Skip to main content
Erschienen in: Neural Computing and Applications 11/2017

16.03.2016 | Original Article

Prescription of rhythmic patterns for legged locomotion

verfasst von: Zhijun Yang, Daqiang Zhang, Marlon V. Rocha, Priscila M. V. Lima, Mehmet Karamanoglu, Felipe M. G. França

Erschienen in: Neural Computing and Applications | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the engine behind many life phenomena, motor information generated by the central nervous system plays a critical role in the activities of all animals. In this work, a novel, macroscopic and model-independent approach is presented for creating different patterns of coupled neural oscillations observed in biological central pattern generators (CPG) during the control of legged locomotion. Based on a simple distributed state machine, which consists of two nodes sharing pre-defined number of resources, the concept of oscillatory building blocks (OBBs) is summarised for the production of elaborated rhythmic patterns. Various types of OBBs can be designed to construct a motion joint of one degree of freedom with adjustable oscillatory frequencies and duty cycles. An OBB network can thus be potentially built to generate a full range of locomotion patterns of a legged animal with controlled transitions between different rhythmic patterns. It is shown that gait pattern transition can be achieved by simply changing a single parameter of an OBB module. Essentially, this simple mechanism allows for the consolidation of a methodology for the construction of artificial CPG architectures behaving as an asymmetric Hopfield neural network. Moreover, the proposed CPG model introduced here is amenable to analogue and/or digital circuit integration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93(3):1127–1135CrossRef Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93(3):1127–1135CrossRef
2.
Zurück zum Zitat Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–766CrossRef Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–766CrossRef
3.
Zurück zum Zitat Cruse H, Dürr V, Schilling M, Schmitz J (2009) Principles of insect locomotion. In: Arena P, Patanè L (eds) Spatial temporal patterns for action-oriented perception in roving robots, cognitive systems monographs. Springer, Berlin, pp 43–96CrossRef Cruse H, Dürr V, Schilling M, Schmitz J (2009) Principles of insect locomotion. In: Arena P, Patanè L (eds) Spatial temporal patterns for action-oriented perception in roving robots, cognitive systems monographs. Springer, Berlin, pp 43–96CrossRef
4.
5.
Zurück zum Zitat Fuchs E, Holmes P, Kiemel T, Ayali A (2011) Inersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits. Front Neural Circuits 4:125. doi:10.3389/fncir.2010.00125 Fuchs E, Holmes P, Kiemel T, Ayali A (2011) Inersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits. Front Neural Circuits 4:125. doi:10.​3389/​fncir.​2010.​00125
6.
Zurück zum Zitat Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55:247–304 Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55:247–304
7.
Zurück zum Zitat Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228:143–149CrossRef Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228:143–149CrossRef
8.
Zurück zum Zitat Stein PSG (1978) Motor systems with specific reference to the control of locomotion. Annu Rev Neurosci 1:61–81CrossRef Stein PSG (1978) Motor systems with specific reference to the control of locomotion. Annu Rev Neurosci 1:61–81CrossRef
9.
Zurück zum Zitat Schöner G, Kelso JA (1988) Dynamic pattern generation in behavioural and neural systems. Science 239:1513–1520CrossRef Schöner G, Kelso JA (1988) Dynamic pattern generation in behavioural and neural systems. Science 239:1513–1520CrossRef
10.
Zurück zum Zitat Alexander RM (1989) Optimization and gaits in the locomotion of vertebrates. Physiol Rev 69:1199–1227 Alexander RM (1989) Optimization and gaits in the locomotion of vertebrates. Physiol Rev 69:1199–1227
11.
Zurück zum Zitat Cohen AH (1992) The role of heterarchical control in the evolution of central pattern generators. Brain Behav Evol 40:112–124CrossRef Cohen AH (1992) The role of heterarchical control in the evolution of central pattern generators. Brain Behav Evol 40:112–124CrossRef
12.
Zurück zum Zitat Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297CrossRef Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297CrossRef
13.
Zurück zum Zitat Latash ML (1993) Control of human movement. Human Kinetics Publishers, Champaign Latash ML (1993) Control of human movement. Human Kinetics Publishers, Champaign
14.
