Skip to main content
Erschienen in: Journal of Polymer Research 9/2022

01.09.2022 | Original Paper

Optically transparent and stretchable pure bacterial nanocellulose

verfasst von: Samara Silva de Souza, Karla Pollyanna Vieira de Oliveira, Fernanda Vieira Berti, João Pedro Maximino Gongora Godoi, Daliana Müller, Carlos Renato Rambo, Luismar Marques Porto

Erschienen in: Journal of Polymer Research | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel pure and transparent bacterial nanocellulose (BNC) membrane was produced by in situ fermentation under static conditions using a defined minimal culture medium. BNC–Minimal membranes were characterized and compared with membranes produced in a usual complex medium, Mannitol. Morphological and physicochemical properties were investigated by scanning electron microscopy (SEM), BET-surface area, water holding capacity (WHC), X-ray diffractometry, light transmittance, refractive index, stress–strain measurements, and infrared spectroscopy (FTIR). Most importantly, the study was based on the use of a different culture medium and not on the addition of other components in the complex medium composition to make BNC-based composites more transparent. Our results revealed a high transparency of the BNC membranes produced in defined minimal medium, while the opacity of the usual BNC–Mannitol membranes was clearly noticed. BNC–Minimal membranes are pure cellulose and presented a different 3D microstructure, exhibiting porous surface on both sides. In addition, the BNC–Minimal membranes exhibit enhanced properties, like better elasticity, higher water holding capacity, greater surface area, higher crystallinity, and light transmittance. These results suggest that BNC–Minimal membranes are promising functional materials for several applications, including 3D platforms for better visualization of the cells, wound healing process that can be easily monitored without removing the dressing, optical devices. Moreover, their high elasticity is desirable for the design of blood vessels and skin substitutes that require expansive movements and flexibility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Tome LC, Pinto RJB, Trovatti E et al (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chem 13:419–427CrossRef Tome LC, Pinto RJB, Trovatti E et al (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chem 13:419–427CrossRef
5.
Zurück zum Zitat Chen C, Li D, Deng Q, Zheng B (2012) Optically transparent biocomposites: polymethylmethacrylate reinforced with high-performance chitin nanofibers. BioResources 7 Chen C, Li D, Deng Q, Zheng B (2012) Optically transparent biocomposites: polymethylmethacrylate reinforced with high-performance chitin nanofibers. BioResources 7
11.
Zurück zum Zitat Yano H, Sugiyama J, Nakagaito AN et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef Yano H, Sugiyama J, Nakagaito AN et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef
12.
Zurück zum Zitat Klemm D, Schumann D, Kramer F et al (2006) Nanocellulose as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef Klemm D, Schumann D, Kramer F et al (2006) Nanocellulose as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef
15.
Zurück zum Zitat Chen J, Huang H-Y, Tu C-W et al (2022) SI ATRP for the surface modifications of optically transparent paper films made by TEMPO-oxidized cellulose nanofibers. Polymers (Basel) 14 Chen J, Huang H-Y, Tu C-W et al (2022) SI ATRP for the surface modifications of optically transparent paper films made by TEMPO-oxidized cellulose nanofibers. Polymers (Basel) 14
16.
Zurück zum Zitat Xinsheng L, Wankei W, Chandrakant JP (2009) Transparent bacterial cellulose nanocomposite bioflms. US Patent, 929US20130011385. Accessed 10 Jan 2013 Xinsheng L, Wankei W, Chandrakant JP (2009) Transparent bacterial cellulose nanocomposite bioflms. US Patent, 929US20130011385. Accessed 10 Jan 2013
18.
Zurück zum Zitat Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218CrossRef Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218CrossRef
20.
Zurück zum Zitat Caiut JMA, Barud H da S, Messaddeq Y et al (2011) Optically transparent composites based on bacterial cellulose and boehmite, siloxane and/or a boehmite-siloxane system Caiut JMA, Barud H da S, Messaddeq Y et al (2011) Optically transparent composites based on bacterial cellulose and boehmite, siloxane and/or a boehmite-siloxane system
23.
Zurück zum Zitat Yongjun Z, Yang H, Xin Z et al (2014) Transparent reproductive bacterial cellulose reproductive membrane as well as preparation method and application thereof Yongjun Z, Yang H, Xin Z et al (2014) Transparent reproductive bacterial cellulose reproductive membrane as well as preparation method and application thereof
24.
Zurück zum Zitat Cebrian AV, Carvalho RS, Barreto AR et al (2021) Development of conformable substrates for OLEDs using highly transparent bacterial cellulose modified with recycled polystyrene. Adv Sustain Syst (2).ris 6 Cebrian AV, Carvalho RS, Barreto AR et al (2021) Development of conformable substrates for OLEDs using highly transparent bacterial cellulose modified with recycled polystyrene. Adv Sustain Syst (2).ris 6
25.
Zurück zum Zitat Lin S-P, Calvar IL, Catchmark JM et al (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219CrossRef Lin S-P, Calvar IL, Catchmark JM et al (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219CrossRef
38.
Zurück zum Zitat Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Procedia 2:113–119 Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Procedia 2:113–119
39.
Zurück zum Zitat Jozala AF, de Lencastre-Novaes LC, Lopes AM et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072CrossRef Jozala AF, de Lencastre-Novaes LC, Lopes AM et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072CrossRef
