Skip to main content
Erschienen in: Neural Computing and Applications 11/2017

02.03.2016 | Original Article

On the efficiency of artificial neural networks for plastic analysis of planar frames in comparison with genetic algorithms and ant colony systems

verfasst von: M. Jahanshahi, E. Maleki, A. Ghiami

Erschienen in: Neural Computing and Applications | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The investigation of plastic behavior and determining the collapse load factors are the important ingredients of every kinematical method that is employed for plastic analysis and design of frames. The determination of collapse load factors depends on many effective parameters such as the length of bays, height of stories, types of loads and plastic moments of individual members. As the number of bays and stories increases, the parameters that have to be considered make the analysis a complex and tedious task. In such a situation, the role of algorithms that can help to compute an approximate collapse load factor in a reasonable time span becomes more and more crucial. Due to their interesting properties, heuristic algorithms are good candidates for this purpose. They have found many applications in computing the collapse load factors of low-rise frames. In this work, artificial neural networks, genetic algorithms and ant colony systems are used to obtain the collapse load factors of two-dimensional frames. The latter two algorithms have already been employed in the analysis of frames, and hence, they provide a good basis for comparing the results of a newly developed algorithm. The structure of genetic algorithm, in the form presented here, is the same as previous works; however, some minor amendments have been applied to ant colony systems. The performance of each algorithm is studied through numerical examples. The focus is mainly on the behavior of artificial neural networks in the determination of collapse load factors of two-dimensional frames compared with other two algorithms. The investigation of results shows that a careful selection of the structure of artificial neural networks can lead to an efficient algorithm that predicts the load factors with higher accuracy. The structure should be selected with the aim to reduce the error of the network for a given frame. Such an algorithm is especially useful in designing and analyzing frames whose geometry is known a priori.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baker J, Horn MR, Heyman J (1956) The steel skeleton plastic behavior and design. Cambridge University Press, Cambridge Baker J, Horn MR, Heyman J (1956) The steel skeleton plastic behavior and design. Cambridge University Press, Cambridge
2.
Zurück zum Zitat Neal BG, Symonds PS (1952) The rapid calculation of plastic collapse load for a framed structure. In: Proceedings of the institution of civil engineers, London, pp 58–71 Neal BG, Symonds PS (1952) The rapid calculation of plastic collapse load for a framed structure. In: Proceedings of the institution of civil engineers, London, pp 58–71
3.
Zurück zum Zitat Neal BG, Symonds PS (1952) The calculation of plastic loads for plane frames. In: International association for bridge and structural engineering, fourth congress, Cambridge and London Neal BG, Symonds PS (1952) The calculation of plastic loads for plane frames. In: International association for bridge and structural engineering, fourth congress, Cambridge and London
4.
Zurück zum Zitat Neal BG, Symonds PS (1951) The calculations of collapse loads for framed structures. J Inst Civ Eng 35:21–40CrossRef Neal BG, Symonds PS (1951) The calculations of collapse loads for framed structures. J Inst Civ Eng 35:21–40CrossRef
5.
Zurück zum Zitat Charnes A, Greenberg HJ (1959) Plastic collapse and linear programming. In: Summer meeting of the American mathematical society Charnes A, Greenberg HJ (1959) Plastic collapse and linear programming. In: Summer meeting of the American mathematical society
6.
Zurück zum Zitat Heyman J (1960) On the minimum weight design of a simple portal frame. Int J Mech Sci 1:121–134CrossRef Heyman J (1960) On the minimum weight design of a simple portal frame. Int J Mech Sci 1:121–134CrossRef
7.
Zurück zum Zitat Horne MR (1953) Determination of the shape of fixed ended beams for maximum economy according to the plastic theory. In: International association of bridge and structural engineering, fourth congress Horne MR (1953) Determination of the shape of fixed ended beams for maximum economy according to the plastic theory. In: International association of bridge and structural engineering, fourth congress
8.
