Skip to main content
Erschienen in: Natural Computing 2/2008

01.06.2008

On the complexity of graph self-assembly in accretive systems

verfasst von: Stanislav Angelov, Sanjeev Khanna, Mirkó Visontai

Erschienen in: Natural Computing | Ausgabe 2/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the complexity of the Accretive Graph Assembly Problem (\({\tt{AGAP}}\)). An instance of \({\tt{AGAP}}\) consists of an edge-weighted graph G, a seed vertex in G, and a temperature τ. The goal is to determine if the graph G can be assembled by a sequence of vertex additions starting from the seed vertex. The edge weights model the forces of attraction and repulsion, and determine which vertices can be added to a partially assembled graph at the given temperature. A vertex can be added when the total weight to its already built neighbors in the graph is at least τ. The assembly process is sequential meaning that only one vertex can be added at a time. Our first result is that \({\tt{AGAP}}\) is NP-complete even on planar graphs with maximum degree 3 when edges have only two different types of weights. This resolves the complexity of \({\tt{AGAP}}\) in the sense that the problem is poly-time solvable when either the maximum degree is at most 2 or the number of distinct edge weights is one, and is NP-complete otherwise. Our second result is a dichotomy theorem that completely characterizes the complexity of \({\tt{AGAP}}\) on graphs with maximum degree 3 and two distinct weights: w p and w n . We give a simple system of linear constraints on w p , w n , and τ that determines whether the problem is NP-complete or is poly-time solvable. In the process of establishing this dichotomy, we give a poly-time algorithm to solve a non-trivial class of \({\tt{AGAP}}.\) Finally, we consider the optimization version of \({\tt{AGAP}}\) where the goal is to assemble a largest-possible induced subgraph of the given input graph. We show that even on graphs that can be assembled and have maximum degree 3, it is NP-hard to assemble a (1/n 1-ε)-fraction of the input graph for any \(\varepsilon > 0;\) here n denotes the number of vertices in G.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adleman LM, Cheng Q, Goel A, Huang MDA (2001) Running time and program size for self-assembled squares. In: Proceedings of the 33th Annual ACM Symposium on Theory of Computing, 740–748 Adleman LM, Cheng Q, Goel A, Huang MDA (2001) Running time and program size for self-assembled squares. In: Proceedings of the 33th Annual ACM Symposium on Theory of Computing, 740–748
Zurück zum Zitat Adleman LM, Cheng Q, Goel A, Huang MDA, Kempe D, de Espanées PM, Rothemund PWK (2002) Combinatorial optimization problems in self-assembly. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 23–32 Adleman LM, Cheng Q, Goel A, Huang MDA, Kempe D, de Espanées PM, Rothemund PWK (2002) Combinatorial optimization problems in self-assembly. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 23–32
Zurück zum Zitat Aggarwal G, Goldwasser M, Kao MY, Schweller RT (2004) Complexities for generalized models of self-assembly. In: Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms, 880–889 Aggarwal G, Goldwasser M, Kao MY, Schweller RT (2004) Complexities for generalized models of self-assembly. In: Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms, 880–889
Zurück zum Zitat Barish RD, Rothemund PWK, Winfree E (2005) Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett 5(12):2586–2592CrossRef Barish RD, Rothemund PWK, Winfree E (2005) Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett 5(12):2586–2592CrossRef
Zurück zum Zitat Broersma H, Li X (1997) Spanning trees with many or few colors in edge-colored graphs. Discussiones Mathematicae Graph Theory 17(2):259–269MATHMathSciNet Broersma H, Li X (1997) Spanning trees with many or few colors in edge-colored graphs. Discussiones Mathematicae Graph Theory 17(2):259–269MATHMathSciNet
Zurück zum Zitat Chelyapov N, Brun Y, Gopalkrishnan M, Reishus D, Shaw B, Adleman LM (2004) DNA triangles and self-assembled hexagonal tilings. J Am Chem Soc 126(43):13924–13925CrossRef Chelyapov N, Brun Y, Gopalkrishnan M, Reishus D, Shaw B, Adleman LM (2004) DNA triangles and self-assembled hexagonal tilings. J Am Chem Soc 126(43):13924–13925CrossRef
Zurück zum Zitat Chen HL, Cheng Q, Goel A, Huang MDA, de Espanés PM (2004) Invadable selfassembly: combining robustness with efficiency. In: Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms, 890–899 Chen HL, Cheng Q, Goel A, Huang MDA, de Espanés PM (2004) Invadable selfassembly: combining robustness with efficiency. In: Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms, 890–899
