Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 7/2016

30.03.2016 | Original Paper

Optimization of an experimental membrane reactor for low-temperature methane steam reforming

verfasst von: Alexios-Spyridon Kyriakides, Spyros Voutetakis, Simira Papadopoulou, Panos Seferlis

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The systematic and rigorous model-based optimization of the configuration and operating conditions of a methane membrane steam reforming reactor for hydrogen production is performed. A permeable membrane with Pd–Ru deposited on a ceramic dense support is used to selectively remove the produced hydrogen from the reaction zone. The shifted chemical equilibrium towards hydrogen production enables the achievement of high methane conversion at relatively low reactor temperature levels. Steam reforming takes place over a Ni–Pt/CeZnLa ceramic foam-supported catalyst that ensures better thermal distribution, at an operating temperature of 773 K and a pressure of 106 Pa. A nonlinear, two-dimensional, and pseudo-homogeneous mathematical model of the membrane fixed-bed reactor is developed and subsequently validated using experimental data. For model validation purposes, two sets of experiments have been performed at the experimental reactor installed at CPERI/CERTH. The first set of experiments aims to investigate membrane permeability in order to estimate the parameters involved in the applied Sieverts law. The second set of experiments explores the performance of the membrane reactor at different steam to carbon ratios and total inlet volumetric flowrates. The derived mathematical model, consisted of mass, energy, and momentum balances that consider both axial and radial gradients of temperature and concentration, is then utilized within a model-based optimization framework that calculates the optimal operating conditions for the highly interactive reactor system. The optimal steam to carbon ratio and sweep gas flow rate that minimize the overall methane utilization (i.e., reformed methane and equivalent methane for heating purposes) are calculated for a range of hydrogen production rates. Τhe optimal reactor design configuration described by the length of the catalyst zone is also obtained for a given pure hydrogen production rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Angeli SD, Monteleone G, Giaconia A, Lemonidou AA (2013) A low temperature methane steam reforming: catalytic activity and coke deposition study. Chem Eng Trans 35:1201–1206. doi:10.3303/CET1335200 Angeli SD, Monteleone G, Giaconia A, Lemonidou AA (2013) A low temperature methane steam reforming: catalytic activity and coke deposition study. Chem Eng Trans 35:1201–1206. doi:10.​3303/​CET1335200
Zurück zum Zitat Bientinesi M, Petarca L (2011) H2 separation from gas mixtures through palladium membranes on metallic porous support. Chem Eng Trans 24:763–768. doi:10.3303/CET1124128 Bientinesi M, Petarca L (2011) H2 separation from gas mixtures through palladium membranes on metallic porous support. Chem Eng Trans 24:763–768. doi:10.​3303/​CET1124128
Zurück zum Zitat Čuček L, Klemeš JJ, Varbanov PS, Kravanja Z (2015) Significance of environmental footprints for evaluating sustainability and security of development. Clean Technol Environ Policy 17(8):2125–2141. doi:10.1007/s10098-015-0972-3 CrossRef Čuček L, Klemeš JJ, Varbanov PS, Kravanja Z (2015) Significance of environmental footprints for evaluating sustainability and security of development. Clean Technol Environ Policy 17(8):2125–2141. doi:10.​1007/​s10098-015-0972-3 CrossRef
