Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 4/2018

18.01.2018 | Review Article

Occupational exposure to electromagnetic fields in magnetic resonance environment: basic aspects and review of exposure assessment approaches

verfasst von: Valentina Hartwig, Stefania Romeo, Olga Zeni

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this review is to make a contribution to build a comprehensive knowledge of the main aspects related to the occupational exposure to electromagnetic fields (EMFs) in magnetic resonance imaging (MRI) environments. Information has been obtained from original research papers published in international peer-reviewed journals in the English language and from documents published by governmental bodies and authorities. An overview of the occupational exposure scenarios to static magnetic fields, motion-induced, time-varying magnetic fields, and gradient and radiofrequency fields is provided, together with a summary of the relevant regulation for limiting exposure. A particular emphasis is on reviewing the main EMF exposure assessment approaches found in the literature. Exposure assessment is carried out either by measuring the unperturbed magnetic fields in the MRI rooms, or by personal monitoring campaigns, or by the use of numerical methods. A general lack of standardization of the procedures and technologies adopted for exposure assessment has emerged, which makes it difficult to perform a direct comparison of results from different studies carried out by applying different assessment strategies. In conclusion, exposure assessment approaches based on data collection and numerical models need to be better defined in order to respond to specific research questions. That would provide for a more complete characterization of the exposure patterns and for identification of the factors determining the exposure variability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 10:55–58CrossRef Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 10:55–58CrossRef
7.
Zurück zum Zitat McRobbie DW, Moore EA, Graves MJ, Prince MR (2006) MRI from picture to proton. Cambridge University Press, New York McRobbie DW, Moore EA, Graves MJ, Prince MR (2006) MRI from picture to proton. Cambridge University Press, New York
11.
Zurück zum Zitat Shellock FG, Crues JV (2014) MRI bioeffects, safety, and patient management. Biomedical Research Publishing Group, Los Angels Shellock FG, Crues JV (2014) MRI bioeffects, safety, and patient management. Biomedical Research Publishing Group, Los Angels
14.
Zurück zum Zitat Stikova E (2012) Magnetic resonance imaging safety: principles and guidelines. Prilozi 33(1):441–472PubMed Stikova E (2012) Magnetic resonance imaging safety: principles and guidelines. Prilozi 33(1):441–472PubMed
15.
Zurück zum Zitat Kangarlu A, Robitaille PL (2000) Biological effects and health implications in magnetic resonance imaging. Concepts Magn Reson 12(5):321–359.CrossRef Kangarlu A, Robitaille PL (2000) Biological effects and health implications in magnetic resonance imaging. Concepts Magn Reson 12(5):321–359.CrossRef
16.
Zurück zum Zitat Durbridge G (2011) Magnetic resonance imaging: fundamental safety issues. J Orthop Sport Phys Ther 41:820–828CrossRef Durbridge G (2011) Magnetic resonance imaging: fundamental safety issues. J Orthop Sport Phys Ther 41:820–828CrossRef
18.
Zurück zum Zitat Shellock FG (2014) Reference manual for magnetic resonance safety, implants, and devices: 2014 edition. Biomedical Research Publishing Group, Playa Del Rey Shellock FG (2014) Reference manual for magnetic resonance safety, implants, and devices: 2014 edition. Biomedical Research Publishing Group, Playa Del Rey
24.