Zurück zum Zitat Chen HL, Goel A (2004) Error free self-assembly using error prone tiles. In: Proceedings of the 10th International Workshop on DNA Computing, 62–75 Chen HL, Goel A (2004) Error free self-assembly using error prone tiles. In: Proceedings of the 10th International Workshop on DNA Computing, 62–75
Zurück zum Zitat Cook M, Rothemund PWK, Winfree E (2003) Self-assembled circuit patterns. In: Proceedings of the 9th International Workshop on DNA Based Computers, 91–107 Cook M, Rothemund PWK, Winfree E (2003) Self-assembled circuit patterns. In: Proceedings of the 9th International Workshop on DNA Based Computers, 91–107
Zurück zum Zitat Fujibayashi K, Murata S (2004) A method of error suppression for self-assembling DNA tiles. In: Proceedings of the 10th International Workshop on DNA Computing, 113–127 Fujibayashi K, Murata S (2004) A method of error suppression for self-assembling DNA tiles. In: Proceedings of the 10th International Workshop on DNA Computing, 113–127
Zurück zum Zitat He Y, Chen Y, Liu H, Ribbe AE, Mao C (2005) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127(35):12202–12203CrossRef He Y, Chen Y, Liu H, Ribbe AE, Mao C (2005) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127(35):12202–12203CrossRef
Zurück zum Zitat Jonoska N, Karl SA, Saito M (1999) Three dimensional DNA structures in computing. BioSystems 52:143–153CrossRef Jonoska N, Karl SA, Saito M (1999) Three dimensional DNA structures in computing. BioSystems 52:143–153CrossRef
Zurück zum Zitat Jonoska N, McColm GL (2005) A computational model for self-assembling flexible tiles. In: Proceedings of the 4th International Conference on Unconventional Computation, 142–156 Jonoska N, McColm GL (2005) A computational model for self-assembling flexible tiles. In: Proceedings of the 4th International Conference on Unconventional Computation, 142–156
Zurück zum Zitat Jonoska N, Sa-Ardyen P, Seeman NC (2003) Computation by self-assembly of DNA graphs. Genetic Program Evolvable Machines 4(2):123–137CrossRef Jonoska N, Sa-Ardyen P, Seeman NC (2003) Computation by self-assembly of DNA graphs. Genetic Program Evolvable Machines 4(2):123–137CrossRef
Zurück zum Zitat Kao MY, Schweller R (2006) Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithms, 571–580 Kao MY, Schweller R (2006) Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithms, 571–580
Zurück zum Zitat Klavins E (2004) Directed self-assembly using graph grammars. In: Proceedings of the 3rd Conference on Foundations of Nanoscience: self-assembled architectures and devices Klavins E (2004) Directed self-assembly using graph grammars. In: Proceedings of the 3rd Conference on Foundations of Nanoscience: self-assembled architectures and devices
Zurück zum Zitat Klavins E, Ghrist R, Lipsky D (2004) Graph grammars for self-assembling robotic systems. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 5:5293–5300 Klavins E, Ghrist R, Lipsky D (2004) Graph grammars for self-assembling robotic systems. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 5:5293–5300
Zurück zum Zitat LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122(9):1848–1860CrossRef LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122(9):1848–1860CrossRef
Zurück zum Zitat Lagoudakis MG, LaBean TH (1999) 2D DNA self-assembly for satisfiability. In: Proceedings of the 5th DIMACS International Meeting on DNA Based Computers, 139–152 Lagoudakis MG, LaBean TH (1999) 2D DNA self-assembly for satisfiability. In: Proceedings of the 5th DIMACS International Meeting on DNA Based Computers, 139–152
Zurück zum Zitat Malo J, Mitchell JC, Vnien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ (2005) Engineering a 2D protein-DNA crystal. Angewandte Chemie Int Edn 44(20):3057–3061CrossRef Malo J, Mitchell JC, Vnien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ (2005) Engineering a 2D protein-DNA crystal. Angewandte Chemie Int Edn 44(20):3057–3061CrossRef
Zurück zum Zitat Middleton AA (1999) Computational complexity of determining the barriers to interface motion in random systems. Phys Rev E 59(3):2571–2577CrossRef Middleton AA (1999) Computational complexity of determining the barriers to interface motion in random systems. Phys Rev E 59(3):2571–2577CrossRef
Zurück zum Zitat Plesník J (1979) The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf Process Lett 8(4):199–201CrossRef Plesník J (1979) The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf Process Lett 8(4):199–201CrossRef
Zurück zum Zitat Reif JH, Sahu S, Yin P (2004) Compact error-resilient computational DNA tiling assemblies. In: Proceedings of the 10th International Workshop on DNA Computing 293–307 Reif JH, Sahu S, Yin P (2004) Compact error-resilient computational DNA tiling assemblies. In: Proceedings of the 10th International Workshop on DNA Computing 293–307
