-wavy surface. J Nonnewton Fluid Mech 173–174:13–20
Zurück zum Zitat Dutta P, Beskok A (2001) Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite debye layer effects. J Anal Chem 73:1979–1986CrossRef Dutta P, Beskok A (2001) Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite debye layer effects. J Anal Chem 73:1979–1986CrossRef
Zurück zum Zitat Hadigol M, Nosrati R, Nourbakhsh A, Raisee M (2011a) Numerical study of electroosmotic micromixing of non-Newtonian fluids. J Nonnewton Fluid Mech 166:965–971CrossRefMATH Hadigol M, Nosrati R, Nourbakhsh A, Raisee M (2011a) Numerical study of electroosmotic micromixing of non-Newtonian fluids. J Nonnewton Fluid Mech 166:965–971CrossRefMATH
Zurück zum Zitat Hadigol M, Nosrati R, Raisee M (2011b) Numerical analysis of mixed electroosmotic/pressure driven flow of power-law fluids in microchannels and micropumps. Colloids Surf A: Physicochem Eng Aspects 374:142–153CrossRef Hadigol M, Nosrati R, Raisee M (2011b) Numerical analysis of mixed electroosmotic/pressure driven flow of power-law fluids in microchannels and micropumps. Colloids Surf A: Physicochem Eng Aspects 374:142–153CrossRef
Zurück zum Zitat Kamali R, Dehghan Manshadi MK (2015) Numerical simulation of the leaky dielectric microdroplet generation in electric fields. IJMPC 1650012 Kamali R, Dehghan Manshadi MK (2015) Numerical simulation of the leaky dielectric microdroplet generation in electric fields. IJMPC 1650012
Zurück zum Zitat Kamali R, Mansoorifar A, Dehghan Manshadi MK (2014) Effect of baffle geometry on mixing performance in the passive micromixers. IJST 38(M2):351–360 Kamali R, Mansoorifar A, Dehghan Manshadi MK (2014) Effect of baffle geometry on mixing performance in the passive micromixers. IJST 38(M2):351–360
Zurück zum Zitat Lingxin C, Jiping M, Feng T, Yafeng G (2003) Generating high- pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems. Sens Actuators B 88:260–265CrossRef Lingxin C, Jiping M, Feng T, Yafeng G (2003) Generating high- pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems. Sens Actuators B 88:260–265CrossRef
Zurück zum Zitat Litster S, Suss ME, Santiago JG (2010) A two-liquid electroosmotic pump using low applied voltage and power. Sens Actuators A 163:311–314CrossRef Litster S, Suss ME, Santiago JG (2010) A two-liquid electroosmotic pump using low applied voltage and power. Sens Actuators A 163:311–314CrossRef
Zurück zum Zitat Lo RC (2013) Application of microfluidics in chemical engineering. Chem Eng Process Technol 1:1002 Lo RC (2013) Application of microfluidics in chemical engineering. Chem Eng Process Technol 1:1002
Zurück zum Zitat Malkin AY (1994) Rheology fundamentals. ChemTec Publishing, Toronto Malkin AY (1994) Rheology fundamentals. ChemTec Publishing, Toronto
Zurück zum Zitat Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, New YorkCrossRef Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, New YorkCrossRef
Zurück zum Zitat Mohammadi M, Madadi H, Casals-Terr J, Sellars J (2015) Hydrodynamic and direct-current insulator-based dielectrophoresis (HDC-iDEP) microfluidic blood plasma separation. Anal Bioanal Chem 407(16):4733–4744CrossRef Mohammadi M, Madadi H, Casals-Terr J, Sellars J (2015) Hydrodynamic and direct-current insulator-based dielectrophoresis (HDC-iDEP) microfluidic blood plasma separation. Anal Bioanal Chem 407(16):4733–4744CrossRef
Zurück zum Zitat Muhammad Waseem A, Shahzadi T, Nitin A (2011) Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int J Mol Sci 12:3648–3704CrossRef Muhammad Waseem A, Shahzadi T, Nitin A (2011) Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int J Mol Sci 12:3648–3704CrossRef
Zurück zum Zitat Nadapana V, Sirshendu D (2010) Electroviscous effects in purely pressure driven flow and stationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannel. Int J Eng Sci 48:1641–1658CrossRef Nadapana V, Sirshendu D (2010) Electroviscous effects in purely pressure driven flow and stationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannel. Int J Eng Sci 48:1641–1658CrossRef
