Skip to main content
Erschienen in: Acta Mechanica 8/2023

09.05.2023 | Original Paper

Numerical simulation for quasi-static crack growth and dynamic crack branching by coupled state-based PD and XFEM

verfasst von: Bing Chen, Tiantang Yu, Sundararajan Natarajan, Qing Zhang, Tinh Quoc Bui

Erschienen in: Acta Mechanica | Ausgabe 8/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a novel framework combining the state-based peridynamics (SBPD) with the extended finite element method (XFEM) for crack propagation in two-dimensional solids. Numerical examination is conducted fulfilling both the quasi-static and time-dependent loading conditions. The computational domain is partitioned into two regions: (a) SPBD region: the vicinity of crack tips and potential region where the crack is likely to propagate, and (b) XFEM region: the area behind the crack tip and the rest of the body. The salient features of the developed framework include: (a) avoiding requirement of a priori knowledge of enrichment functions like the conventional XFEM; (b) without fracture criteria for crack propagation; (c) no restriction on the value of Poisson’s ratio like the bond-based peridynamics; and (d) higher computational efficiency than the pure peridynamics. The efficiency and accuracy of the proposed framework are systematically demonstrated through benchmark examples involving quasi-static crack growth and dynamic crack branching problems.
Literatur
1.
Zurück zum Zitat Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefMATH Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Diana, V., Carvelli, V.: An electromechanical micropolar peridynamic model. Comput. Methods Appl. Mech. Eng. 365, 112998 (2020)MathSciNetCrossRefMATH Diana, V., Carvelli, V.: An electromechanical micropolar peridynamic model. Comput. Methods Appl. Mech. Eng. 365, 112998 (2020)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237(12–13), 1250–1258 (2007)CrossRef Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237(12–13), 1250–1258 (2007)CrossRef
4.
Zurück zum Zitat Bazazzadeh, S., Morandini, M., Zaccariotto, M., Galvanetto, U.: Simulation of chemo-thermo-mechanical problems in cement-based materials with Peridynamics. Meccanica 56, 2357–2379 (2021)MathSciNetCrossRef Bazazzadeh, S., Morandini, M., Zaccariotto, M., Galvanetto, U.: Simulation of chemo-thermo-mechanical problems in cement-based materials with Peridynamics. Meccanica 56, 2357–2379 (2021)MathSciNetCrossRef
5.
Zurück zum Zitat Huang, D., Zhang, Q., Qiao, P.: Damage and progressive failure of concrete structures using non-local peridynamic modeling. Sci. China Technol. Sci. 54(3), 591–596 (2011)CrossRef Huang, D., Zhang, Q., Qiao, P.: Damage and progressive failure of concrete structures using non-local peridynamic modeling. Sci. China Technol. Sci. 54(3), 591–596 (2011)CrossRef
6.
Zurück zum Zitat Huang, D., Lu, G., Qiao, P.: An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int. J. Mech. Sci. 94, 111–122 (2015)CrossRef Huang, D., Lu, G., Qiao, P.: An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int. J. Mech. Sci. 94, 111–122 (2015)CrossRef
7.
Zurück zum Zitat Rabczuk, T., Ren, H.: A peridynamics formulation for quasi-static fracture and contact in rock. Eng. Geol. 225, 42–48 (2017)CrossRef Rabczuk, T., Ren, H.: A peridynamics formulation for quasi-static fracture and contact in rock. Eng. Geol. 225, 42–48 (2017)CrossRef
8.
