Skip to main content
Erschienen in: International Journal of Steel Structures 2/2021

08.02.2021

Numerical Investigation of Steel Moment-Resisting Frame on Sandy Soil Under Normal Fault Rupture

verfasst von: Omid Nooralizadeh Keshteli, Speideh Rahimi, Mehdi Ebadi Jamkhaneh

Erschienen in: International Journal of Steel Structures | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent earthquakes have shown that the interaction between faults and structures could cause extensive damage to the surface and underground structures. Field observations showed that the need for design regulations for fault rupture due to fault movement in areas with active faults seems necessary. In this study, the three-dimensional finite element (FE) model in the Abaqus FE program to study the behavior of a 9-story steel structure with a moment-resisting frame system based on three types of mat foundations, pile group, and diaphragm walls was used on sandy soil. The performance of the system of structure-foundation was evaluated taking into account the structural and geotechnical performance goals such as the drift ratio of floor levels, displacement of the foundation, and distribution of bending moment and shear force along with the pile and foundation. In this study, the position of the foundation relative to the fault line and the foundation type were considered as key parameters. The results of the analysis showed that the best performance in reducing the ratio of the permanent drift ratio of the floors related to the structure with the diaphragm wall system. This was in the case that the edge of the foundation is tangent to the fault line, the residual drift ratio reached 1.62%. Also, in most cases, in small amounts of fault sliding, the mat foundation system had a smaller difference than the other considered foundation system in this study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abaqus, V. (2014). 6.14 Documentation. Dassault Systemes Simulia Corporation, 651, 6.2. Abaqus, V. (2014). 6.14 Documentation. Dassault Systemes Simulia Corporation, 651, 6.2.
Zurück zum Zitat Ahmed, W., & Bransby, M. F. (2009). Interaction of shallow foundations with reverse faults. Journal of geotechnical and geoenvironmental engineering, 135(7), 914–924.CrossRef Ahmed, W., & Bransby, M. F. (2009). Interaction of shallow foundations with reverse faults. Journal of geotechnical and geoenvironmental engineering, 135(7), 914–924.CrossRef
Zurück zum Zitat Anastasopoulos, I., Callerio, A., Bransby, M., Davies, M., El Nahas, A., Faccioli, E., et al. (2008). Numerical analyses of fault–foundation interaction. Bulletin of Earthquake Engineering, 6(4), 645–675.CrossRef Anastasopoulos, I., Callerio, A., Bransby, M., Davies, M., El Nahas, A., Faccioli, E., et al. (2008). Numerical analyses of fault–foundation interaction. Bulletin of Earthquake Engineering, 6(4), 645–675.CrossRef
Zurück zum Zitat Anastasopoulos, I., & Gazetas, G. (2007a). Foundation–structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake. Bulletin of Earthquake Engineering, 5(3), 253–275.CrossRef Anastasopoulos, I., & Gazetas, G. (2007a). Foundation–structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake. Bulletin of Earthquake Engineering, 5(3), 253–275.CrossRef
Zurück zum Zitat Anastasopoulos, I., & Gazetas, G. (2007b). Foundation–structure systems over a rupturing normal fault: Part II. Analysis of the Kocaeli case histories. Bulletin of Earthquake Engineering, 5(3), 277–301.CrossRef Anastasopoulos, I., & Gazetas, G. (2007b). Foundation–structure systems over a rupturing normal fault: Part II. Analysis of the Kocaeli case histories. Bulletin of Earthquake Engineering, 5(3), 277–301.CrossRef
Zurück zum Zitat Anastasopoulos, I., Gazetas, G., Bransby, M. F., Davies, M. C. R., & El Nahas, A. (2007). Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 943–958. Anastasopoulos, I., Gazetas, G., Bransby, M. F., Davies, M. C. R., & El Nahas, A. (2007). Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 943–958.