Zurück zum Zitat De Falco M, Barba D, Cosenza S, Iaquaniello G, Marrelli L (2008) Reformer and membrane modules plant powered by a nuclear reactor or by a solar heated molten salts: assessment of the design variables and production cost evaluation. Int J Hydrog Energy 33(20):5326–5334. doi:10.1016/j.ijhydene.2008.05.113 CrossRef De Falco M, Barba D, Cosenza S, Iaquaniello G, Marrelli L (2008) Reformer and membrane modules plant powered by a nuclear reactor or by a solar heated molten salts: assessment of the design variables and production cost evaluation. Int J Hydrog Energy 33(20):5326–5334. doi:10.​1016/​j.​ijhydene.​2008.​05.​113 CrossRef
Zurück zum Zitat De Falco M, Marrelli L, Iaquaniello G (2011) Membrane reactors for hydrogen production. Springer, LondonCrossRef De Falco M, Marrelli L, Iaquaniello G (2011) Membrane reactors for hydrogen production. Springer, LondonCrossRef
Zurück zum Zitat De Wilde J, Froment GF (2013) Modeling of dual-zone structured reactors for natural gas steam reforming. Ind Eng Chem Res 52(39):14055–14065. doi:10.1021/ie401476s CrossRef De Wilde J, Froment GF (2013) Modeling of dual-zone structured reactors for natural gas steam reforming. Ind Eng Chem Res 52(39):14055–14065. doi:10.​1021/​ie401476s CrossRef
Zurück zum Zitat Dittmar B, Behrens A, Schödel N, Rüttinger M, Franco Th, Straczewski G, Dittmeyer R (2013) Methane steam reforming operation and thermal stability of new porous metal supported tubular palladium composite membranes. Int J Hydrog Energy 38:8759–8771. doi:10.1016/j.ijhydene.2013.05.030 CrossRef Dittmar B, Behrens A, Schödel N, Rüttinger M, Franco Th, Straczewski G, Dittmeyer R (2013) Methane steam reforming operation and thermal stability of new porous metal supported tubular palladium composite membranes. Int J Hydrog Energy 38:8759–8771. doi:10.​1016/​j.​ijhydene.​2013.​05.​030 CrossRef
Zurück zum Zitat Iulianelli A, Manzolini G, De Falco M, Campanari S, Longo T, Liguori S, Basile A (2010) H2 production by low pressure methane steam reforming in a Pd–Ag membrane reactor over a Ni-based catalyst: experimental and modeling. Int J Hydrog Energy 35(20):11514–11524. doi:10.1016/j.ijhydene.2010.06.049 CrossRef Iulianelli A, Manzolini G, De Falco M, Campanari S, Longo T, Liguori S, Basile A (2010) H2 production by low pressure methane steam reforming in a Pd–Ag membrane reactor over a Ni-based catalyst: experimental and modeling. Int J Hydrog Energy 35(20):11514–11524. doi:10.​1016/​j.​ijhydene.​2010.​06.​049 CrossRef
Zurück zum Zitat Kravanja Z, Varbanov PS, Klemeš JJ (2015) Recent advances in green energy and product productions, environmentally friendly, healthier and safer technologies and processes, CO2 capturing, storage and recycling, and sustainability assessment in decision-making. Clean Technol Environ Policy 17(5):1119–1126. doi:10.1007/s10098-015-0995-9 CrossRef Kravanja Z, Varbanov PS, Klemeš JJ (2015) Recent advances in green energy and product productions, environmentally friendly, healthier and safer technologies and processes, CO2 capturing, storage and recycling, and sustainability assessment in decision-making. Clean Technol Environ Policy 17(5):1119–1126. doi:10.​1007/​s10098-015-0995-9 CrossRef
Zurück zum Zitat Kyriakides A-S, Ipsakis D, Voutetakis S, Papadopoulou S, Seferlis P (2013) Modeling and simulation of a membrane reactor for the low temperature methane steam reforming. Chem Eng Trans 35:109–114. doi:10.3303/CET1335018 Kyriakides A-S, Ipsakis D, Voutetakis S, Papadopoulou S, Seferlis P (2013) Modeling and simulation of a membrane reactor for the low temperature methane steam reforming. Chem Eng Trans 35:109–114. doi:10.​3303/​CET1335018
Zurück zum Zitat Lestinsky P, Vecer M, Navratil P, Stehlik P (2015) The removal of CO2 from biogas using laboratory PSA unit: design using breakthrough curves. Clean Technol Environ Policy 17:1281–1289. doi:10.1007/s10098-015-0912-2 CrossRef Lestinsky P, Vecer M, Navratil P, Stehlik P (2015) The removal of CO2 from biogas using laboratory PSA unit: design using breakthrough curves. Clean Technol Environ Policy 17:1281–1289. doi:10.​1007/​s10098-015-0912-2 CrossRef