Zurück zum Zitat Gu, X., Zhang, Q.: A modified conjugated bond-based peridynamic analysis for impact failure of concrete gravity dam. Meccanica 55(3), 547–566 (2020)MathSciNetCrossRefMATH Gu, X., Zhang, Q.: A modified conjugated bond-based peridynamic analysis for impact failure of concrete gravity dam. Meccanica 55(3), 547–566 (2020)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Ni, T., Zaccariotto, M., Zhu, Q., Galvanetto, U.: Static solution of crack propagation problems in Peridynamics. Comput. Methods Appl. Mech. Eng. 346, 126–151 (2019)MathSciNetCrossRefMATH Ni, T., Zaccariotto, M., Zhu, Q., Galvanetto, U.: Static solution of crack propagation problems in Peridynamics. Comput. Methods Appl. Mech. Eng. 346, 126–151 (2019)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Madenci, E., Barut, A., Futch, M.: Peridynamic differential operator and its applications. Comput. Methods Appl. Mech. Eng. 304, 408–451 (2016)MathSciNetCrossRefMATH Madenci, E., Barut, A., Futch, M.: Peridynamic differential operator and its applications. Comput. Methods Appl. Mech. Eng. 304, 408–451 (2016)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Nowruzpour, M., Reddy, J.N.: Unification of local and nonlocal models within a stable integral formulation for analysis of defects. Int. J. Eng. Sci. 132, 45–59 (2018)MathSciNetCrossRefMATH Nowruzpour, M., Reddy, J.N.: Unification of local and nonlocal models within a stable integral formulation for analysis of defects. Int. J. Eng. Sci. 132, 45–59 (2018)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Sarkar, S., Nowruzpour, M., Reddy, J.N., Srinivasa, A.R.: A discrete lagrangian based direct approach to macroscopic modelling. J. Mech. Phys. Solids 98, 172–180 (2017)MathSciNetCrossRef Sarkar, S., Nowruzpour, M., Reddy, J.N., Srinivasa, A.R.: A discrete lagrangian based direct approach to macroscopic modelling. J. Mech. Phys. Solids 98, 172–180 (2017)MathSciNetCrossRef
13.
14.
Zurück zum Zitat Li, W., Zhu, Q., Ni, T.: A local strain-based implementation strategy for the extended peridynamic model with bond rotation. Comput. Methods Appl. Mech. Eng. 358, 112625 (2020)MathSciNetCrossRefMATH Li, W., Zhu, Q., Ni, T.: A local strain-based implementation strategy for the extended peridynamic model with bond rotation. Comput. Methods Appl. Mech. Eng. 358, 112625 (2020)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Ni, T., Pesavento, F., Zaccariotto, M., Galvanetto, U., Zhu, Q., Schrefler, B.: Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media. Comput. Methods Appl. Mech. Eng. 366, 113101 (2020)MathSciNetCrossRefMATH Ni, T., Pesavento, F., Zaccariotto, M., Galvanetto, U., Zhu, Q., Schrefler, B.: Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media. Comput. Methods Appl. Mech. Eng. 366, 113101 (2020)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Liu, S., Fang, G., Liang, J., Fu, M.: A coupling method of non-ordinary state-based peridynamics and finite element method. Eur. J. Mech. A Solids 85, 104075 (2021)MathSciNetCrossRefMATH Liu, S., Fang, G., Liang, J., Fu, M.: A coupling method of non-ordinary state-based peridynamics and finite element method. Eur. J. Mech. A Solids 85, 104075 (2021)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Littlewood, D. J.: Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, In Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition 44465 (2010) 209–217 Littlewood, D. J.: Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, In Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition 44465 (2010) 209–217
18.
Zurück zum Zitat Huang, X., Bie, Z., Wang, L., Jin, Y., Liu, X., Su, G., He, X.: Finite element method of bond-based peridynamics and its ABAQUS implementation. Eng. Fract. Mech. 206, 408–426 (2019)CrossRef Huang, X., Bie, Z., Wang, L., Jin, Y., Liu, X., Su, G., He, X.: Finite element method of bond-based peridynamics and its ABAQUS implementation. Eng. Fract. Mech. 206, 408–426 (2019)CrossRef
19.
Zurück zum Zitat Fang, G., Liu, S., Fu, M., Wang, B., Wu, Z., Liang, J.: A method to couple state-based peridynamics and finite element method for crack propagation problem. Mech. Res. Commun. 95, 89–95 (2019)CrossRef Fang, G., Liu, S., Fu, M., Wang, B., Wu, Z., Liang, J.: A method to couple state-based peridynamics and finite element method for crack propagation problem. Mech. Res. Commun. 95, 89–95 (2019)CrossRef
20.
Zurück zum Zitat Yang, Y., Liu, Y.: Modeling of cracks in two-dimensional elastic bodies by coupling the boundary element method with peridynamics. Int. J. Solids Struct. 217–218, 74–89 (2021)CrossRef Yang, Y., Liu, Y.: Modeling of cracks in two-dimensional elastic bodies by coupling the boundary element method with peridynamics. Int. J. Solids Struct. 217–218, 74–89 (2021)CrossRef
21.
Zurück zum Zitat Liang, X., Wang, L., Xu, J., Wang, J.: The boundary element method of Peridynamics. Int. J. Numer. Meth. Eng. 20(122), 5558–5593 (2021)MathSciNetCrossRef Liang, X., Wang, L., Xu, J., Wang, J.: The boundary element method of Peridynamics. Int. J. Numer. Meth. Eng. 20(122), 5558–5593 (2021)MathSciNetCrossRef
22.