Zurück zum Zitat Baker J, Heyman J (1969) Plastic design of frames, fundamentals, vol 1. Cambridge University Press, CambridgeCrossRefMATH Baker J, Heyman J (1969) Plastic design of frames, fundamentals, vol 1. Cambridge University Press, CambridgeCrossRefMATH
9.
Zurück zum Zitat Jennings A (1983) Adapting the simplex method to plastic design. In: Proceedings of instability and plastic collapse of steel structures, pp 164–173 Jennings A (1983) Adapting the simplex method to plastic design. In: Proceedings of instability and plastic collapse of steel structures, pp 164–173
10.
Zurück zum Zitat Watwood VB (1979) Mechanism generation for limit analysis of frames. J Struct Div ASCE 109:1–15 Watwood VB (1979) Mechanism generation for limit analysis of frames. J Struct Div ASCE 109:1–15
11.
Zurück zum Zitat Gorman MR (1981) Automated generation for limit analysis of frames. In: Proceedings of ASCE ST7, pp 1350–1354 Gorman MR (1981) Automated generation for limit analysis of frames. In: Proceedings of ASCE ST7, pp 1350–1354
12.
Zurück zum Zitat Thierauf G (1987) A method for optimal limit design of structures with alternative loads. Comput Meth Appl Mech Eng 16:134–149 Thierauf G (1987) A method for optimal limit design of structures with alternative loads. Comput Meth Appl Mech Eng 16:134–149
14.
Zurück zum Zitat Kaveh A, Khanlari K (2004) Collapse load factor of planar frames using a modified genetic algorithm. Commun Numer Methods Eng 20:911–925CrossRefMATH Kaveh A, Khanlari K (2004) Collapse load factor of planar frames using a modified genetic algorithm. Commun Numer Methods Eng 20:911–925CrossRefMATH
15.
Zurück zum Zitat Munro J (1977) Optimal plastic design of frames. In: Proceedings of the NATO advanced study in engineering plasticity by mathematical programming, pp 136–171 Munro J (1977) Optimal plastic design of frames. In: Proceedings of the NATO advanced study in engineering plasticity by mathematical programming, pp 136–171
16.
Zurück zum Zitat Livesley RK (1977) Linear programming in structural analysis and design. In: Gallagher RH et al (eds) Proceedings of optimum structural design. Wiley, New York Livesley RK (1977) Linear programming in structural analysis and design. In: Gallagher RH et al (eds) Proceedings of optimum structural design. Wiley, New York
17.
Zurück zum Zitat Best MJ (1977) Engineering plasticity by mathematical programming. In: Proceedings of the NATO advanced study in engineering plasticity by mathematical programming, pp 517–522 Best MJ (1977) Engineering plasticity by mathematical programming. In: Proceedings of the NATO advanced study in engineering plasticity by mathematical programming, pp 517–522
18.
Zurück zum Zitat Maier G, Pastor J, Ponter ARS, Weichert D (2003) Direct methods in limit and shakedown analysis. In: de Borst R, Mang HA (eds) Numerical and computational methods; In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, Elsevier-Pergamon, Amsterdam Maier G, Pastor J, Ponter ARS, Weichert D (2003) Direct methods in limit and shakedown analysis. In: de Borst R, Mang HA (eds) Numerical and computational methods; In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, Elsevier-Pergamon, Amsterdam
19.
Zurück zum Zitat Mahini MR, Moharrami H, Cocchetti G (2013) A dissipated energy maximization approach to elastic-perfectly plastic analysis of planar frames. Arch Mech 65(3):171–194MathSciNetMATH Mahini MR, Moharrami H, Cocchetti G (2013) A dissipated energy maximization approach to elastic-perfectly plastic analysis of planar frames. Arch Mech 65(3):171–194MathSciNetMATH
20.
Zurück zum Zitat Kaveh A, Jahanshahi M (2008) Plastic limit analysis of frames using ant colony systems. Comput Struct 86:1152–1163CrossRef Kaveh A, Jahanshahi M (2008) Plastic limit analysis of frames using ant colony systems. Comput Struct 86:1152–1163CrossRef
21.