Zurück zum Zitat Patenaude Y, Pugash D, Lim K, Morin L, Diagnostic Imaging Committee, Lim K, Bly S, Butt K, Cargill Y, Davies G, Denis N, Hazlitt G, Morin L, Naud K, Ouellet A, Salem S, Society of Obstetricians and Gynaecologists of Canada (2014) The use of magnetic resonance imaging in the obstetric patient. J Obstet Gynaecol Can 36(4):349–363. https://doi.org/10.1016/S1701-2163(15)30612-5 CrossRefPubMed Patenaude Y, Pugash D, Lim K, Morin L, Diagnostic Imaging Committee, Lim K, Bly S, Butt K, Cargill Y, Davies G, Denis N, Hazlitt G, Morin L, Naud K, Ouellet A, Salem S, Society of Obstetricians and Gynaecologists of Canada (2014) The use of magnetic resonance imaging in the obstetric patient. J Obstet Gynaecol Can 36(4):349–363. https://​doi.​org/​10.​1016/​S1701-2163(15)30612-5 CrossRefPubMed
25.
Zurück zum Zitat Pamboucas CA, Rokas SG (2008) Clinical safety of cardiovascular magnetic resonance: cardiovascular devices and contrast agents. Hell J Cardiol 49:352–356 Pamboucas CA, Rokas SG (2008) Clinical safety of cardiovascular magnetic resonance: cardiovascular devices and contrast agents. Hell J Cardiol 49:352–356
26.
Zurück zum Zitat Shellock FG, Kanal E (1999) Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging 10(3):477–484.CrossRefPubMed Shellock FG, Kanal E (1999) Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging 10(3):477–484.CrossRefPubMed
33.
Zurück zum Zitat EU (2013) Directive 2013/35/EU of the European Parliament And Of The Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) EU (2013) Directive 2013/35/EU of the European Parliament And Of The Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields)
44.
Zurück zum Zitat EU (2004) Directive 2004/40/EC of the European Parliament and of the Council of 29April 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields).Official Journal of the Eu EU (2004) Directive 2004/40/EC of the European Parliament and of the Council of 29April 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields).Official Journal of the Eu
46.
Zurück zum Zitat Keevil SF (2006) Impact of the physical agents (EMF) directive on medical magnetic resonance imaging. IET Semin. Phys. Agents Dir, London, pp 47–56 Keevil SF (2006) Impact of the physical agents (EMF) directive on medical magnetic resonance imaging. IET Semin. Phys. Agents Dir, London, pp 47–56
49.
Zurück zum Zitat EU (2015) Non-binding guide to good practice for implementing Directive 2013/35/EU Volume 2: Case Studies EU (2015) Non-binding guide to good practice for implementing Directive 2013/35/EU Volume 2: Case Studies
50.
Zurück zum Zitat EU (2015) Non-binding guide to good practice for implementing Directive 2013/35/EU Electromagnetic Fields Volume 1: Practical Guide EU (2015) Non-binding guide to good practice for implementing Directive 2013/35/EU Electromagnetic Fields Volume 1: Practical Guide
52.
Zurück zum Zitat U.S. Food and Drug Administration C (2014) Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices Guidance for Industry and Food and Drug Administration Staff U.S. Food and Drug Administration C (2014) Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices Guidance for Industry and Food and Drug Administration Staff
53.
Zurück zum Zitat IEEE (2002) Standard for safety levels with respect to human exposure to electromagnetic fields, 0–3 kHz IEEE (2002) Standard for safety levels with respect to human exposure to electromagnetic fields, 0–3 kHz
54.
Zurück zum Zitat IEEE (2006) Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz IEEE (2006) Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz
55.
Zurück zum Zitat International Electrotechnical Commision (2010) IEC 60601-2-33:2010 Medical electrical equipment—part 2–33: particular requirements for the safety of magnetic resonance equipment for medical diagnosis International Electrotechnical Commision (2010) IEC 60601-2-33:2010 Medical electrical equipment—part 2–33: particular requirements for the safety of magnetic resonance equipment for medical diagnosis
