Skip to main content
Erschienen in: Wireless Networks 7/2020

12.06.2020

Optimal sensor placement for source localization based on RSSD

verfasst von: Ali Heydari, MasoudReza Aghabozorgi, Mehrzad Biguesh

Erschienen in: Wireless Networks | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Source localization based on the received signal strength (RSS) has received great interest due to its low cost and simple implementation. In this paper we consider the source localization problem based on the received signal strength difference (RSSD) with unknown transmitted power of the source using spatially separated sensors. It is well- known that the relative sensor-source geometry (SSG) plays a significant role in localization performance. For this issue, the fisher information matrix (FIM) which inherently is a function of relative SSG is derived. Then for different scenarios the SSG based on the maximization of determinant of FIM is investigated to obtain the optimal sensor placement. Finally, computer simulations are used to study the performance of various sensor placements. Both theoretical analysis and simulation results reveal the ability of the proposed sensor- source geometries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We have to mention that for \(N \geqslant 6\) with equal sensor ranges, the optimal geometry is not unique and equiangular sensor separation is a special case of infinitely many optimal geometries.
 
2
Although some places in the Fig. 9b have better performance respect to the corresponding places in Fig. 9a but in average the sensor configuration in Fig. 9a gives a better performance for all region.
 
Literatur
1.
Zurück zum Zitat Wang, Y., & Ho, K. C. (2015). An symptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network. IEEE Transactions on Wireless Communnications, 14(12), 6524–6535.CrossRef Wang, Y., & Ho, K. C. (2015). An symptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network. IEEE Transactions on Wireless Communnications, 14(12), 6524–6535.CrossRef
2.
Zurück zum Zitat Miao, Q., & Huang, B. (2018). On the optimal anchor placement in single-hop sensor localization. Wireless Networks, 24(5), 1609–1620.CrossRef Miao, Q., & Huang, B. (2018). On the optimal anchor placement in single-hop sensor localization. Wireless Networks, 24(5), 1609–1620.CrossRef
3.
Zurück zum Zitat Lohrasbipeydeh, H., Gulliver, T. A., & Amindavar, H. (2014). A minimax SDP method for energy based source localization with unknown transmit power. IEEE Wireless Communications Letter, 3(4), 433–436.CrossRef Lohrasbipeydeh, H., Gulliver, T. A., & Amindavar, H. (2014). A minimax SDP method for energy based source localization with unknown transmit power. IEEE Wireless Communications Letter, 3(4), 433–436.CrossRef
4.
Zurück zum Zitat Uluskan, S., & Filik, T. (2019). A geometrical closed form solution for RSS based far-field localization: Direction of Exponent Uncertainty. Wireless Networks, 25(1), 215–227.CrossRef Uluskan, S., & Filik, T. (2019). A geometrical closed form solution for RSS based far-field localization: Direction of Exponent Uncertainty. Wireless Networks, 25(1), 215–227.CrossRef
5.
Zurück zum Zitat Jin, R., Che, Z., Xu, H., Wang, Z., & Wang, L. (2015). An RSSI-based localization algorithm for outliers suppression in wireless sensor networks. Wireless Networks., 21(8), 2561–2569.CrossRef Jin, R., Che, Z., Xu, H., Wang, Z., & Wang, L. (2015). An RSSI-based localization algorithm for outliers suppression in wireless sensor networks. Wireless Networks., 21(8), 2561–2569.CrossRef
6.
Zurück zum Zitat Liu, D., Lee, M., Pun, C., & Liu H (2013) Analysis of wireless localization in nonline-of-sight conditions. IEEE Transactions on Vehicular Technology, 62(4), 1484-1492. Networking Conference, WCNC, 1–6. Liu, D., Lee, M., Pun, C., & Liu H (2013) Analysis of wireless localization in nonline-of-sight conditions. IEEE Transactions on Vehicular Technology, 62(4), 1484-1492. Networking Conference, WCNC, 1–6.
7.
Zurück zum Zitat Catovic, A., & Sahinoglu, Z. (2004). The cramer-rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes. IEEE Communications Letters, 8(10), 626–628.CrossRef Catovic, A., & Sahinoglu, Z. (2004). The cramer-rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes. IEEE Communications Letters, 8(10), 626–628.CrossRef
8.
Zurück zum Zitat Park, C. H., & Chang, J. H. (2017). TOA source localization and DOA estimation algorithms using prior distribution for calibrated source. Digital Signal Processing, 71, 61–68.MathSciNetCrossRef Park, C. H., & Chang, J. H. (2017). TOA source localization and DOA estimation algorithms using prior distribution for calibrated source. Digital Signal Processing, 71, 61–68.MathSciNetCrossRef
9.
Zurück zum Zitat Wang, J., Chen, J., & Cabric, D. (2013). Cramer-rao bounds for joint RSS/DoA-based primary-user localization in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(3), 1363–1375.CrossRef Wang, J., Chen, J., & Cabric, D. (2013). Cramer-rao bounds for joint RSS/DoA-based primary-user localization in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(3), 1363–1375.CrossRef
