Skip to main content
Erschienen in: Engineering with Computers 4/2023

26.06.2022 | Original Article

On the impact of prior distributions on efficiency of sparse Gaussian process regression

verfasst von: Mohsen Esmaeilbeigi, Omid Chatrabgoun, Alireza Daneshkhah, Maryam Shafa

Erschienen in: Engineering with Computers | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gaussian process regression (GPR) is a kernel-based learning model, which unfortunately suffers from computational intractability for irregular domain and large datasets due to the full kernel matrix. In this paper, we propose a novel method to produce a sparse kernel matrix using the compact support radial kernels (CSRKs) to efficiently learn the GPR from large datasets. The CSRKs can effectively avoid the ill-conditioned and full kernel matrix during GPR training and prediction, consequently reducing computational costs and memory requirements. In practice, the interest in CSRKs waned slightly as it became evident that, there is a trade-off principle (conflict between accuracy and sparsity) for compactly supported kernels. Hence, when using kernels with compact support, during GPR training, the main focus will be on providing a high level of accuracy. In this case, the advantage of achieving a sparse covariance matrix for CSRKs will almost disappear, as we will see in the numerical results. This trade-off has led authors to search for an “optimal” value of the scale parameter. Accordingly, by selecting the suitable priors on the kernel hyperparameters, and simply estimating the hyperparameters using a modified version of the maximum likelihood estimation (MLE), the GPR model derived from the CSRKs yields maximal accuracy while still maintaining a sparse covariance matrix. In fact, in GPR training, modified version of the MLE will be proportional to the product of MLE and a given suitable prior distribution for the hyperparameters that provides an efficient method for learning. The misspecification of prior distributions and their impact on the predictability of the sparse GPR models are also comprehensively investigated using several empirical studies. The proposed new approach is applied to some irregular domains with noisy test functions in 2D data sets in a comparative study. We finally investigate the effect of prior on the predictability of GPR models based on the real dataset. The derived results suggest the proposed method leads to more sparsity and well-conditioned kernel matrices in all cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bouhlel MA, Martins JRRA (2019) Gradient-enhanced kriging for high-dimensional problems. Eng Comput 35:157–173CrossRef Bouhlel MA, Martins JRRA (2019) Gradient-enhanced kriging for high-dimensional problems. Eng Comput 35:157–173CrossRef
3.
Zurück zum Zitat Gao W, Karbasi M, Hasanipanah M, Zhang X, Guo J (2018) Developing GPR model for forecasting the rock fragmentation in surface mines. Eng Comput 34:339–345CrossRef Gao W, Karbasi M, Hasanipanah M, Zhang X, Guo J (2018) Developing GPR model for forecasting the rock fragmentation in surface mines. Eng Comput 34:339–345CrossRef
4.
Zurück zum Zitat Arthur CK, Temeng VA, Ziggah YY (2020) Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Eng Comput 36:29–42CrossRef Arthur CK, Temeng VA, Ziggah YY (2020) Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Eng Comput 36:29–42CrossRef
5.
Zurück zum Zitat Isaaks E, Srivastava R (2011) Applied geostatistics. Oxford University, London Isaaks E, Srivastava R (2011) Applied geostatistics. Oxford University, London
6.
Zurück zum Zitat Rasmussen CE (1999) Evaluation of Gaussian Processes and Other Methods for Non-Linear Regression. University of Toronto, Toronto Rasmussen CE (1999) Evaluation of Gaussian Processes and Other Methods for Non-Linear Regression. University of Toronto, Toronto
7.
Zurück zum Zitat Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning. MIT Press, BostonMATH Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning. MIT Press, BostonMATH
8.
Zurück zum Zitat Chatrabgoun O, Esmaeilbeigi M, Cheraghi M, Daneshkhah A (2022) Stable Likelihood Computation for Machine Learning of Linear Differential Operators with Gaussian Processes. Int J Uncertain Quantif 12:75–99MathSciNetCrossRefMATH Chatrabgoun O, Esmaeilbeigi M, Cheraghi M, Daneshkhah A (2022) Stable Likelihood Computation for Machine Learning of Linear Differential Operators with Gaussian Processes. Int J Uncertain Quantif 12:75–99MathSciNetCrossRefMATH