Zurück zum Zitat Jahanshahi M, Pouraghajan M, Pouraghajan M (2013) Enhanced ACS algorithms for plastic analysis of planar frames. Comput Methods Civ Eng 4:65–82 Jahanshahi M, Pouraghajan M, Pouraghajan M (2013) Enhanced ACS algorithms for plastic analysis of planar frames. Comput Methods Civ Eng 4:65–82
22.
Zurück zum Zitat Cao M, Qiao P (2008) Neural network committee-based sensitivity analysis strategy for geotechnical engineering problems. Neural Comput Appl 17:509–519CrossRef Cao M, Qiao P (2008) Neural network committee-based sensitivity analysis strategy for geotechnical engineering problems. Neural Comput Appl 17:509–519CrossRef
23.
Zurück zum Zitat Cao M, Qiao P, Ren Q (2009) Improved hybrid wavelet neural network methodology for time-varying behavior prediction of engineering structures. Neural Comput Appl 18:821–832CrossRef Cao M, Qiao P, Ren Q (2009) Improved hybrid wavelet neural network methodology for time-varying behavior prediction of engineering structures. Neural Comput Appl 18:821–832CrossRef
24.
Zurück zum Zitat Aydin K, Kisi O (2012) Damage detection in Timoshenko beam structures by multilayer perceptron and radial basis function networks. Neural Comput Appl 24:583–597CrossRef Aydin K, Kisi O (2012) Damage detection in Timoshenko beam structures by multilayer perceptron and radial basis function networks. Neural Comput Appl 24:583–597CrossRef
25.
Zurück zum Zitat Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, USAMATH Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, USAMATH
26.
Zurück zum Zitat Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, USA Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, USA
27.
Zurück zum Zitat Kaveh A, Jahanshahi M (2004) Plastic analysis of planar frames using kinematic method and genetic algorithm. Asian J Civ Eng 5:145–160 Kaveh A, Jahanshahi M (2004) Plastic analysis of planar frames using kinematic method and genetic algorithm. Asian J Civ Eng 5:145–160
28.
Zurück zum Zitat Kaveh A, Jahanshahi M, Khanzadi M (2008) Plastic analysis of frames using genetic and ant colony algorithms. Asian J Civ Eng 9:229–249 Kaveh A, Jahanshahi M, Khanzadi M (2008) Plastic analysis of frames using genetic and ant colony algorithms. Asian J Civ Eng 9:229–249
29.
Zurück zum Zitat Kohama Y, Takada T, Kozawa N, Miyamura A (1997) Collapse analysis of rigid frame by genetic algorithm. In: Proceedings of the computer aided optimum design of structures, pp 193–202 Kohama Y, Takada T, Kozawa N, Miyamura A (1997) Collapse analysis of rigid frame by genetic algorithm. In: Proceedings of the computer aided optimum design of structures, pp 193–202
30.
Zurück zum Zitat Hofmeyer H, Davila Delgado JM (2015) Co-evolutionary and genetic algorithm based building spatial and structural design. AI EDAM 29:351–370 Hofmeyer H, Davila Delgado JM (2015) Co-evolutionary and genetic algorithm based building spatial and structural design. AI EDAM 29:351–370
31.
Zurück zum Zitat Hofmeyer H, Davila Delgado JM (2013) Automated design studies: topology versus one-step evolutionary structural optimisation. Adv Eng Inform 27(4):427–443CrossRef Hofmeyer H, Davila Delgado JM (2013) Automated design studies: topology versus one-step evolutionary structural optimisation. Adv Eng Inform 27(4):427–443CrossRef
32.
Zurück zum Zitat Rafiq MY (2000) A design support tool for optimum building concept generation using a structured genetic algorithm. Int J Comput Integr Des Constr 2(2):92–102MathSciNet Rafiq MY (2000) A design support tool for optimum building concept generation using a structured genetic algorithm. Int J Comput Integr Des Constr 2(2):92–102MathSciNet
33.