Zurück zum Zitat Anastasopoulos, I., Kourkoulis, R., Gazetas, G., & Tsatsis, A. (2013). Interaction of piled foundation with a rupturing normal fault. Geotechnique, 63(12), 1042–1059.CrossRef Anastasopoulos, I., Kourkoulis, R., Gazetas, G., & Tsatsis, A. (2013). Interaction of piled foundation with a rupturing normal fault. Geotechnique, 63(12), 1042–1059.CrossRef
Zurück zum Zitat Bagheri, M., Jamkhaneh, M. E., & Samali, B. (2018). Effect of seismic soil–pile–structure interaction on mid-and high-rise steel buildings resting on a group of pile foundations. International Journal of Geomechanics, 18(9), 04018103.CrossRef Bagheri, M., Jamkhaneh, M. E., & Samali, B. (2018). Effect of seismic soil–pile–structure interaction on mid-and high-rise steel buildings resting on a group of pile foundations. International Journal of Geomechanics, 18(9), 04018103.CrossRef
Zurück zum Zitat Baziar, M. H., Nabizadeh, A., & Jabbary, M. (2015). Numerical modeling of interaction between dip-slip fault and shallow foundation. Bulletin of Earthquake Engineering, 13(6), 1613–1632.CrossRef Baziar, M. H., Nabizadeh, A., & Jabbary, M. (2015). Numerical modeling of interaction between dip-slip fault and shallow foundation. Bulletin of Earthquake Engineering, 13(6), 1613–1632.CrossRef
Zurück zum Zitat Bransby, M., Davies, M., El Nahas, A., & Nagaoka, S. (2008a). Centrifuge modelling of reverse fault–foundation interaction. Bulletin of Earthquake Engineering, 6(4), 607–628.CrossRef Bransby, M., Davies, M., El Nahas, A., & Nagaoka, S. (2008a). Centrifuge modelling of reverse fault–foundation interaction. Bulletin of Earthquake Engineering, 6(4), 607–628.CrossRef
Zurück zum Zitat Bransby, M., Davies, M., & Nahas, A. E. (2008b). Centrifuge modelling of normal fault–foundation interaction. Bulletin of Earthquake Engineering, 6(4), 585–605.CrossRef Bransby, M., Davies, M., & Nahas, A. E. (2008b). Centrifuge modelling of normal fault–foundation interaction. Bulletin of Earthquake Engineering, 6(4), 585–605.CrossRef
Zurück zum Zitat Bray, J. D. (2001). Developing mitigation measures for the hazards associated with earthquake surface fault rupture. Paper presented at the Workshop on seismic fault-induced failures-possible remedies for damage to urban facilities. University of Tokyo Press. Bray, J. D. (2001). Developing mitigation measures for the hazards associated with earthquake surface fault rupture. Paper presented at the Workshop on seismic fault-induced failures-possible remedies for damage to urban facilities. University of Tokyo Press.
Zurück zum Zitat Bray, J. D. (2010). Designing buildings to accommodate earthquake surface fault rupture. In Improving the seismic performance of existing buildings and other structures (pp. 1269–1280). Bray, J. D. (2010). Designing buildings to accommodate earthquake surface fault rupture. In Improving the seismic performance of existing buildings and other structures (pp. 1269–1280).
Zurück zum Zitat Committee, A. (2010). Specification for structural steel buildings (ANSI/AISC 360–10). Chicago, IL: American Institute of Steel Construction. Committee, A. (2010). Specification for structural steel buildings (ANSI/AISC 360–10). Chicago, IL: American Institute of Steel Construction.
Zurück zum Zitat Council, B. S. S. (1997). NEHRP guidelines for the seismic rehabilitation of buildings. FEMA-273, Federal Emergency Management Agency, Washington, DC (pp. 2–12). Council, B. S. S. (1997). NEHRP guidelines for the seismic rehabilitation of buildings. FEMA-273, Federal Emergency Management Agency, Washington, DC (pp. 2–12).
Zurück zum Zitat Ebadi Jamkhaneh, M., Ebrahimi, A. H., & Amiri, M. S. (2019a). Experimental and numerical investigation of steel moment resisting frame with U-shaped metallic yielding damper. International Journal of Steel Structures, 19(3), 806–818.CrossRef Ebadi Jamkhaneh, M., Ebrahimi, A. H., & Amiri, M. S. (2019a). Experimental and numerical investigation of steel moment resisting frame with U-shaped metallic yielding damper. International Journal of Steel Structures, 19(3), 806–818.CrossRef
Zurück zum Zitat Ebadi Jamkhaneh, M., Ebrahimi, A. H., & Amiri, M. S. (2019b). Investigation of the seismic behavior of brace frames with new corrugated all-steel buckling restrained brace. International Journal of Steel Structures, 19(4), 1225–1236.CrossRef Ebadi Jamkhaneh, M., Ebrahimi, A. H., & Amiri, M. S. (2019b). Investigation of the seismic behavior of brace frames with new corrugated all-steel buckling restrained brace. International Journal of Steel Structures, 19(4), 1225–1236.CrossRef
Zurück zum Zitat Ebadi Jamkhaneh, M., Ebrahimi, A. H., & Amiri, M. S. (2020). Investigation of geosynthetic-reinforced stone columns behavior. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 173(6), 535–545. Ebadi Jamkhaneh, M., Ebrahimi, A. H., & Amiri, M. S. (2020). Investigation of geosynthetic-reinforced stone columns behavior. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 173(6), 535–545.
