Skip to main content
Erschienen in: Microsystem Technologies 12/2016

29.08.2015 | Technical Paper

Improved modified Reynolds equation for thin-film gas lubrication from an extended slip velocity boundary condition

verfasst von: Qin Yang, Haijun Zhang, Yulu Liu

Erschienen in: Microsystem Technologies | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An extended slip velocity boundary condition is derived from the regularized 13 moment equations firstly. Different from the existing slip velocity boundary condition, the slip coefficients of the extended one are not fixed, which will change with the wall accommodation coefficient and the Knudsen number of the gas flow. Using the extended slip velocity condition, an improved modified Reynolds equation for thin-film gas lubrication is established. From solving the improved modified Reynolds equation, the pressure distribution of the slider gas bearing is obtained and has a better agreement with that from the direct simulation Monte Carlo method under different pitch angles and wall velocities. It is found that the improved modified Reynolds equation can predict a more accurate pressure distribution of the slider gas bearing than the Fukui and Kaneko’s lubrication model from the linearized Boltzmann equation in the near transition regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alexander F, Garcia A, Alder B (1994) Direct simulation Monte Carlo for thin-film bearings. Phys Fluids 6(12):3854–3860CrossRefMATH Alexander F, Garcia A, Alder B (1994) Direct simulation Monte Carlo for thin-film bearings. Phys Fluids 6(12):3854–3860CrossRefMATH
Zurück zum Zitat Beskok A, Karniadakis GE (1999) A model for flows in channels, pipes and ducts at micro and nano scales. Microscale Thermophys Eng 3(1):43–77CrossRef Beskok A, Karniadakis GE (1999) A model for flows in channels, pipes and ducts at micro and nano scales. Microscale Thermophys Eng 3(1):43–77CrossRef
Zurück zum Zitat Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutralone-component systems. Phys Rev 94(3):511–525CrossRefMATH Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutralone-component systems. Phys Rev 94(3):511–525CrossRefMATH
Zurück zum Zitat Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford Universtiy Press, New York Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford Universtiy Press, New York
Zurück zum Zitat Burgdorfer A (1959) The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings. J Basic Eng 81(1):94–100 Burgdorfer A (1959) The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings. J Basic Eng 81(1):94–100
Zurück zum Zitat Cercignani C (2000) Rarefied gas dynamics from basic concepts to actual calculations. Cambridge University Press, New YorkMATH Cercignani C (2000) Rarefied gas dynamics from basic concepts to actual calculations. Cambridge University Press, New YorkMATH
Zurück zum Zitat Chen D, Bogy DB (2010) Comparisons of slip-corrected Reynolds lubrication equations for the air bearing film in the head-disk interface of hard disk drives. Tribol Lett 37:191–201CrossRef Chen D, Bogy DB (2010) Comparisons of slip-corrected Reynolds lubrication equations for the air bearing film in the head-disk interface of hard disk drives. Tribol Lett 37:191–201CrossRef
Zurück zum Zitat Fukui S, Kaneko R (1988) Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report-derivation of a generalized lubrication equation including thermal creep flow. J Tribol 110(2):253–262CrossRef Fukui S, Kaneko R (1988) Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report-derivation of a generalized lubrication equation including thermal creep flow. J Tribol 110(2):253–262CrossRef
Zurück zum Zitat Fukui S, Kaneko R (1990) A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems. J Tribol 112(1):78–83CrossRef Fukui S, Kaneko R (1990) A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems. J Tribol 112(1):78–83CrossRef
Zurück zum Zitat Gu XJ, Emerson DR (2007) A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J Comput Phys 225:263–283CrossRefMATH Gu XJ, Emerson DR (2007) A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J Comput Phys 225:263–283CrossRefMATH
Zurück zum Zitat Gu XJ, Emerson DR, Tang GH (2010) Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations. Phys Rev E 81:016313CrossRef Gu XJ, Emerson DR, Tang GH (2010) Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations. Phys Rev E 81:016313CrossRef
Zurück zum Zitat Hsia YT, Domoto GA (1983) An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. J Lubr Technol 105(1):120–130CrossRef Hsia YT, Domoto GA (1983) An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. J Lubr Technol 105(1):120–130CrossRef