Zurück zum Zitat McGeer T (1993) Dynamics and control of bipedal locomotion. J Theor Biol 163:277–314CrossRef McGeer T (1993) Dynamics and control of bipedal locomotion. J Theor Biol 163:277–314CrossRef
15.
Zurück zum Zitat Ryckebusch S, Wehr M, Laurent G (1994) Distinct rhythmic locomotor patterns can be generated by a simple adaptive neural circuit: biology, simulation, and VLSI implementation. J Comput Neurosci 1(4):339–358CrossRef Ryckebusch S, Wehr M, Laurent G (1994) Distinct rhythmic locomotor patterns can be generated by a simple adaptive neural circuit: biology, simulation, and VLSI implementation. J Comput Neurosci 1(4):339–358CrossRef
16.
Zurück zum Zitat Kiehn O, Butt SJ (2003) Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog Neurobiol 70:347–361CrossRef Kiehn O, Butt SJ (2003) Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog Neurobiol 70:347–361CrossRef
17.
Zurück zum Zitat Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717 Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717
18.
Zurück zum Zitat Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) (1997) Neurons, networks, and motor behavior. MIT Press, Cambridge Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) (1997) Neurons, networks, and motor behavior. MIT Press, Cambridge
19.
Zurück zum Zitat Schmidt RA, Lee TD (1999) Motor control and learning: a behavioral emphasis. Human Kinetics Publishers, Champaign Schmidt RA, Lee TD (1999) Motor control and learning: a behavioral emphasis. Human Kinetics Publishers, Champaign
20.
Zurück zum Zitat Pearson K, Gordon J (2000) Locomotion. In: Kandel E, Schwartz J, Jessel T (eds) Principles of neural science. McGraw-Hill Companies Inc, New York, pp 737–755 Pearson K, Gordon J (2000) Locomotion. In: Kandel E, Schwartz J, Jessel T (eds) Principles of neural science. McGraw-Hill Companies Inc, New York, pp 737–755
21.
Zurück zum Zitat Magill RA (2001) Motor learning: concepts and applications. McGraw-Hill Companies Inc, New York Magill RA (2001) Motor learning: concepts and applications. McGraw-Hill Companies Inc, New York
22.
Zurück zum Zitat Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586CrossRef Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586CrossRef
23.
Zurück zum Zitat Jing J, Cropper EC, Hurwitz I, Weiss KR (2004) The construction of movement with behavior-specific and behavior-independent modules. J Neurosci 24:6315–6325CrossRef Jing J, Cropper EC, Hurwitz I, Weiss KR (2004) The construction of movement with behavior-specific and behavior-independent modules. J Neurosci 24:6315–6325CrossRef
24.
Zurück zum Zitat Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FE (2005) Microcircuits in action—from CPGs to neocortex. Trends Neurosci 28:525–533CrossRef Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FE (2005) Microcircuits in action—from CPGs to neocortex. Trends Neurosci 28:525–533CrossRef
25.
Zurück zum Zitat Norris BJ, Weaver AL, Morris LG, Wenning A, García PA, Calabrese RL (2006) A central pattern generator producing alternative outputs: temporal pattern of premotor activity. J Neurophysiol 96:309–326CrossRef Norris BJ, Weaver AL, Morris LG, Wenning A, García PA, Calabrese RL (2006) A central pattern generator producing alternative outputs: temporal pattern of premotor activity. J Neurophysiol 96:309–326CrossRef
26.
Zurück zum Zitat Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84–97CrossRef Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84–97CrossRef
27.
Zurück zum Zitat Hatsopoulos N (1996) Coupling the neural and physical dynamics in rhythmic movements. Neural Comput 8:567–581CrossRef Hatsopoulos N (1996) Coupling the neural and physical dynamics in rhythmic movements. Neural Comput 8:567–581CrossRef
28.
Zurück zum Zitat Rinzel J, Terman D, Wang X, Ermentrout B (1998) Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279:1351–1355CrossRef Rinzel J, Terman D, Wang X, Ermentrout B (1998) Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279:1351–1355CrossRef
29.
Zurück zum Zitat Ermentrout GB, Chow CC (2002) Modeling neural oscillations. Physiol Behav 77:629–633CrossRef Ermentrout GB, Chow CC (2002) Modeling neural oscillations. Physiol Behav 77:629–633CrossRef
30.