9.
Zurück zum Zitat Shamshirband S, Goci’c M, Petkovi’c D, Saboohi H, Herawan T, Kiah MLM, Akib S (2015) Soft-computing methodologies for precipitation estimation: a case study. IEEE J Sel Top Appl Earth Observ Remote Sens 8:1353–1358CrossRef Shamshirband S, Goci’c M, Petkovi’c D, Saboohi H, Herawan T, Kiah MLM, Akib S (2015) Soft-computing methodologies for precipitation estimation: a case study. IEEE J Sel Top Appl Earth Observ Remote Sens 8:1353–1358CrossRef
10.
Zurück zum Zitat Shamshirband S, Mohammadi K, Yee L, Petkovi’c D, Mostafaeipour A (2015) A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renew Sustain Energy Rev 52:1031–1042CrossRef Shamshirband S, Mohammadi K, Yee L, Petkovi’c D, Mostafaeipour A (2015) A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renew Sustain Energy Rev 52:1031–1042CrossRef
11.
Zurück zum Zitat MacKay DJ (1997) Gaussian processes a replacement for supervised neural networks?. Tutorial lecture notes for NIPS 1997; MacKay DJ (1997) Gaussian processes a replacement for supervised neural networks?. Tutorial lecture notes for NIPS 1997;
12.
Zurück zum Zitat Wilson AG, Adams RP (2013) Gaussian process kernels for pattern discovery and extrapolation. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13). 1067–1075 Wilson AG, Adams RP (2013) Gaussian process kernels for pattern discovery and extrapolation. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13). 1067–1075
13.
Zurück zum Zitat Fasshauer GE, McCourt MJ (2015) Kernel-based Approximation Methods using Matlab. World Scientific, SingaporeCrossRefMATH Fasshauer GE, McCourt MJ (2015) Kernel-based Approximation Methods using Matlab. World Scientific, SingaporeCrossRefMATH
14.
15.
Zurück zum Zitat Quinonero-Candela J, Rasmussen CE (2005) A unifying view of sparse approximate Gaussian process regression. J Mach Learn Res 6:1939–1959MathSciNetMATH Quinonero-Candela J, Rasmussen CE (2005) A unifying view of sparse approximate Gaussian process regression. J Mach Learn Res 6:1939–1959MathSciNetMATH
16.
Zurück zum Zitat Snelson E, Ghahramani Z (2007) Local and global sparse Gaussian process approximations. Artificial Intelligence and Statistics.11 Snelson E, Ghahramani Z (2007) Local and global sparse Gaussian process approximations. Artificial Intelligence and Statistics.11
17.
Zurück zum Zitat Williams CKI, Seeger M (2001) Using the Nystrom method to speed up kernel machines. In: Leen TK, Dietterich TG, Tresp V, editors, Advances in Neural Information Processing Systems, The MIT Press. 13 Williams CKI, Seeger M (2001) Using the Nystrom method to speed up kernel machines. In: Leen TK, Dietterich TG, Tresp V, editors, Advances in Neural Information Processing Systems, The MIT Press. 13
18.
Zurück zum Zitat Quiñonero-Candela J, Rasmussen CE, Williams CKI (2007) Approximation methods for Gaussian process regression. Large-Scale Kernel Machines. MIT Press, Cambridge, pp 203–224CrossRef Quiñonero-Candela J, Rasmussen CE, Williams CKI (2007) Approximation methods for Gaussian process regression. Large-Scale Kernel Machines. MIT Press, Cambridge, pp 203–224CrossRef
19.
Zurück zum Zitat Schreiter J, Nguyen-Tuong D, Toussaint M (2016) Efficient sparsification for Gaussian process regression. Neurocomputing 192:29–37CrossRef Schreiter J, Nguyen-Tuong D, Toussaint M (2016) Efficient sparsification for Gaussian process regression. Neurocomputing 192:29–37CrossRef
20.
Zurück zum Zitat Tresp V (2000) A Bayesian committee machine. Neural Comput 12:2719–2741 Tresp V (2000) A Bayesian committee machine. Neural Comput 12:2719–2741
21.
Zurück zum Zitat Ranganathan A, Yang MH, Ho J (2011) Online Sparse Gaussian Process Regression and Its Applications. IEEE Trans Image Process 20:391–404MathSciNetCrossRefMATH Ranganathan A, Yang MH, Ho J (2011) Online Sparse Gaussian Process Regression and Its Applications. IEEE Trans Image Process 20:391–404MathSciNetCrossRefMATH
22.
Zurück zum Zitat Brahim-Belhouari S, Bermak A (2004) Gaussian process for nonstationary time series prediction. Comput Stat Data Anal 47:705–712MathSciNetCrossRefMATH Brahim-Belhouari S, Bermak A (2004) Gaussian process for nonstationary time series prediction. Comput Stat Data Anal 47:705–712MathSciNetCrossRefMATH