Zurück zum Zitat Khonsari MM, Booser ER (2008) Applied tribology bearing design and lubrication. Wiley, Chichester Khonsari MM, Booser ER (2008) Applied tribology bearing design and lubrication. Wiley, Chichester
Zurück zum Zitat Liu NY, Ng EY (2001) The posture effects of a slider air bearing on its performance with a direct simulation Monte Carlo method. J Micromech Microeng 11:463–473CrossRef Liu NY, Ng EY (2001) The posture effects of a slider air bearing on its performance with a direct simulation Monte Carlo method. J Micromech Microeng 11:463–473CrossRef
Zurück zum Zitat Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Phil Trans R Soc London 170:231–256CrossRefMATH Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Phil Trans R Soc London 170:231–256CrossRefMATH
Zurück zum Zitat Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip flow model and considering surface accommodation coefficient. J Tribol 115(2):289–294CrossRef Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip flow model and considering surface accommodation coefficient. J Tribol 115(2):289–294CrossRef
Zurück zum Zitat Nguyen NT, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House, NorwoodMATH Nguyen NT, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House, NorwoodMATH
Zurück zum Zitat Peng Y, Lu X, Luo J (2004) Nanoscale effect on ultrathin gas film lubrication in hard disk drive. J Tribol 126:347–352CrossRef Peng Y, Lu X, Luo J (2004) Nanoscale effect on ultrathin gas film lubrication in hard disk drive. J Tribol 126:347–352CrossRef
Zurück zum Zitat Shen S, Chen G (2007) A kinetic-theory based first order slip boundary condition for gas flow. Phys Fluids 19(8):086101CrossRefMATH Shen S, Chen G (2007) A kinetic-theory based first order slip boundary condition for gas flow. Phys Fluids 19(8):086101CrossRefMATH
Zurück zum Zitat Sone Y (2007) Molecular gas dynamics theory, techniques, and applications. Birkhauser, BostonCrossRefMATH Sone Y (2007) Molecular gas dynamics theory, techniques, and applications. Birkhauser, BostonCrossRefMATH
Zurück zum Zitat Struchtrup H (2005) Macroscopic transport equations for rarefied gas flows. Springer, BerlinMATH Struchtrup H (2005) Macroscopic transport equations for rarefied gas flows. Springer, BerlinMATH
Zurück zum Zitat Struchtrup H, Torrihon M (2007) Theorem, regularization and boundary conditions for linearized 13 moment equations. Phys Rev Lett 99:014502CrossRef Struchtrup H, Torrihon M (2007) Theorem, regularization and boundary conditions for linearized 13 moment equations. Phys Rev Lett 99:014502CrossRef
Zurück zum Zitat Sun YH, Chan WK, Liu NY (2003) A slip model for gas lubrication based on an effective viscosity concept. J Eng Tribol 217:187–196 Sun YH, Chan WK, Liu NY (2003) A slip model for gas lubrication based on an effective viscosity concept. J Eng Tribol 217:187–196
Zurück zum Zitat Torrilhon M, Struchtrup H (2008) Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J Comput Phys 227:1982–2011MathSciNetCrossRefMATH Torrilhon M, Struchtrup H (2008) Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J Comput Phys 227:1982–2011MathSciNetCrossRefMATH
Zurück zum Zitat Torrilhon M, Struchtrup H (2009) Modeling micro mass and heat transfer for gases using extended continuum equations. J Heat Transfer 131:033103CrossRef Torrilhon M, Struchtrup H (2009) Modeling micro mass and heat transfer for gases using extended continuum equations. J Heat Transfer 131:033103CrossRef
Zurück zum Zitat Wang R, Xu K (2014) Unified gas-kinetic simulation of slider air bearing. Theor Appl Mech Lett 4:022001CrossRef Wang R, Xu K (2014) Unified gas-kinetic simulation of slider air bearing. Theor Appl Mech Lett 4:022001CrossRef
Zurück zum Zitat Wu L, Bogy DB (2003) New first and second order slip models for the compressible Reynolds equations. J Tribol 125(3):558–561CrossRef Wu L, Bogy DB (2003) New first and second order slip models for the compressible Reynolds equations. J Tribol 125(3):558–561CrossRef
Zurück zum Zitat Zhang H, Zhu C, Yang Q (2009) Characteristics of micro gas journal bearings based on effective viscosity. J Tribol 131(4):041707CrossRef Zhang H, Zhu C, Yang Q (2009) Characteristics of micro gas journal bearings based on effective viscosity. J Tribol 131(4):041707CrossRef
Metadaten
Titel
Improved modified Reynolds equation for thin-film gas lubrication from an extended slip velocity boundary condition
verfasst von
Qin Yang
Haijun Zhang
Yulu Liu
Publikationsdatum
29.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 12/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2667-4

Weitere Artikel der Ausgabe 12/2016

Microsystem Technologies 12/2016 Zur Ausgabe

Neuer Inhalt