Zurück zum Zitat Ghigliazza RM, Holmes P (2004) A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J Appl Dyn Syst 3(4):671–700MathSciNetCrossRefMATH Ghigliazza RM, Holmes P (2004) A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J Appl Dyn Syst 3(4):671–700MathSciNetCrossRefMATH
31.
Zurück zum Zitat Katz PS, Sakurai A, Clemens S, Davis D (2004) Cycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons. J Neurophysiol 92:1904–1917CrossRef Katz PS, Sakurai A, Clemens S, Davis D (2004) Cycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons. J Neurophysiol 92:1904–1917CrossRef
32.
Zurück zum Zitat Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699CrossRef Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699CrossRef
33.
Zurück zum Zitat Jones SR, Kopell N (2006) Local network parameters can affect inter-network phase lags in central pattern generators. J Math Biol 52(1):115–140MathSciNetCrossRefMATH Jones SR, Kopell N (2006) Local network parameters can affect inter-network phase lags in central pattern generators. J Math Biol 52(1):115–140MathSciNetCrossRefMATH
34.
Zurück zum Zitat Daun-Gruhn S, Büschges A (2011) From neuron to behavior: dynamic equation-based prediction of biological processes in motor control. Biol Cybern 105:71–88CrossRef Daun-Gruhn S, Büschges A (2011) From neuron to behavior: dynamic equation-based prediction of biological processes in motor control. Biol Cybern 105:71–88CrossRef
35.
Zurück zum Zitat Olree KS, Vaughan CL (1995) Fundamental patterns of bilateral muscle activity in human locomotion. Biol Cybern 73(5):409–414CrossRef Olree KS, Vaughan CL (1995) Fundamental patterns of bilateral muscle activity in human locomotion. Biol Cybern 73(5):409–414CrossRef
36.
Zurück zum Zitat Prentice SD, Patla AE, Stacey DA (1998) Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds. Exp Brain Res 123(4):474–480CrossRef Prentice SD, Patla AE, Stacey DA (1998) Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds. Exp Brain Res 123(4):474–480CrossRef
37.
Zurück zum Zitat Delcomyn F (1999) Walking robots and the central and peripheral control of locomotion in insects. Auton Robots 7(3):259–270CrossRef Delcomyn F (1999) Walking robots and the central and peripheral control of locomotion in insects. Auton Robots 7(3):259–270CrossRef
38.
Zurück zum Zitat Ijspeert AJ, Kodjabachian J (1999) Evolution and development of a central pattern generator for the swimming of a Lamprey. Artif Life 5(3):247–269CrossRef Ijspeert AJ, Kodjabachian J (1999) Evolution and development of a central pattern generator for the swimming of a Lamprey. Artif Life 5(3):247–269CrossRef
39.
Zurück zum Zitat Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84(5):331–348MathSciNetCrossRef Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84(5):331–348MathSciNetCrossRef
40.
Zurück zum Zitat McCrea DA (2001) Spinal circuitry of sensorimotor control of locomotion. J Physiol 533(1):41–50CrossRef McCrea DA (2001) Spinal circuitry of sensorimotor control of locomotion. J Physiol 533(1):41–50CrossRef
41.
Zurück zum Zitat Butt SJ, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963CrossRef Butt SJ, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963CrossRef
42.
Zurück zum Zitat Cangiano L, Grillner S (2005) Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord. J Neurosci 25:923–935CrossRef Cangiano L, Grillner S (2005) Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord. J Neurosci 25:923–935CrossRef
43.
Zurück zum Zitat Stein PSG (2005) Neuronal control of turtle hindlimb motor rhythms. J Comp Physiol A 191(3):213–229CrossRef Stein PSG (2005) Neuronal control of turtle hindlimb motor rhythms. J Comp Physiol A 191(3):213–229CrossRef
44.
Zurück zum Zitat Bucher D, Prinz AA, Marder E (2005) Animal-to-animal variability in motor pattern production in adults and during growth. J Neurosci 25:1611–1619CrossRef Bucher D, Prinz AA, Marder E (2005) Animal-to-animal variability in motor pattern production in adults and during growth. J Neurosci 25:1611–1619CrossRef
46.
Zurück zum Zitat Raibert MH (1986) Legged robots that balance. MIT Press, CambridgeMATH Raibert MH (1986) Legged robots that balance. MIT Press, CambridgeMATH
47.