Zurück zum Zitat Kan, X.Y., Zhang, A.M., Yan, J.L., Wu, W.B., Liu, Y.L.: Numerical investigation of ice breaking by a high-pressure bubble based on a coupled BEM-PD model. J. Fluids Struct. 96, 103016 (2020)CrossRef Kan, X.Y., Zhang, A.M., Yan, J.L., Wu, W.B., Liu, Y.L.: Numerical investigation of ice breaking by a high-pressure bubble based on a coupled BEM-PD model. J. Fluids Struct. 96, 103016 (2020)CrossRef
23.
Zurück zum Zitat Xia, Y., Meng, X., Shen, G., Zheng, G., Hu, P.: Isogeometric analysis of cracks with peridynamics. Comput. Methods Appl. Mech. Eng. 377, 113700 (2021)MathSciNetCrossRefMATH Xia, Y., Meng, X., Shen, G., Zheng, G., Hu, P.: Isogeometric analysis of cracks with peridynamics. Comput. Methods Appl. Mech. Eng. 377, 113700 (2021)MathSciNetCrossRefMATH
24.
Zurück zum Zitat M. Behzadinasab, M. Hillman, Y. Bazilevs, IGA-PD penalty-based coupling for immersed air-blast fluid-structure interaction: a simple and effective solution for fracture and fragmentation, preprint arXiv:2111.03767V1 (2021) M. Behzadinasab, M. Hillman, Y. Bazilevs, IGA-PD penalty-based coupling for immersed air-blast fluid-structure interaction: a simple and effective solution for fracture and fragmentation, preprint arXiv:​2111.​03767V1 (2021)
25.
Zurück zum Zitat Behzadinasab, M., Moutsanidis, G., Trask, N., Foster, J.T., Bazilevs, Y.: Coupling of IGA and peridynamics for air-blast fluid-structure interaction using an immersed approach. Forces Mech. 4, 100045 (2021)CrossRef Behzadinasab, M., Moutsanidis, G., Trask, N., Foster, J.T., Bazilevs, Y.: Coupling of IGA and peridynamics for air-blast fluid-structure interaction using an immersed approach. Forces Mech. 4, 100045 (2021)CrossRef
26.
Zurück zum Zitat Dorduncu, M., Barut, A., Madenci, E., Phan, N. D.: Peridynamic augmented XFEM, in: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017, p. 0656 Dorduncu, M., Barut, A., Madenci, E., Phan, N. D.: Peridynamic augmented XFEM, in: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017, p. 0656
27.
Zurück zum Zitat Giannakeas, I.N., Papathanasiou, T.K., Fallah, A.S., Bahai, H.: Coupling XFEM and peridynamics for brittle fracture simulation-part I: feasibility and effectiveness. Comput. Mech. 66(1), 103–122 (2020)MathSciNetCrossRefMATH Giannakeas, I.N., Papathanasiou, T.K., Fallah, A.S., Bahai, H.: Coupling XFEM and peridynamics for brittle fracture simulation-part I: feasibility and effectiveness. Comput. Mech. 66(1), 103–122 (2020)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Giannakeas, I.N., Papathanasiou, T.K., Fallah, A.S., Bahai, H.: Coupling XFEM and Peridynamics for brittle fracture simulation: part II-adaptive relocation strategy. Comput. Mech. 66(3), 683–705 (2020)MathSciNetCrossRefMATH Giannakeas, I.N., Papathanasiou, T.K., Fallah, A.S., Bahai, H.: Coupling XFEM and Peridynamics for brittle fracture simulation: part II-adaptive relocation strategy. Comput. Mech. 66(3), 683–705 (2020)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Liu, S., Fang, G., Liang, J., Lv, D.: A coupling model of XFEM/peridynamics for 2D dynamic crack propagation and branching problems. Theoret. Appl. Fract. Mech. 108, 102573 (2020)CrossRef Liu, S., Fang, G., Liang, J., Lv, D.: A coupling model of XFEM/peridynamics for 2D dynamic crack propagation and branching problems. Theoret. Appl. Fract. Mech. 108, 102573 (2020)CrossRef
30.