Zurück zum Zitat Probstein RF (1994) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley, New YorkCrossRef Probstein RF (1994) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley, New YorkCrossRef
Zurück zum Zitat Probstein RF (2005) Physicochemical hydrodynamics: an introduction. Wiley, New York Probstein RF (2005) Physicochemical hydrodynamics: an introduction. Wiley, New York
Zurück zum Zitat Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRefMATH Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRefMATH
Zurück zum Zitat Takamura Y, Onoda H, Inokuchi H, Adachi S, Oki A, Horiike Y (2003) Low-voltage electroosmosis pump for stand-alone microfluidics devices. Electrophoresis 24:185–192CrossRef Takamura Y, Onoda H, Inokuchi H, Adachi S, Oki A, Horiike Y (2003) Low-voltage electroosmosis pump for stand-alone microfluidics devices. Electrophoresis 24:185–192CrossRef
Zurück zum Zitat Tang GH, Li Z, He YL, Zhao CY, Tao WQ (2007) Experimental observations and lattice boltzmann method study of the electroviscous effect for liquid flow in microchannels. J Micromech Microeng 17:539CrossRef Tang GH, Li Z, He YL, Zhao CY, Tao WQ (2007) Experimental observations and lattice boltzmann method study of the electroviscous effect for liquid flow in microchannels. J Micromech Microeng 17:539CrossRef
Zurück zum Zitat Tang GH, Li XF, He YL, Tao WQ (2009) Electroosmotic flow of non-Newtonian fluid in microchannels. J Non-Newtonian Fluid Mech 157:133–137CrossRefMATH Tang GH, Li XF, He YL, Tao WQ (2009) Electroosmotic flow of non-Newtonian fluid in microchannels. J Non-Newtonian Fluid Mech 157:133–137CrossRefMATH
Zurück zum Zitat Tang GH, Lu YB, Zhang SX, Wang FF, Tao WQ (2012) Experimental investigation of non-newtonian liquid flow in microchannels. J Nonnewton Fluid Mech 173–174:21–29CrossRef Tang GH, Lu YB, Zhang SX, Wang FF, Tao WQ (2012) Experimental investigation of non-newtonian liquid flow in microchannels. J Nonnewton Fluid Mech 173–174:21–29CrossRef
Zurück zum Zitat Wall S (2010) The history of electrokinetic phenomena. Curr Opin Colloid Interface Sci 15(3):119–124CrossRef Wall S (2010) The history of electrokinetic phenomena. Curr Opin Colloid Interface Sci 15(3):119–124CrossRef
Zurück zum Zitat Zhang Q, Austin RH (2012) Applications of microfluidics in stem cell biology. BioNanoSci 2:277–286CrossRef Zhang Q, Austin RH (2012) Applications of microfluidics in stem cell biology. BioNanoSci 2:277–286CrossRef
Zurück zum Zitat Zhao C, Yang C (2011) An exact solution for electroosmosis of non-Newtonian fluids in microchannels. J Nonnewton Fluid Mech 166:1076–1079CrossRefMATH Zhao C, Yang C (2011) An exact solution for electroosmosis of non-Newtonian fluids in microchannels. J Nonnewton Fluid Mech 166:1076–1079CrossRefMATH
Zurück zum Zitat Zhao C, Yang C (2013) Electrokinetics of non-Newtonian fluids: a review. Adv Colloid Interface Sci 201–202:94–108CrossRef Zhao C, Yang C (2013) Electrokinetics of non-Newtonian fluids: a review. Adv Colloid Interface Sci 201–202:94–108CrossRef
Zurück zum Zitat Zhao C, Zholkovskij E, Masliyah JH, Yang C (2008) Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J Colloid Interface Sci 326:503–510CrossRef Zhao C, Zholkovskij E, Masliyah JH, Yang C (2008) Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J Colloid Interface Sci 326:503–510CrossRef
Metadaten
Titel
Numerical analysis of non Newtonian fluid flow in a low voltage cascade electroosmotic micropump
Publikationsdatum
19.10.2015
Erschienen in
Microsystem Technologies / Ausgabe 12/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2693-2

Weitere Artikel der Ausgabe 12/2016

Microsystem Technologies 12/2016 Zur Ausgabe

Neuer Inhalt