Zurück zum Zitat Arena P (2000) The central pattern generator: a paradigm for artificial locomotion. Soft Comput 4(4):251–266CrossRefMATH Arena P (2000) The central pattern generator: a paradigm for artificial locomotion. Soft Comput 4(4):251–266CrossRefMATH
49.
Zurück zum Zitat Webb B (2002) Robots in invertebrate neuroscience. Nature 417:359–363CrossRef Webb B (2002) Robots in invertebrate neuroscience. Nature 417:359–363CrossRef
51.
Zurück zum Zitat Nusbaum MP, Beenhakker MP (2002) A small-systems approach to motor pattern generation. Nature 417:343–350CrossRef Nusbaum MP, Beenhakker MP (2002) A small-systems approach to motor pattern generation. Nature 417:343–350CrossRef
52.
Zurück zum Zitat Lewis MA, Etienne-Cummings R, Hartmann MJ, Xu ZR, Cohen AH (2003) An in silico central pattern generator: silicon oscillator, coupling, entrainment, and physical computation. Biol Cybern 88(2):137–151CrossRefMATH Lewis MA, Etienne-Cummings R, Hartmann MJ, Xu ZR, Cohen AH (2003) An in silico central pattern generator: silicon oscillator, coupling, entrainment, and physical computation. Biol Cybern 88(2):137–151CrossRefMATH
53.
Zurück zum Zitat Nakada K, Asai T, Amemiya Y (2003) An analog CMOS central pattern generator for interlimb coordination in quadruped. IEEE Trans Neural Netw 14(5):1356–1365CrossRef Nakada K, Asai T, Amemiya Y (2003) An analog CMOS central pattern generator for interlimb coordination in quadruped. IEEE Trans Neural Netw 14(5):1356–1365CrossRef
54.
Zurück zum Zitat Still S, Hepp K, Douglas RJ (2006) Neuromorphic walking gait control. IEEE Trans Neural Netw 17(2):496–508CrossRef Still S, Hepp K, Douglas RJ (2006) Neuromorphic walking gait control. IEEE Trans Neural Netw 17(2):496–508CrossRef
55.
Zurück zum Zitat Vogelstein RJ, Tenore F, Etienne-Cummings R, Lewis MA, Cohen AH (2006) Dynamic control of the central pattern generator for locomotion. Biol Cybern 95(6):555–566CrossRefMATH Vogelstein RJ, Tenore F, Etienne-Cummings R, Lewis MA, Cohen AH (2006) Dynamic control of the central pattern generator for locomotion. Biol Cybern 95(6):555–566CrossRefMATH
56.
Zurück zum Zitat Zhang X, Zheng H, Chen L (2006) Gait transition for a quadrupedal robot by replacing the gait matrix of a central pattern generator model. Adv Robot 20(7):849–866CrossRef Zhang X, Zheng H, Chen L (2006) Gait transition for a quadrupedal robot by replacing the gait matrix of a central pattern generator model. Adv Robot 20(7):849–866CrossRef
57.
Zurück zum Zitat Yang Z, Huo J, Monteiro H, Murray A (2009). Sensor-driven neuromorphic walking leg control. In: IEEE international symposium on circuits and systems (ISCAS), pp 2137–2140 Yang Z, Huo J, Monteiro H, Murray A (2009). Sensor-driven neuromorphic walking leg control. In: IEEE international symposium on circuits and systems (ISCAS), pp 2137–2140
58.
Zurück zum Zitat Yang Z, Cameron K, Lewinger W, Webb B, Murray AF (2012) Neuromorphic control of stepping pattern generation: a dynamic model with analog circuit implementation. IEEE Trans Neural Net Learn Syst 23(3):373–384CrossRef Yang Z, Cameron K, Lewinger W, Webb B, Murray AF (2012) Neuromorphic control of stepping pattern generation: a dynamic model with analog circuit implementation. IEEE Trans Neural Net Learn Syst 23(3):373–384CrossRef
59.
Zurück zum Zitat Twickel AV, Hild M, Siedel T, Patel V, Pasemann F (2012) Neural control of a modular multi-legged walking machine: simulation and hardware. Robotics Auton Syst 60(2):227–241CrossRef Twickel AV, Hild M, Siedel T, Patel V, Pasemann F (2012) Neural control of a modular multi-legged walking machine: simulation and hardware. Robotics Auton Syst 60(2):227–241CrossRef
60.