10.
Zurück zum Zitat Ma, W. K., Vo, B. N., Singh, S. S., & Baddeley, A. (2006). Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach. IEEE Transactions on Signal Processing, 54(9), 3291–3303.CrossRef Ma, W. K., Vo, B. N., Singh, S. S., & Baddeley, A. (2006). Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach. IEEE Transactions on Signal Processing, 54(9), 3291–3303.CrossRef
11.
Zurück zum Zitat Meesookho, C., Mitra, U., & Narayanan, S. (2008). On energy-based acoustic source localization for sensor networks. IEEE Transactions on Signal Processing, 56(1), 365–377.MathSciNetCrossRef Meesookho, C., Mitra, U., & Narayanan, S. (2008). On energy-based acoustic source localization for sensor networks. IEEE Transactions on Signal Processing, 56(1), 365–377.MathSciNetCrossRef
12.
Zurück zum Zitat Thompson, A. R., Moran, J. M., & Swenson, G. W. (2008). Interferometry and Synthesis in Radio Astronomy. New York: Wiley. Thompson, A. R., Moran, J. M., & Swenson, G. W. (2008). Interferometry and Synthesis in Radio Astronomy. New York: Wiley.
13.
Zurück zum Zitat Biguesh, M. (2016). Bearing estimation using time delays: optimum sensor arrangement and an efficient estimator. IEEE Sensor Journal, 16(18), 6961–6965.CrossRef Biguesh, M. (2016). Bearing estimation using time delays: optimum sensor arrangement and an efficient estimator. IEEE Sensor Journal, 16(18), 6961–6965.CrossRef
14.
Zurück zum Zitat Shen, J., Molisch, A. F., & Salmi, J. (2012). Accurate passive location estimation using TOA measurements. IEEE Transactions on Wireless Communications, 11(6), 2182–2192.CrossRef Shen, J., Molisch, A. F., & Salmi, J. (2012). Accurate passive location estimation using TOA measurements. IEEE Transactions on Wireless Communications, 11(6), 2182–2192.CrossRef
15.
Zurück zum Zitat Wu, N., Yuan, W., Wang, H., & Kuang, J. (2016). TOA-based passive localization of multiple targets with inaccurate receivers based on belief propagation on factor graph. Digital Signal Processing, 49, 14–23.CrossRef Wu, N., Yuan, W., Wang, H., & Kuang, J. (2016). TOA-based passive localization of multiple targets with inaccurate receivers based on belief propagation on factor graph. Digital Signal Processing, 49, 14–23.CrossRef
16.
Zurück zum Zitat Hurtado, M., & Nehorai, A. (2007). Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors. IEEE Transactions on Aerospace and Electronic Systems, 43(2), 780–788.CrossRef Hurtado, M., & Nehorai, A. (2007). Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors. IEEE Transactions on Aerospace and Electronic Systems, 43(2), 780–788.CrossRef
17.
Zurück zum Zitat Jean, O., & Weiss, A. J. (2014). Geolocation by direction of arrival using arrays with unknown orientation. IEEE Transactions on Signal Processing, 62(12), 3135–3142.MathSciNetCrossRef Jean, O., & Weiss, A. J. (2014). Geolocation by direction of arrival using arrays with unknown orientation. IEEE Transactions on Signal Processing, 62(12), 3135–3142.MathSciNetCrossRef
18.
Zurück zum Zitat Blatt, D., & Hero, A. O. (2006). Energy-based sensor network source localization via projection onto convex sets. IEEE Transactions on Signal Processing, 54(9), 3614–3619.CrossRef Blatt, D., & Hero, A. O. (2006). Energy-based sensor network source localization via projection onto convex sets. IEEE Transactions on Signal Processing, 54(9), 3614–3619.CrossRef
19.
Zurück zum Zitat Klukas, R., & Lachapelle G. (2003). An enhanced two-step least squared approach for TDOA/AOA wireless location. IEEE International Conference on Communications, (ICASSP 03), vol. 2, pp. 987–991. Klukas, R., & Lachapelle G. (2003). An enhanced two-step least squared approach for TDOA/AOA wireless location. IEEE International Conference on Communications, (ICASSP 03), vol. 2, pp. 987–991.
20.
Zurück zum Zitat Taponecco, L., Damico, A. A., & Mengali, U. (2011). Joint TOA and AOA estimation for UWB localization applications. IEEE Transactions on Wireless Communications, 10(7), 2207–2217.CrossRef Taponecco, L., Damico, A. A., & Mengali, U. (2011). Joint TOA and AOA estimation for UWB localization applications. IEEE Transactions on Wireless Communications, 10(7), 2207–2217.CrossRef
21.
Zurück zum Zitat Biguesh, M., & Gazor, S. (2009). On proper antenna pattern for a simple source detection and localization system. IEEE Transactions on Antennas and Propagation, 57(4), 1073–1080.CrossRef Biguesh, M., & Gazor, S. (2009). On proper antenna pattern for a simple source detection and localization system. IEEE Transactions on Antennas and Propagation, 57(4), 1073–1080.CrossRef
22.
Zurück zum Zitat Liu, B. H., Lin, K. H., & Wu, J. C. (2006). Analysis of hyperbolic and circular positioning algorithms using stationary signal-strength-difference measurements in wireless communications. IEEE Transactions on vehicular Technology, 55(2), 499–509.CrossRef Liu, B. H., Lin, K. H., & Wu, J. C. (2006). Analysis of hyperbolic and circular positioning algorithms using stationary signal-strength-difference measurements in wireless communications. IEEE Transactions on vehicular Technology, 55(2), 499–509.CrossRef