Zurück zum Zitat Turrin M, Von Buelow P, Stouffs R (2011) Design explorations of performance driven geometry in architectural design using parametric modelling and genetic algorithms. Adv Eng Inform 25(4):656–675CrossRef Turrin M, Von Buelow P, Stouffs R (2011) Design explorations of performance driven geometry in architectural design using parametric modelling and genetic algorithms. Adv Eng Inform 25(4):656–675CrossRef
34.
Zurück zum Zitat Aminian P, Javid MR, Asghari A, Gandomi AH, Arab Esmaeili M (2011) A robust predictive model for base shear of steel frame structures using a hybrid genetic programming and simulated annealing method. Neural Comput Appl 20:1321–1332CrossRef Aminian P, Javid MR, Asghari A, Gandomi AH, Arab Esmaeili M (2011) A robust predictive model for base shear of steel frame structures using a hybrid genetic programming and simulated annealing method. Neural Comput Appl 20:1321–1332CrossRef
35.
Zurück zum Zitat Aminian P, Niroomand H, Gandomi AH, Alavi AH, Arab Esmaeili M (2013) New design equations for assessment of load carrying capacity of castellated steel beams: a machine learning approach. Neural Comput Appl 23:119–131CrossRef Aminian P, Niroomand H, Gandomi AH, Alavi AH, Arab Esmaeili M (2013) New design equations for assessment of load carrying capacity of castellated steel beams: a machine learning approach. Neural Comput Appl 23:119–131CrossRef
36.
Zurück zum Zitat Kaveh A, Bakhshpoori M, Kalateh-Ahani M (2013) Optimum plastic analysis of frames using ant colony system and charged system search algorithms. Sci Iran Trans A 20:414–421 Kaveh A, Bakhshpoori M, Kalateh-Ahani M (2013) Optimum plastic analysis of frames using ant colony system and charged system search algorithms. Sci Iran Trans A 20:414–421
37.
Zurück zum Zitat Kaveh A, Jahanshahi M (2010) An ACS algorithm for the formation of subminimal-suboptimal cycle bases. In: Proceedings of the fourth international conference on structural engineering, mechanics and computations, Cape Town, South Africa Kaveh A, Jahanshahi M (2010) An ACS algorithm for the formation of subminimal-suboptimal cycle bases. In: Proceedings of the fourth international conference on structural engineering, mechanics and computations, Cape Town, South Africa
38.
Zurück zum Zitat Chen Y, Feng J, Wu Y (2012) Prestress stability of pin-jointed assemblies using ant colony systems. Mech Res Commun 41:30–36CrossRef Chen Y, Feng J, Wu Y (2012) Prestress stability of pin-jointed assemblies using ant colony systems. Mech Res Commun 41:30–36CrossRef
39.
Zurück zum Zitat Chen Y, Feng J, Wu Y (2012) Novel form-finding of tensegrity structures using ant colony systems. J Mech Robot T ASME 4:031001CrossRef Chen Y, Feng J, Wu Y (2012) Novel form-finding of tensegrity structures using ant colony systems. J Mech Robot T ASME 4:031001CrossRef
40.
Zurück zum Zitat Forcael E, González V, Orozco F, Vargas S, Pantoja A, Moscoso P (2014) Ant colony optimization model for tsunamis evacuation routes. Comput Aided Civ Inf 29:723–737CrossRef Forcael E, González V, Orozco F, Vargas S, Pantoja A, Moscoso P (2014) Ant colony optimization model for tsunamis evacuation routes. Comput Aided Civ Inf 29:723–737CrossRef
41.
Zurück zum Zitat Talatahari S, Kheirollahi M, Farahmandpour C, Gandomi AH (2013) A multi-stage particle swarm for optimum design of truss structures. Neural Comput Appl 23:1297–1309CrossRef Talatahari S, Kheirollahi M, Farahmandpour C, Gandomi AH (2013) A multi-stage particle swarm for optimum design of truss structures. Neural Comput Appl 23:1297–1309CrossRef
42.