Zurück zum Zitat Barron-Zambrano JH, Torres-Huitzil C (2013) FPGA implementation of a configurable neuromorphic CPG-based locomotion controller. Neural Netw 45:50–61CrossRef Barron-Zambrano JH, Torres-Huitzil C (2013) FPGA implementation of a configurable neuromorphic CPG-based locomotion controller. Neural Netw 45:50–61CrossRef
61.
Zurück zum Zitat Harris-Warrick RM (2011) Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21:1–8CrossRef Harris-Warrick RM (2011) Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21:1–8CrossRef
62.
Zurück zum Zitat Bay JS, Hemami H (1987) Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Trans Biomed Eng 34:297–306CrossRef Bay JS, Hemami H (1987) Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Trans Biomed Eng 34:297–306CrossRef
63.
Zurück zum Zitat Linkens DA, Taylor Y, Duthie HL (1976) Mathematical modeling of the colorectal myoelectrical activity in humans. IEEE Trans Biomed Eng 23:101–110CrossRef Linkens DA, Taylor Y, Duthie HL (1976) Mathematical modeling of the colorectal myoelectrical activity in humans. IEEE Trans Biomed Eng 23:101–110CrossRef
64.
Zurück zum Zitat Tsutsumi K, Matsumoto H (1984) A synaptic modification algorithm in consideration of the generation of rhythmic oscillation in a ring neural network. Biol Cybern 50:419–430CrossRef Tsutsumi K, Matsumoto H (1984) A synaptic modification algorithm in consideration of the generation of rhythmic oscillation in a ring neural network. Biol Cybern 50:419–430CrossRef
65.
Zurück zum Zitat Taga G, Yamaguchi Y, Shimizu H (1991) Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol Cybern 65:147–159CrossRefMATH Taga G, Yamaguchi Y, Shimizu H (1991) Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol Cybern 65:147–159CrossRefMATH
66.
Zurück zum Zitat Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion—I. Emergence of basic gait. Biol Cybern 73:97–111CrossRefMATH Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion—I. Emergence of basic gait. Biol Cybern 73:97–111CrossRefMATH
68.
Zurück zum Zitat Schöner G, Jiang WY, Kelso JAS (1990) A synergetic theory of quadrupedal gaits and gait transitions. J Theor Biol 142:359–391CrossRef Schöner G, Jiang WY, Kelso JAS (1990) A synergetic theory of quadrupedal gaits and gait transitions. J Theor Biol 142:359–391CrossRef
69.
Zurück zum Zitat Collins JJ, Richmond SA (1994) Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern 71:375–385CrossRefMATH Collins JJ, Richmond SA (1994) Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern 71:375–385CrossRefMATH
70.
71.
Zurück zum Zitat Kimura H, Fukuoka Y, Cohen AH (2007) Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robot Res 26:475–490CrossRef Kimura H, Fukuoka Y, Cohen AH (2007) Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robot Res 26:475–490CrossRef
72.
Zurück zum Zitat Collins JJ (1995) Gait transitions. In: Arbib MA (ed) The handbook of brain theory and neural networks. The MIT Press, New York, pp 420–423 Collins JJ (1995) Gait transitions. In: Arbib MA (ed) The handbook of brain theory and neural networks. The MIT Press, New York, pp 420–423
73.
Zurück zum Zitat Yang Z, França FMG (1998) Generating arbitrary rhythmic patterns with purely inhibitory neural networks. In: Proceedings of European symposium on artificial neural networks (ESANN), pp 53–58 Yang Z, França FMG (1998) Generating arbitrary rhythmic patterns with purely inhibitory neural networks. In: Proceedings of European symposium on artificial neural networks (ESANN), pp 53–58
74.
Zurück zum Zitat França FMG, Yang Z (2000) Building artificial CPGs with asymmetric Hopfield networks. In: Proceedings of international joint conference on neural networks, Como, Italy, vol IV, pp 290–295 França FMG, Yang Z (2000) Building artificial CPGs with asymmetric Hopfield networks. In: Proceedings of international joint conference on neural networks, Como, Italy, vol IV, pp 290–295
75.