Zurück zum Zitat Chen, B., Yu, T., Natarajan, S., Zhang, Q., Bui, T.Q.: Three-dimensional dynamic and quasi-static crack growth by a hybrid XFEM-peridynamics approach. Eng. Fract. Mech. 261, 108205 (2022)CrossRef Chen, B., Yu, T., Natarajan, S., Zhang, Q., Bui, T.Q.: Three-dimensional dynamic and quasi-static crack growth by a hybrid XFEM-peridynamics approach. Eng. Fract. Mech. 261, 108205 (2022)CrossRef
31.
Zurück zum Zitat Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005)CrossRef Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005)CrossRef
32.
Zurück zum Zitat Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetCrossRefMATH Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Tong, Y., Shen, W.-Q., Shao, J.-F.: An adaptive coupling method of state-based peridynamics theory and finite element method for modeling progressive failure process in cohesive materials. Comput. Methods Appl. Mech. Eng. 370, 113248 (2020)MathSciNetCrossRefMATH Tong, Y., Shen, W.-Q., Shao, J.-F.: An adaptive coupling method of state-based peridynamics theory and finite element method for modeling progressive failure process in cohesive materials. Comput. Methods Appl. Mech. Eng. 370, 113248 (2020)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Madenci, E., Oterkus, E.: Peridynamic theory and its applications. Springer, Berlin (2014)CrossRefMATH Madenci, E., Oterkus, E.: Peridynamic theory and its applications. Springer, Berlin (2014)CrossRefMATH
35.
Zurück zum Zitat Liu, P., Yu, T.T., Bui, T.Q., Zhang, C.: Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Comput. Mater. Sci. 69, 542–558 (2013)CrossRef Liu, P., Yu, T.T., Bui, T.Q., Zhang, C.: Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Comput. Mater. Sci. 69, 542–558 (2013)CrossRef
36.
Zurück zum Zitat Yu, T.: Extended finite element method-theory, application and programming. Science Press, Beijing (2014) Yu, T.: Extended finite element method-theory, application and programming. Science Press, Beijing (2014)
37.
Zurück zum Zitat Ayatollahi, M., Aliha, M.: Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng. Fract. Mech. 76(11), 1563–1573 (2009)CrossRef Ayatollahi, M., Aliha, M.: Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng. Fract. Mech. 76(11), 1563–1573 (2009)CrossRef
38.
Zurück zum Zitat Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1), 229–244 (2010)CrossRefMATH Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1), 229–244 (2010)CrossRefMATH
39.
Zurück zum Zitat Zaccariotto, M., Mudric, T., Tomasi, D., Shojaei, A., Galvanetto, U.: Coupling of FEM meshes with Peridynamic grids. Comput. Methods Appl. Mech. Eng. 330, 471–497 (2018)MathSciNetCrossRefMATH Zaccariotto, M., Mudric, T., Tomasi, D., Shojaei, A., Galvanetto, U.: Coupling of FEM meshes with Peridynamic grids. Comput. Methods Appl. Mech. Eng. 330, 471–497 (2018)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Zhou, X., Wang, Y., Qian, Q.: Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics. Eur. J. Mech. A Solids 60, 277–299 (2016)MathSciNetCrossRefMATH Zhou, X., Wang, Y., Qian, Q.: Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics. Eur. J. Mech. A Solids 60, 277–299 (2016)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Braun, M., Fernández-Sáez, J.: A new 2D discrete model applied to dynamic crack propagation in brittle materials. Int. J. Solids Struct. 51(21), 3787–3797 (2014)CrossRef Braun, M., Fernández-Sáez, J.: A new 2D discrete model applied to dynamic crack propagation in brittle materials. Int. J. Solids Struct. 51(21), 3787–3797 (2014)CrossRef
42.
Zurück zum Zitat Kosteski, L., D’Ambra, R.B., Iturrioz, I.: Crack propagation in elastic solids using the truss-like discrete element method. Int. J. Fract. 174(2), 139–161 (2012)CrossRef Kosteski, L., D’Ambra, R.B., Iturrioz, I.: Crack propagation in elastic solids using the truss-like discrete element method. Int. J. Fract. 174(2), 139–161 (2012)CrossRef
Metadaten
Titel
Numerical simulation for quasi-static crack growth and dynamic crack branching by coupled state-based PD and XFEM
verfasst von
Bing Chen
Tiantang Yu
Sundararajan Natarajan
Qing Zhang
Tinh Quoc Bui
Publikationsdatum
09.05.2023
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 8/2023
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03585-4

Weitere Artikel der Ausgabe 8/2023

Acta Mechanica 8/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.