23.
Zurück zum Zitat Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & Odea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.CrossRef Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & Odea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.CrossRef
24.
Zurück zum Zitat Cheung, K. W., So, H. C., Ma, W.-K., & Chan, Y. T. (2003). Received signal strength based mobile positioning via constrained weighted least squares, IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 03), pp. 137–140. Cheung, K. W., So, H. C., Ma, W.-K., & Chan, Y. T. (2003). Received signal strength based mobile positioning via constrained weighted least squares, IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 03), pp. 137–140.
25.
Zurück zum Zitat Wang, S., & Inkol, R (2011). A near-optimal least squares solution to received signal strength difference based geolocation. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP 11), pp. 2600–2603. Wang, S., & Inkol, R (2011). A near-optimal least squares solution to received signal strength difference based geolocation. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP 11), pp. 2600–2603.
26.
Zurück zum Zitat Wang, G., Chen, H., Li, Y., & Jin, M. (2012). On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wireless Communications Letters, 1(5), 536–539.CrossRef Wang, G., Chen, H., Li, Y., & Jin, M. (2012). On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wireless Communications Letters, 1(5), 536–539.CrossRef
27.
Zurück zum Zitat Doganay, K., & Hmam, H. (2008). Optimal angular sensor separation for AOA localization. Signal Processing, 88(5), 1248–1260.CrossRef Doganay, K., & Hmam, H. (2008). Optimal angular sensor separation for AOA localization. Signal Processing, 88(5), 1248–1260.CrossRef
28.
Zurück zum Zitat Herath., S. C. K, & Pathirana, P. N. (2010). Optimal sensor separation for AoA based localization via linear sensor array. In International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 187–192. Herath., S. C. K, & Pathirana, P. N. (2010). Optimal sensor separation for AoA based localization via linear sensor array. In International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 187–192.
29.
Zurück zum Zitat Meng, W., Xie, L., & Xiao, W. (2016). Optimal TDOA sensor-pair placement with uncertainty in source location. IEEE Transactions on Vehicular Technology, 65(11), 9260–9271.CrossRef Meng, W., Xie, L., & Xiao, W. (2016). Optimal TDOA sensor-pair placement with uncertainty in source location. IEEE Transactions on Vehicular Technology, 65(11), 9260–9271.CrossRef
30.
Zurück zum Zitat Lui, K. W. K., & So, H. C. (2009). A study of two-dimensional sensor placement using time-difference-of-arrival measurements. Digital Signal Processesing, 19(4), 650–659.CrossRef Lui, K. W. K., & So, H. C. (2009). A study of two-dimensional sensor placement using time-difference-of-arrival measurements. Digital Signal Processesing, 19(4), 650–659.CrossRef
31.
Zurück zum Zitat Bishop, A. N., & Jensfelt, P. (2009). An optimality analysis of sensor-target geometries for signal strength based localization. International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 1, 127–132. Bishop, A. N., & Jensfelt, P. (2009). An optimality analysis of sensor-target geometries for signal strength based localization. International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 1, 127–132.
32.
Zurück zum Zitat Meng, W., Xie, L., & Xiao, W. (2013). Optimality analysis of sensor-source geometries in heterogeneous sensor networks. IEEE Transactions on Wireless Communications, 12(4), 1958–1967.CrossRef Meng, W., Xie, L., & Xiao, W. (2013). Optimality analysis of sensor-source geometries in heterogeneous sensor networks. IEEE Transactions on Wireless Communications, 12(4), 1958–1967.CrossRef
33.
Zurück zum Zitat Rappaport, T. S. (1999). Wireless Communications: Principles and Practice. Englewood Cliffs, NJ, USA: Prentice-Hall.MATH Rappaport, T. S. (1999). Wireless Communications: Principles and Practice. Englewood Cliffs, NJ, USA: Prentice-Hall.MATH
34.
Zurück zum Zitat Kay, S. M. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ: Prentice-Hall.MATH Kay, S. M. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ: Prentice-Hall.MATH
35.
Zurück zum Zitat Golub, G. H., & van Loan, C. F. (1996). Matrix Computations. Baltimore, MD: Johns Hopkins Univ. Press.MATH Golub, G. H., & van Loan, C. F. (1996). Matrix Computations. Baltimore, MD: Johns Hopkins Univ. Press.MATH
Metadaten
Titel
Optimal sensor placement for source localization based on RSSD
verfasst von
Ali Heydari
MasoudReza Aghabozorgi
Mehrzad Biguesh
Publikationsdatum
12.06.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02380-6

Weitere Artikel der Ausgabe 7/2020

Wireless Networks 7/2020 Zur Ausgabe

Neuer Inhalt