Zurück zum Zitat Elnashai, A. S., & Di Sarno, L. (2008). Fundamentals of earthquake engineering (p. 34). New York: Wiley.CrossRef Elnashai, A. S., & Di Sarno, L. (2008). Fundamentals of earthquake engineering (p. 34). New York: Wiley.CrossRef
Zurück zum Zitat Faccioli, E., Anastasopoulos, I., Gazetas, G., Callerio, A., & Paolucci, R. (2008). Fault rupture–foundation interaction: Selected case histories. Bulletin of Earthquake Engineering, 6(4), 557–583.CrossRef Faccioli, E., Anastasopoulos, I., Gazetas, G., Callerio, A., & Paolucci, R. (2008). Fault rupture–foundation interaction: Selected case histories. Bulletin of Earthquake Engineering, 6(4), 557–583.CrossRef
Zurück zum Zitat Fadaee, M., Ezzatyazdi, P., Anastasopoulos, I., & Gazetas, G. (2016). Mitigation of reverse faulting deformation using a soil bentonite wall: Dimensional analysis, parametric study, design implications. Soil Dynamics and Earthquake Engineering, 89, 248–261.CrossRef Fadaee, M., Ezzatyazdi, P., Anastasopoulos, I., & Gazetas, G. (2016). Mitigation of reverse faulting deformation using a soil bentonite wall: Dimensional analysis, parametric study, design implications. Soil Dynamics and Earthquake Engineering, 89, 248–261.CrossRef
Zurück zum Zitat Gazetas, G., Zarzouras, O., Drosos, V., & Anastasopoulos, I. (2015). Bridge-Pier Caisson foundations subjected to normal and thrust faulting: Physical experiments versus numerical analysis. Meccanica, 50(2), 341–354.CrossRef Gazetas, G., Zarzouras, O., Drosos, V., & Anastasopoulos, I. (2015). Bridge-Pier Caisson foundations subjected to normal and thrust faulting: Physical experiments versus numerical analysis. Meccanica, 50(2), 341–354.CrossRef
Zurück zum Zitat Hognestad, E. (1951). Study of combined bending and axial load in reinforced concrete members. Champaign: University of Illinois at Urbana Champaign, College of Engineering, Engineering Experiment Station. Hognestad, E. (1951). Study of combined bending and axial load in reinforced concrete members. Champaign: University of Illinois at Urbana Champaign, College of Engineering, Engineering Experiment Station.
Zurück zum Zitat Homaioon Ebrahimi, A., Ebadi Jamkhaneh, M., & Shokri Amiri, M. (2018). 3D finite-element analysis of steel moment frames including long-span entrance by strengthening steel cables and diagonal concentrically braced frames under progressive collapse. Practice Periodical on Structural Design and Construction, 23(4), 04018025.CrossRef Homaioon Ebrahimi, A., Ebadi Jamkhaneh, M., & Shokri Amiri, M. (2018). 3D finite-element analysis of steel moment frames including long-span entrance by strengthening steel cables and diagonal concentrically braced frames under progressive collapse. Practice Periodical on Structural Design and Construction, 23(4), 04018025.CrossRef
Zurück zum Zitat Imashi, N., & Massumi, A. (2011). A comparative study of the seismic provisions of Iranian seismic code (standard no. 2800) and international building code 2003. Imashi, N., & Massumi, A. (2011). A comparative study of the seismic provisions of Iranian seismic code (standard no. 2800) and international building code 2003.
Zurück zum Zitat Institute, A. C. (2014). Building Code Requirements for Structural Concrete (ACI 318–14): Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14): an ACI Report: American Concrete Institute. ACI. Institute, A. C. (2014). Building Code Requirements for Structural Concrete (ACI 318–14): Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14): an ACI Report: American Concrete Institute. ACI.