Zurück zum Zitat Pellegrino S, Calladine CR (1991) Structural computation of an assembly of rigid links, frictionless joints, and elastic springs. J Appl Mech ASME 58:749–753CrossRef Pellegrino S, Calladine CR (1991) Structural computation of an assembly of rigid links, frictionless joints, and elastic springs. J Appl Mech ASME 58:749–753CrossRef
43.
Zurück zum Zitat Deeks AJ (1996) Automatic computation of plastic collapse loads for frames. Comput Struct 60:91–102CrossRefMATH Deeks AJ (1996) Automatic computation of plastic collapse loads for frames. Comput Struct 60:91–102CrossRefMATH
44.
Zurück zum Zitat Chen S-C, Lin S-W, Tseng T-Y, Lin H-C (2006) Optimization of back-propagation network using simulated annealing approach. In: IEEE international conference of systems, man and cybernetics, pp 2819–2824 Chen S-C, Lin S-W, Tseng T-Y, Lin H-C (2006) Optimization of back-propagation network using simulated annealing approach. In: IEEE international conference of systems, man and cybernetics, pp 2819–2824
45.
Zurück zum Zitat Karlik B, Aydin S, Pakdemirli M (1998) Vibrations of beam-mass systems using artificial neural networks. Comput Struct 69:339–347CrossRefMATH Karlik B, Aydin S, Pakdemirli M (1998) Vibrations of beam-mass systems using artificial neural networks. Comput Struct 69:339–347CrossRefMATH
46.
Zurück zum Zitat Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, New JerseyMATH Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, New JerseyMATH
47.
Zurück zum Zitat Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366CrossRef Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366CrossRef
48.
Zurück zum Zitat de Lima LRO, da S Vellasco PCG, de Andrade SAL, da Silva JGS, Vellasco MMBR (2005) Neural networks assessment of beam-to-column joints. J Braz Soc Mech Sci Eng 27:314–324CrossRef de Lima LRO, da S Vellasco PCG, de Andrade SAL, da Silva JGS, Vellasco MMBR (2005) Neural networks assessment of beam-to-column joints. J Braz Soc Mech Sci Eng 27:314–324CrossRef
49.
Zurück zum Zitat Niyati M, Moghadam AME (2009) Estimation of products final price using bayesian analysis generalized poisson model and artificial neural networks. J Ind Eng 2:55–60 Niyati M, Moghadam AME (2009) Estimation of products final price using bayesian analysis generalized poisson model and artificial neural networks. J Ind Eng 2:55–60
50.
Zurück zum Zitat Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperative agents. IEEE Trans Syst Man Cybern Part B 26:1–13CrossRef Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperative agents. IEEE Trans Syst Man Cybern Part B 26:1–13CrossRef
51.
Zurück zum Zitat Dorigo M, Stutzle T (2005) Ant colony optimization. Prentice Hall, New YorkMATH Dorigo M, Stutzle T (2005) Ant colony optimization. Prentice Hall, New YorkMATH
52.
Zurück zum Zitat Kaveh A (2004) Structural mechanics: graph and matrix methods. Research Studies Press, LondonMATH Kaveh A (2004) Structural mechanics: graph and matrix methods. Research Studies Press, LondonMATH
53.
Zurück zum Zitat Kaveh A, Jahanshahi M (2006) Plastic design of frames using heuristic algorithms. In: Proceedings of the eight international conference on computational structures technology, Las Palmas, Spain, pp 239–240 Kaveh A, Jahanshahi M (2006) Plastic design of frames using heuristic algorithms. In: Proceedings of the eight international conference on computational structures technology, Las Palmas, Spain, pp 239–240
Metadaten
Titel
On the efficiency of artificial neural networks for plastic analysis of planar frames in comparison with genetic algorithms and ant colony systems
verfasst von
M. Jahanshahi
E. Maleki
A. Ghiami
Publikationsdatum
02.03.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 11/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2228-5

Weitere Artikel der Ausgabe 11/2017

Neural Computing and Applications 11/2017 Zur Ausgabe

Premium Partner