23.
Zurück zum Zitat MacKay DJ (1998) Introduction to Gaussian processes. NATO ASI Series F Computer and Systems Sciences. 168:133–166MATH MacKay DJ (1998) Introduction to Gaussian processes. NATO ASI Series F Computer and Systems Sciences. 168:133–166MATH
24.
Zurück zum Zitat Neal RM Monte carlo implementation of Gaussian process models for bayesian regression and classification. arXiv preprint physics/9701026 Neal RM Monte carlo implementation of Gaussian process models for bayesian regression and classification. arXiv preprint physics/9701026
25.
Zurück zum Zitat Williams CKI, Rasmussen CE (1996) Gaussian processes for regression. In: Advances in Neural Information Processing Systems. 514–520 Williams CKI, Rasmussen CE (1996) Gaussian processes for regression. In: Advances in Neural Information Processing Systems. 514–520
26.
Zurück zum Zitat Bachoc F (2013) Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification. Comput Stat Data Anal 66:55–69MathSciNetCrossRefMATH Bachoc F (2013) Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification. Comput Stat Data Anal 66:55–69MathSciNetCrossRefMATH
27.
Zurück zum Zitat Butler A, Haynes RD, Humphries TD, Ranjan P (2014) Efficient optimization of the likelihood function in Gaussian process modelling. Comput Stat Data Anal 73:40–52MathSciNetCrossRefMATH Butler A, Haynes RD, Humphries TD, Ranjan P (2014) Efficient optimization of the likelihood function in Gaussian process modelling. Comput Stat Data Anal 73:40–52MathSciNetCrossRefMATH
28.
Zurück zum Zitat Chen Z, Wang B (2018) How priors of initial hyperparameters affect Gaussian process regression models. Neurocomputing 275:1702–1710CrossRef Chen Z, Wang B (2018) How priors of initial hyperparameters affect Gaussian process regression models. Neurocomputing 275:1702–1710CrossRef
30.
Zurück zum Zitat Kitanidis PK (1997) Introduction to Geostatistics: Applications in Hydrology. Cambridge University Press, New YorkCrossRef Kitanidis PK (1997) Introduction to Geostatistics: Applications in Hydrology. Cambridge University Press, New YorkCrossRef
31.
32.
Zurück zum Zitat Flaxman S, Gelman A, Neill D, Smola A, Vehtari A, Wilson AG (2015) Fast hierarchical gaussian processes Flaxman S, Gelman A, Neill D, Smola A, Vehtari A, Wilson AG (2015) Fast hierarchical gaussian processes
33.
Zurück zum Zitat Fasshauer GE (2007) Meshfree Approximation Methods with Matlab. World Scientific, SingaporeCrossRefMATH Fasshauer GE (2007) Meshfree Approximation Methods with Matlab. World Scientific, SingaporeCrossRefMATH
35.
Zurück zum Zitat Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 4:389–396MathSciNetCrossRefMATH Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 4:389–396MathSciNetCrossRefMATH
36.
37.
Zurück zum Zitat Schaback R (1995) Creating surfaces from scattered data using radial basis functions. Vanderbilt University Press, Nashville, Mathematical methods for curves and surfaces, pp 477–496MATH Schaback R (1995) Creating surfaces from scattered data using radial basis functions. Vanderbilt University Press, Nashville, Mathematical methods for curves and surfaces, pp 477–496MATH
38.
Zurück zum Zitat Wendland H (2005) Scattered data approximation. Cambridge University Press, CambridgeMATH Wendland H (2005) Scattered data approximation. Cambridge University Press, CambridgeMATH
39.
Zurück zum Zitat Wilson AG (2014) Covariance Kernels for Fast Automatic Pattern Discovery and Extrapolation with Gaussian Processes. Ph.D. Thesis, University of Cambridge Wilson AG (2014) Covariance Kernels for Fast Automatic Pattern Discovery and Extrapolation with Gaussian Processes. Ph.D. Thesis, University of Cambridge
40.
Zurück zum Zitat Watkins DS (2010) Fundamentals of Matrix Computations. Wiley Series in Pure and Applied Mathematics; Watkins DS (2010) Fundamentals of Matrix Computations. Wiley Series in Pure and Applied Mathematics;
Metadaten
Titel
On the impact of prior distributions on efficiency of sparse Gaussian process regression
verfasst von
Mohsen Esmaeilbeigi
Omid Chatrabgoun
Alireza Daneshkhah
Maryam Shafa
Publikationsdatum
26.06.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01686-7

Weitere Artikel der Ausgabe 4/2023

Engineering with Computers 4/2023 Zur Ausgabe

Neuer Inhalt