Zurück zum Zitat Reif JH, Sahu S, Yin P (2005) Complexity of graph self-assembly in accretive systems and self-destructible systems. In: Proceedings of the 11th International Meeting on DNA Computing, 101–112 Reif JH, Sahu S, Yin P (2005) Complexity of graph self-assembly in accretive systems and self-destructible systems. In: Proceedings of the 11th International Meeting on DNA Computing, 101–112
Zurück zum Zitat Rothemund PWK (2000) Using lateral capillary forces to compute by self-assembly. Proc Nat Acad Sci USA 97(3):984–989CrossRef Rothemund PWK (2000) Using lateral capillary forces to compute by self-assembly. Proc Nat Acad Sci USA 97(3):984–989CrossRef
Zurück zum Zitat Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):2041–2053CrossRef Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):2041–2053CrossRef
Zurück zum Zitat Rothemund PWK, Winfree E (2000) The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32th Annual ACM Symposium on Theory of Computing, 459–468 Rothemund PWK, Winfree E (2000) The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32th Annual ACM Symposium on Theory of Computing, 459–468
Zurück zum Zitat Sa-Ardyen P, Jonoska N, Seeman NC (2004) Self-assembly of irregular graphs whose edges are DNA helix axes. J Am Chem Soc 126(21):6648–6657, ISSN 0002-7863CrossRef Sa-Ardyen P, Jonoska N, Seeman NC (2004) Self-assembly of irregular graphs whose edges are DNA helix axes. J Am Chem Soc 126(21):6648–6657, ISSN 0002-7863CrossRef
Zurück zum Zitat Sahu S, Yin P, Reif JH (2005) A self-assembly model of DNA tiles with time dependent glue strength. In: Proceedings of the 11th International Meeting on DNA Computing, 113–124 Sahu S, Yin P, Reif JH (2005) A self-assembly model of DNA tiles with time dependent glue strength. In: Proceedings of the 11th International Meeting on DNA Computing, 113–124
Zurück zum Zitat Schulman R, Lee S, Papadakis N, Winfree E (2003) One dimensional boundaries for DNA tile self-assembly. In: Proceedings of the 9th International Workshop on DNA Based Computers, 108–126 Schulman R, Lee S, Papadakis N, Winfree E (2003) One dimensional boundaries for DNA tile self-assembly. In: Proceedings of the 9th International Workshop on DNA Based Computers, 108–126
Zurück zum Zitat Schulman R, Winfree E (2004) Programmable control of nucleation for algorithmic self-assembly. In: Proceedings of the 10th International Workshop on DNA Computing, 319–328 Schulman R, Winfree E (2004) Programmable control of nucleation for algorithmic self-assembly. In: Proceedings of the 10th International Workshop on DNA Computing, 319–328
Zurück zum Zitat Soloveichik D, Winfree E (2004) Complexity of self-assembled shapes. In: Proceedings of the 10th International Workshop on DNA Computing, 344–354 Soloveichik D, Winfree E (2004) Complexity of self-assembled shapes. In: Proceedings of the 10th International Workshop on DNA Computing, 344–354
Zurück zum Zitat Soloveichik D, Winfree E (2005) Complexity of compact proofreading for selfassembled patterns. In: Proceedings of the 11th International Meeting on DNA Computing, 125–135 Soloveichik D, Winfree E (2005) Complexity of compact proofreading for selfassembled patterns. In: Proceedings of the 11th International Meeting on DNA Computing, 125–135
Zurück zum Zitat Wang H (1961) Proving theorems by pattern recognition II. Bell Syst Tech J 40:1–41 Wang H (1961) Proving theorems by pattern recognition II. Bell Syst Tech J 40:1–41
Zurück zum Zitat Winfree E, Bekbolatov R (2003) Proofreading tile sets: error correction for algorithmic self-assembly. In: Proceedings of the 9th International Workshop on DNA Based Computers, 126–144 Winfree E, Bekbolatov R (2003) Proofreading tile sets: error correction for algorithmic self-assembly. In: Proceedings of the 9th International Workshop on DNA Based Computers, 126–144
Zurück zum Zitat Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544CrossRef Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544CrossRef
Zurück zum Zitat Yan H, LaBean TH, Feng L, Reif JH (2003) Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA 100(14):8103–8108CrossRef Yan H, LaBean TH, Feng L, Reif JH (2003) Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA 100(14):8103–8108CrossRef
Metadaten
Titel
On the complexity of graph self-assembly in accretive systems
verfasst von
Stanislav Angelov
Sanjeev Khanna
Mirkó Visontai
Publikationsdatum
01.06.2008
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 2/2008
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-007-9048-6

Weitere Artikel der Ausgabe 2/2008

Natural Computing 2/2008 Zur Ausgabe