40.
Zurück zum Zitat Borzani W, de Souza SJ (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitaded liquid media. Biotechnol Lett 17:1271–1272CrossRef Borzani W, de Souza SJ (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitaded liquid media. Biotechnol Lett 17:1271–1272CrossRef
41.
Zurück zum Zitat Berti FV, Rambo CR, Dias PF, Porto LM (2013) Nanofiber density determines endothelial cell behavior on hydrogel matrix. Mater Sci Eng C 33:4684–4691CrossRef Berti FV, Rambo CR, Dias PF, Porto LM (2013) Nanofiber density determines endothelial cell behavior on hydrogel matrix. Mater Sci Eng C 33:4684–4691CrossRef
42.
Zurück zum Zitat Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. African J Biotechnol 4:478–482 Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. African J Biotechnol 4:478–482
44.
Zurück zum Zitat Valepyn E (2012) Optimization of production and preliminary characterization of new exopolysaccharides from gluconacetobacter hansenii LMG1524. Adv Microbiol 02:488–496CrossRef Valepyn E (2012) Optimization of production and preliminary characterization of new exopolysaccharides from gluconacetobacter hansenii LMG1524. Adv Microbiol 02:488–496CrossRef
45.
Zurück zum Zitat Ramana K, Tomar A, Singh L (2000) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16:245–248CrossRef Ramana K, Tomar A, Singh L (2000) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16:245–248CrossRef
51.
Zurück zum Zitat Bielecki S, Kalinowska H, Krystynowicz A et al (2013) Wound dressings and cosmetic materials from bacterial nanocellulose. In Gama M, Gatenholm P, Klemm D (eds) Bacterial Nanocellulose. A sophisticated multifunctional material, 1st ed. CRC Press: Taylor & Francis Group, pp 157–174 Bielecki S, Kalinowska H, Krystynowicz A et al (2013) Wound dressings and cosmetic materials from bacterial nanocellulose. In Gama M, Gatenholm P, Klemm D (eds) Bacterial Nanocellulose. A sophisticated multifunctional material, 1st ed. CRC Press: Taylor & Francis Group, pp 157–174
52.
Zurück zum Zitat Zheng L, Li S, Luo J, Wang X (2020) Latest advances on bacterial cellulose-based antibacterial materials as wound dressings. Front Bioeng Biotechnol 8:1334 Zheng L, Li S, Luo J, Wang X (2020) Latest advances on bacterial cellulose-based antibacterial materials as wound dressings. Front Bioeng Biotechnol 8:1334
54.
Zurück zum Zitat Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82:173–180CrossRef Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82:173–180CrossRef
55.
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An Empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An Empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794CrossRef
57.
Zurück zum Zitat Ganjoo A, Golovchak R (2008) Computer program PARAV for calculating optical constants of thin films and bulk materials : case study of amorphous semiconductors. J Optoelectron Adv Mater 10:1328–1332 Ganjoo A, Golovchak R (2008) Computer program PARAV for calculating optical constants of thin films and bulk materials : case study of amorphous semiconductors. J Optoelectron Adv Mater 10:1328–1332
58.
Zurück zum Zitat Dagang L, Qiaoyun D, Yan L (2013) Bacterial cellulose nanometer optical transparent film preparation method Dagang L, Qiaoyun D, Yan L (2013) Bacterial cellulose nanometer optical transparent film preparation method
64.
Zurück zum Zitat Nieduszynski I, Preston RD (1970) Crystallite size in natural cellulose. Nature 225:273–274CrossRef Nieduszynski I, Preston RD (1970) Crystallite size in natural cellulose. Nature 225:273–274CrossRef
66.
Zurück zum Zitat Kačuráková M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydr Res 337:1145–1153CrossRef Kačuráková M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydr Res 337:1145–1153CrossRef
67.
Zurück zum Zitat Kotaki M, Liu X-M, He C (2006) Optical properties of electrospun nanofibers of conducting polymer-based blends. J Nanosci Nanotechnol 6:3997–4000CrossRef Kotaki M, Liu X-M, He C (2006) Optical properties of electrospun nanofibers of conducting polymer-based blends. J Nanosci Nanotechnol 6:3997–4000CrossRef
68.
Zurück zum Zitat Iacopino D, Redmond G (2014) Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers. Nanotechnology 25:435607CrossRef Iacopino D, Redmond G (2014) Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers. Nanotechnology 25:435607CrossRef
71.
Zurück zum Zitat Beems EM, Van Best JA (1990) Light transmission of the cornea in whole human eyes. Exp Eye Res 50:393–395CrossRef Beems EM, Van Best JA (1990) Light transmission of the cornea in whole human eyes. Exp Eye Res 50:393–395CrossRef
73.
Zurück zum Zitat Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442CrossRef Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442CrossRef
75.
Zurück zum Zitat Luo H, Zhang J, Xiong G, Wan Y (2014) Evolution of morphology of bacterial cellulose scaffolds during early culture. Carbohydr Polym 111:722–728CrossRef Luo H, Zhang J, Xiong G, Wan Y (2014) Evolution of morphology of bacterial cellulose scaffolds during early culture. Carbohydr Polym 111:722–728CrossRef
Metadaten
Titel
Optically transparent and stretchable pure bacterial nanocellulose
verfasst von
Samara Silva de Souza
Karla Pollyanna Vieira de Oliveira
Fernanda Vieira Berti
João Pedro Maximino Gongora Godoi
Daliana Müller
Carlos Renato Rambo
Luismar Marques Porto
Publikationsdatum
01.09.2022
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 9/2022
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-022-03213-0

Weitere Artikel der Ausgabe 9/2022

Journal of Polymer Research 9/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.