56.
Zurück zum Zitat IARC (2002) Sources, exposure and exposure assessment. IARC Monogr Eval Carcinog Risks Hum 80:51–93 IARC (2002) Sources, exposure and exposure assessment. IARC Monogr Eval Carcinog Risks Hum 80:51–93
61.
Zurück zum Zitat Andreuccetti D, Contessa GM, Falsaperla R, Lodato R, Pinto R, Zoppetti N, Rossi P (2013) Weighted-peak assessment of occupational exposure due to MRI gradient fields and movements in a nonhomogeneous static magnetic field. Med Phys 40(1):11910. https://doi.org/10.1118/1.4771933 CrossRef Andreuccetti D, Contessa GM, Falsaperla R, Lodato R, Pinto R, Zoppetti N, Rossi P (2013) Weighted-peak assessment of occupational exposure due to MRI gradient fields and movements in a nonhomogeneous static magnetic field. Med Phys 40(1):11910. https://​doi.​org/​10.​1118/​1.​4771933 CrossRef
63.
Zurück zum Zitat Bonutti F, Tecchio M, Maieron M, Trevisan D, Negro C, Calligaris F (2016) Measurement of the weighted peak level for occupational exposure to gradient magnetic fields for 1.5 and 3 Tesla MRI body scanners. Radiat Prot Dosim 168:358–364. https://doi.org/10.1093/rpd/ncv308 Bonutti F, Tecchio M, Maieron M, Trevisan D, Negro C, Calligaris F (2016) Measurement of the weighted peak level for occupational exposure to gradient magnetic fields for 1.5 and 3 Tesla MRI body scanners. Radiat Prot Dosim 168:358–364. https://​doi.​org/​10.​1093/​rpd/​ncv308
67.
Zurück zum Zitat Crozier S, Wilson SJ, Gregg I (2011) US7936168B2 magnetic field dosimeter Crozier S, Wilson SJ, Gregg I (2011) US7936168B2 magnetic field dosimeter
69.
Zurück zum Zitat Schaap K, Christopher-De Vries Y, Crozier S et al (2014) Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners: a comprehensive survey in the Netherlands. Ann Occup Hyg 58:1094–1110. https://doi.org/10.1093/annhyg/meu057 PubMed Schaap K, Christopher-De Vries Y, Crozier S et al (2014) Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners: a comprehensive survey in the Netherlands. Ann Occup Hyg 58:1094–1110. https://​doi.​org/​10.​1093/​annhyg/​meu057 PubMed
87.
Zurück zum Zitat Li Y, Hand J, Christ A, et al (2009) Modeling occupational exposure to RF and gradient fields associated with an interventional procedure in an open 1 T MR system. Proc 17th Sci Meet Int Soc Magn Reson Med Honolulu 3042 Li Y, Hand J, Christ A, et al (2009) Modeling occupational exposure to RF and gradient fields associated with an interventional procedure in an open 1 T MR system. Proc 17th Sci Meet Int Soc Magn Reson Med Honolulu 3042
89.
90.
Zurück zum Zitat Farrag SI (2015) Numerical simulation of the induced currents in occupational workers induced by body-motion around different MRI fields. Int J Adv Res Comput Sci Softw Eng 5:66–71 Farrag SI (2015) Numerical simulation of the induced currents in occupational workers induced by body-motion around different MRI fields. Int J Adv Res Comput Sci Softw Eng 5:66–71
91.
Zurück zum Zitat Farrag SI (2014) Numerical computation of specific absorption rate and induced current for workers exposed to static magnetic fields of MRI scanners. I.E. Conference on Biomedical Engineering and Sciences (IECBES):612–617 Farrag SI (2014) Numerical computation of specific absorption rate and induced current for workers exposed to static magnetic fields of MRI scanners. I.E. Conference on Biomedical Engineering and Sciences (IECBES):612–617
Metadaten
Titel
Occupational exposure to electromagnetic fields in magnetic resonance environment: basic aspects and review of exposure assessment approaches
verfasst von
Valentina Hartwig
Stefania Romeo
Olga Zeni
Publikationsdatum
18.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 4/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1779-7

Weitere Artikel der Ausgabe 4/2018

Medical & Biological Engineering & Computing 4/2018 Zur Ausgabe