Zurück zum Zitat Yang Z, França FMG (2003) A generalized locomotion CPG architecture based on oscillatory building blocks. Biol Cybern 89(1):34–42MATH Yang Z, França FMG (2003) A generalized locomotion CPG architecture based on oscillatory building blocks. Biol Cybern 89(1):34–42MATH
76.
Zurück zum Zitat Barbosa VC, Gafni E (1989) Concurrency in heavily loaded neighbourhood-constrained systems. ACM Trans Program Lang Syst 11(4):562–584CrossRef Barbosa VC, Gafni E (1989) Concurrency in heavily loaded neighbourhood-constrained systems. ACM Trans Program Lang Syst 11(4):562–584CrossRef
77.
Zurück zum Zitat Barbosa VC (1996) An introduction to distributed algorithms. The MIT Press, Cambridge Barbosa VC (1996) An introduction to distributed algorithms. The MIT Press, Cambridge
78.
Zurück zum Zitat França FMG (1994) Neural networks as neighbourhood-constrained systems, unpublished doctoral dissertation. Imperial College, London França FMG (1994) Neural networks as neighbourhood-constrained systems, unpublished doctoral dissertation. Imperial College, London
79.
80.
Zurück zum Zitat Kuffler SW, Eyzaguirre C (1955) Synaptic inhibition in an isolated nerve cell. J Gen Physiol 39:155–184CrossRef Kuffler SW, Eyzaguirre C (1955) Synaptic inhibition in an isolated nerve cell. J Gen Physiol 39:155–184CrossRef
81.
Zurück zum Zitat Perkel DH (1976) A computer program for simulating a network of interacting neurons: I. Organization and physiological assumptions. Comput Biomed Res 9:31–43CrossRef Perkel DH (1976) A computer program for simulating a network of interacting neurons: I. Organization and physiological assumptions. Comput Biomed Res 9:31–43CrossRef
82.
Zurück zum Zitat Roberts A, Tunstall MJ (1990) Mutual re-excitation with post-inhibitory rebound: a simulation study on the mechanisms for locomotor rhythm generation in the spinal cord of Xenopus embryos. Eur J Neurosci 2:11–23CrossRef Roberts A, Tunstall MJ (1990) Mutual re-excitation with post-inhibitory rebound: a simulation study on the mechanisms for locomotor rhythm generation in the spinal cord of Xenopus embryos. Eur J Neurosci 2:11–23CrossRef
83.
Zurück zum Zitat Hopfield JJ (1982) Neural networks and physical systems with emergent collective properties. Proc Natl Acad Sci USA 79:2554–2558MathSciNetCrossRefMATH Hopfield JJ (1982) Neural networks and physical systems with emergent collective properties. Proc Natl Acad Sci USA 79:2554–2558MathSciNetCrossRefMATH
84.
Zurück zum Zitat Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233:625–632CrossRefMATH Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233:625–632CrossRefMATH
85.
Zurück zum Zitat Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biol Cybern 52:141–152MATH Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biol Cybern 52:141–152MATH
86.
Zurück zum Zitat Chen W, Ren G, Zhang J, Wang J (2012) Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm. J Intell Robot Syst 67:255–270CrossRefMATH Chen W, Ren G, Zhang J, Wang J (2012) Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm. J Intell Robot Syst 67:255–270CrossRefMATH
87.
Zurück zum Zitat Getting PA (1989) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12:185–204CrossRef Getting PA (1989) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12:185–204CrossRef
88.
Zurück zum Zitat Soffe SR, Roberts A, Li WC (2009) Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control. J Physiol 587(20):4829–4844CrossRef Soffe SR, Roberts A, Li WC (2009) Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control. J Physiol 587(20):4829–4844CrossRef
90.
91.
92.
Zurück zum Zitat Patrick SK, Noah JA, Yang JF (2009) Interlimb coordination in human crawling reveals similarities in development and neural control with quadrupeds. J Neurophysiol 101(2):603–613CrossRef Patrick SK, Noah JA, Yang JF (2009) Interlimb coordination in human crawling reveals similarities in development and neural control with quadrupeds. J Neurophysiol 101(2):603–613CrossRef
93.