Zurück zum Zitat Loli, M., Anastasopoulos, I., & Gazetas, G. (2015). Nonlinear analysis of earthquake fault rupture interaction with historic masonry buildings. Bulletin of Earthquake Engineering, 13(1), 83–95.CrossRef Loli, M., Anastasopoulos, I., & Gazetas, G. (2015). Nonlinear analysis of earthquake fault rupture interaction with historic masonry buildings. Bulletin of Earthquake Engineering, 13(1), 83–95.CrossRef
Zurück zum Zitat Loli, M., Bransby, M., Anastasopoulos, I., & Gazetas, G. (2012). Interaction of caisson foundations with a seismically rupturing normal fault: Centrifuge testing versus numerical simulation. Geotechnique, 62(1), 29–43.CrossRef Loli, M., Bransby, M., Anastasopoulos, I., & Gazetas, G. (2012). Interaction of caisson foundations with a seismically rupturing normal fault: Centrifuge testing versus numerical simulation. Geotechnique, 62(1), 29–43.CrossRef
Zurück zum Zitat Mousavi, S., Jafari, M., Kamalian, M., & Shafiei, A. (2010). Experimental investigation of reverse fault rupture-rigid shallow foundation interaction. International Journal of Civil Engineering, 18(2), 85–98. Mousavi, S., Jafari, M., Kamalian, M., & Shafiei, A. (2010). Experimental investigation of reverse fault rupture-rigid shallow foundation interaction. International Journal of Civil Engineering, 18(2), 85–98.
Zurück zum Zitat Pamuk, A., Kalkan, E., & Ling, H. (2005). Structural and geotechnical impacts of surface rupture on highway structures during recent earthquakes in Turkey. Soil Dynamics and Earthquake Engineering, 25(7–10), 581–589.CrossRef Pamuk, A., Kalkan, E., & Ling, H. (2005). Structural and geotechnical impacts of surface rupture on highway structures during recent earthquakes in Turkey. Soil Dynamics and Earthquake Engineering, 25(7–10), 581–589.CrossRef
Zurück zum Zitat Salajegheh, A., Davoodi, M., Jafari, M. K., & Fadaee, M. (2019). Experimental and numerical investigation of reverse fault rupture interaction with steel frame structures. Journal of Seismology and Earthquake Engineering, 21(1), 11. Salajegheh, A., Davoodi, M., Jafari, M. K., & Fadaee, M. (2019). Experimental and numerical investigation of reverse fault rupture interaction with steel frame structures. Journal of Seismology and Earthquake Engineering, 21(1), 11.
Zurück zum Zitat Triantafyllaki, A., Papanastasiou, P., & Loukidis, D. (2020). Numerical analysis of the structural response of unburied offshore pipelines crossing active normal and reverse faults. Soil Dynamics and Earthquake Engineering, 137, 106296.CrossRef Triantafyllaki, A., Papanastasiou, P., & Loukidis, D. (2020). Numerical analysis of the structural response of unburied offshore pipelines crossing active normal and reverse faults. Soil Dynamics and Earthquake Engineering, 137, 106296.CrossRef
Zurück zum Zitat Ulusay, R., Aydan, Ö., & Hamada, M. (2002). The behavior of structures built on active fault zones: Examples from the recent earthquakes of Turkey. Structural Engineering/Earthquake Engineering, 19(2), 149s–167s.CrossRef Ulusay, R., Aydan, Ö., & Hamada, M. (2002). The behavior of structures built on active fault zones: Examples from the recent earthquakes of Turkey. Structural Engineering/Earthquake Engineering, 19(2), 149s–167s.CrossRef
Zurück zum Zitat Yao, C., Takemura, J., & Zhang, J. (2021). Centrifuge modeling of single pile-shallow foundation interaction in reverse fault. Soil Dynamics and Earthquake Engineering, 141, 106538. Yao, C., Takemura, J., & Zhang, J. (2021). Centrifuge modeling of single pile-shallow foundation interaction in reverse fault. Soil Dynamics and Earthquake Engineering, 141, 106538.
Metadaten
Titel
Numerical Investigation of Steel Moment-Resisting Frame on Sandy Soil Under Normal Fault Rupture
verfasst von
Omid Nooralizadeh Keshteli
Speideh Rahimi
Mehdi Ebadi Jamkhaneh
Publikationsdatum
08.02.2021
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 2/2021
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-021-00467-0

Weitere Artikel der Ausgabe 2/2021

International Journal of Steel Structures 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.