Zurück zum Zitat Mendes D, Sa S, Tosti S, Sousa JM, Madeira LM, Mendes A (2011) Experimental and modeling studies on the low-temperature water–gas shift reaction in a dense Pd–Ag packed-bed membrane reactor. Chem Eng Sci 66:2356–2367. doi:10.1016/j.ces.2011.02.035 CrossRef Mendes D, Sa S, Tosti S, Sousa JM, Madeira LM, Mendes A (2011) Experimental and modeling studies on the low-temperature water–gas shift reaction in a dense Pd–Ag packed-bed membrane reactor. Chem Eng Sci 66:2356–2367. doi:10.​1016/​j.​ces.​2011.​02.​035 CrossRef
Zurück zum Zitat Murtagh B, Saunders M (1983) Minos 5.5 User’s Guide. Stanford University, Stanford Murtagh B, Saunders M (1983) Minos 5.5 User’s Guide. Stanford University, Stanford
Zurück zum Zitat Saebea D, Authayanun S, Patcharavorachotc Y, Arpornwichanop A (2014) Enhancement of hydrogen production for steam reforming of biogas in fluidized bed membrane reactor. Chem Eng Trans 39:1177–1182. doi:10.3303/CET1439197 Saebea D, Authayanun S, Patcharavorachotc Y, Arpornwichanop A (2014) Enhancement of hydrogen production for steam reforming of biogas in fluidized bed membrane reactor. Chem Eng Trans 39:1177–1182. doi:10.​3303/​CET1439197
Zurück zum Zitat Simakov D, Sheintuch M (2011) Model-based optimization of hydrogen generation by methane steam reforming in autothermal packed-bed membrane reformer. AIChE J 57(2):525–541. doi:10.1002/aic.12265 CrossRef Simakov D, Sheintuch M (2011) Model-based optimization of hydrogen generation by methane steam reforming in autothermal packed-bed membrane reformer. AIChE J 57(2):525–541. doi:10.​1002/​aic.​12265 CrossRef
Zurück zum Zitat van Delft YC, Overbeek JP, Saric M, de Groot A, Dijkstra JW, Jansen D (2009) Towards application of Palladium membrane reactors in large scale production of hydrogen. In: 8th World congress of chemical engineering: incorporating the 59th Canadian chemical engineering conference and the 24th interamerican congress of chemical engineering 520c van Delft YC, Overbeek JP, Saric M, de Groot A, Dijkstra JW, Jansen D (2009) Towards application of Palladium membrane reactors in large scale production of hydrogen. In: 8th World congress of chemical engineering: incorporating the 59th Canadian chemical engineering conference and the 24th interamerican congress of chemical engineering 520c
Zurück zum Zitat Wang Y, Chao Z, Jakobsen H (2011) Numerical study of hydrogen production by the sorption-enhanced steam methane reforming process with online CO2 capture as operated in fluidized bed reactors. Clean Technol Environ Policy 13:559–565. doi:10.1007/s10098-011-0368-y CrossRef Wang Y, Chao Z, Jakobsen H (2011) Numerical study of hydrogen production by the sorption-enhanced steam methane reforming process with online CO2 capture as operated in fluidized bed reactors. Clean Technol Environ Policy 13:559–565. doi:10.​1007/​s10098-011-0368-y CrossRef
Zurück zum Zitat Yu W, Ohmori T, Yamamoto Y, Endo A, Nakaiwa M, Itoh N (2007) Optimal design and operation of methane steam reforming in a porous ceramic membrane reactor for hydrogen production. Chem Eng Sci 62:5627–5631. doi:10.1016/j.ces.2007.03.005 CrossRef Yu W, Ohmori T, Yamamoto Y, Endo A, Nakaiwa M, Itoh N (2007) Optimal design and operation of methane steam reforming in a porous ceramic membrane reactor for hydrogen production. Chem Eng Sci 62:5627–5631. doi:10.​1016/​j.​ces.​2007.​03.​005 CrossRef
Metadaten
Titel
Optimization of an experimental membrane reactor for low-temperature methane steam reforming
verfasst von
Alexios-Spyridon Kyriakides
Spyros Voutetakis
Simira Papadopoulou
Panos Seferlis
Publikationsdatum
30.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 7/2016
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-016-1167-2

Weitere Artikel der Ausgabe 7/2016

Clean Technologies and Environmental Policy 7/2016 Zur Ausgabe