Zurück zum Zitat Ivanenko YP, Labini FS, Cappellini G et al (2011) Gait transition in simulated reduced gravity. J Appl Physiol 110:781–788CrossRef Ivanenko YP, Labini FS, Cappellini G et al (2011) Gait transition in simulated reduced gravity. J Appl Physiol 110:781–788CrossRef
94.
Zurück zum Zitat Hückesfeld S, Schoofs A, Schlegel P, Miroschnikow A, Pankratz MJ (2015) Localization of motor neurons and central pattern generators for motor patterns underlying feeding behavior in Drosophila Larvae. PLoS One 10(8):e0135011. doi:10.1371/journal.pone.0135011 CrossRef Hückesfeld S, Schoofs A, Schlegel P, Miroschnikow A, Pankratz MJ (2015) Localization of motor neurons and central pattern generators for motor patterns underlying feeding behavior in Drosophila Larvae. PLoS One 10(8):e0135011. doi:10.​1371/​journal.​pone.​0135011 CrossRef
95.
Zurück zum Zitat Yu J, Tan M, Chen J, Zhang J (2014) A survey on CPG-Inspired control models and system implementation. IEEE Trans Neural Netw Learn Syst 25(3):441–456CrossRef Yu J, Tan M, Chen J, Zhang J (2014) A survey on CPG-Inspired control models and system implementation. IEEE Trans Neural Netw Learn Syst 25(3):441–456CrossRef
96.
Zurück zum Zitat Wang T, Guo W, Li M et al (2012) CPG control for biped hopping robot in unpredictable environment. J Bionic Eng 9(1):29–38CrossRef Wang T, Guo W, Li M et al (2012) CPG control for biped hopping robot in unpredictable environment. J Bionic Eng 9(1):29–38CrossRef
97.
Zurück zum Zitat Liu C, Chen Q, Wang D (2011) CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots. IEEE Trans Syst Man Cybern B Cybern 41(3):867–880CrossRef Liu C, Chen Q, Wang D (2011) CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots. IEEE Trans Syst Man Cybern B Cybern 41(3):867–880CrossRef
98.
Zurück zum Zitat Aoi S, Egi Y, Sugimoto R, Yamashita T et al (2012) Functional roles of phase resetting in the gait transition of a biped robot from quadrupedal to bipedal locomotion. IEEE Trans Robot 28(6):1244–1259CrossRef Aoi S, Egi Y, Sugimoto R, Yamashita T et al (2012) Functional roles of phase resetting in the gait transition of a biped robot from quadrupedal to bipedal locomotion. IEEE Trans Robot 28(6):1244–1259CrossRef
99.
Zurück zum Zitat Ajallooeian M, Kieboom JVD, Mukovskiy A et al (2013) A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape. Phys D 263(15):41–56MathSciNetCrossRefMATH Ajallooeian M, Kieboom JVD, Mukovskiy A et al (2013) A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape. Phys D 263(15):41–56MathSciNetCrossRefMATH
100.
101.
Zurück zum Zitat Li F, Basu A, Chang C-H, Cohen AH (2012) Dynamical systems guided design and analysis of silicon oscillators for central pattern generators. IEEE Trans Circuits Syst I Reg Pap 59(12):3046–3059MathSciNetCrossRef Li F, Basu A, Chang C-H, Cohen AH (2012) Dynamical systems guided design and analysis of silicon oscillators for central pattern generators. IEEE Trans Circuits Syst I Reg Pap 59(12):3046–3059MathSciNetCrossRef
102.
Zurück zum Zitat Zhao L, Nogaret A (2014) Stimulus-dependent polyrhythms of central pattern generator hardware. Int J Math Comput Phys Quantum Eng 8(5):721–724 Zhao L, Nogaret A (2014) Stimulus-dependent polyrhythms of central pattern generator hardware. Int J Math Comput Phys Quantum Eng 8(5):721–724
Metadaten
Titel
Prescription of rhythmic patterns for legged locomotion
verfasst von
Zhijun Yang
Daqiang Zhang
Marlon V. Rocha
Priscila M. V. Lima
Mehmet Karamanoglu
Felipe M. G. França
Publikationsdatum
16.03.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 11/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2237-4

Weitere Artikel der Ausgabe 11/2017

Neural Computing and Applications 11/2017 Zur Ausgabe

Premium Partner