Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 14/2018

14.05.2018

Optimization of magnetodielectric coupling in Mn substituted BiFeO3 for potential memory devices

verfasst von: Ali Haider Khan, Shahid Atiq, M. Sabieh Anwar, Shahzad Naseem, Syed Kumail Abbas

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 14/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coexistence of spontaneous magnetization and polarization is a key phenomenon in multiferroic materials whereas coupling among these order parameters is anticipated to play a vital role in modern day engineering devices and information technology. In this context, Mn substituted BiFeO3 was synthesized using sol–gel accompanying auto-combustion method. X-ray diffraction of the calcined BiFe1−xMnxO3 samples exhibited a crystalline nature and phase purity of the samples. Among the samples, BiFe0.8Mn0.2O3 depicted more stable rhombohedral structure as compared to BiFeO3, whereas mixed phases of orthorhombic and monoclinic were observed in BiFe1−xMnxO3 at 0.4 ≤ x ≤ 1.0. Surface morphology, as seen using a field emission electron microscope, revealed decreasing granular size which interpreted modified magnetic attributes examined by vibrating sample magnetometer for specific Mn contents. Elemental wt% were confirmed by energy dispersive X-ray spectroscopy. To extract the optimized results from Mn substituted BiFeO3, magnetodielectric coupling was examined as well under 6 kOe applied magnetic field which declared BiFe0.8Mn0.2O3 as the most optimized composition. Hence, this research work has opened the way for the material scientists and engineers to pursue more efficient multiferroics. It is an effective way to rectify various issues relevant to device applications like quick switching, magnetically controlled supercapacitors and designing fast and higher density data storage devices that is magnetoelectric random-access memories.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Khalid, S. Atiq, S.M. Ramay, A. Mahmood, G.M. Mustafa, S. Riaz, S. Naseem, Magneto-electric characteristics in (Mn, Cu) co-doped BiFeO3 multiferroic nanoparticles. J. Mater. Sci. Mater. Electron. 27, 8966–8972 (2016)CrossRef A. Khalid, S. Atiq, S.M. Ramay, A. Mahmood, G.M. Mustafa, S. Riaz, S. Naseem, Magneto-electric characteristics in (Mn, Cu) co-doped BiFeO3 multiferroic nanoparticles. J. Mater. Sci. Mater. Electron. 27, 8966–8972 (2016)CrossRef
2.
Zurück zum Zitat S.A. Acharya, V.M. Gaikwad, S.K. Kulkarni, U.P. Despande, Low pressure synthesis of BiMnO3 nanoparticles: anomalous structural and magnetic features. J. Mater. Sci. 52, 458–466 (2017)CrossRef S.A. Acharya, V.M. Gaikwad, S.K. Kulkarni, U.P. Despande, Low pressure synthesis of BiMnO3 nanoparticles: anomalous structural and magnetic features. J. Mater. Sci. 52, 458–466 (2017)CrossRef
3.
Zurück zum Zitat T. Wang, T. Xu, S. Gao, S.H. Song, Effect of Nd and Nb co-doping on the structural, magnetic and optical properties of multiferroic BiFeO3 nanoparticles prepared by sol-gel method. Ceram. Int. 43, 4489–4495 (2017)CrossRef T. Wang, T. Xu, S. Gao, S.H. Song, Effect of Nd and Nb co-doping on the structural, magnetic and optical properties of multiferroic BiFeO3 nanoparticles prepared by sol-gel method. Ceram. Int. 43, 4489–4495 (2017)CrossRef
4.
Zurück zum Zitat N. Adhlakha, K.L. Yadav, R. Singh, BiFeO3-CoFe2O4-PbTiO3 composites: structural, multiferroic, and optical characteristics. J. Mater. Sci. 50, 2073–2084 (2015)CrossRef N. Adhlakha, K.L. Yadav, R. Singh, BiFeO3-CoFe2O4-PbTiO3 composites: structural, multiferroic, and optical characteristics. J. Mater. Sci. 50, 2073–2084 (2015)CrossRef
5.
Zurück zum Zitat D. Khomskii, Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)CrossRef D. Khomskii, Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)CrossRef
6.
Zurück zum Zitat C. Michel, J.M. Moreau, G.D. Achenbech, R. Gerson, W.J. James, The atomic structure of BiFeO3.. Solid State Commun. 7, 701–704 (1969)CrossRef C. Michel, J.M. Moreau, G.D. Achenbech, R. Gerson, W.J. James, The atomic structure of BiFeO3.. Solid State Commun. 7, 701–704 (1969)CrossRef
7.
Zurück zum Zitat F. Pedro-Garcia, J.F. Sanchez-De, C.A. Cortes-Escobedo, A. Barba-Pingarron, A.M. Bolarin-Miro, Mechanically assisted synthesis of multiferroic BiFeO3: effect of synthesis parameters. J. Alloy. Compd. 711, 77–84 (2017)CrossRef F. Pedro-Garcia, J.F. Sanchez-De, C.A. Cortes-Escobedo, A. Barba-Pingarron, A.M. Bolarin-Miro, Mechanically assisted synthesis of multiferroic BiFeO3: effect of synthesis parameters. J. Alloy. Compd. 711, 77–84 (2017)CrossRef
8.
Zurück zum Zitat L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures. J Phys. 20, 434220 (2008) L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures. J Phys. 20, 434220 (2008)
9.
Zurück zum Zitat A.J. Buurma, G.R. Blake, T.T. Palstra, U. Adem, Multiferroic Materials: Physics and Properties, from Encyclopedia of Materials: Science and Technology (2nd edn.), 2006. Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2016), pp. 1–7 A.J. Buurma, G.R. Blake, T.T. Palstra, U. Adem, Multiferroic Materials: Physics and Properties, from Encyclopedia of Materials: Science and Technology (2nd edn.), 2006. Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2016), pp. 1–7
10.
Zurück zum Zitat P. Rovillain, S.R. De, Y. Gallais, A. Sacuto, M.A. Measson, D. Colson, A. Forget, M. Bibes, A. Barthelemy, M. Cazayous, Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nat. Mater. 9, 975–979 (2010)CrossRef P. Rovillain, S.R. De, Y. Gallais, A. Sacuto, M.A. Measson, D. Colson, A. Forget, M. Bibes, A. Barthelemy, M. Cazayous, Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nat. Mater. 9, 975–979 (2010)CrossRef
11.
Zurück zum Zitat G. Catalan, J.F. Scott, Magnetoelectric Coupling and Multiferroic Materials. Multifunctional Oxide Heterostructures (Oxford University Press, Oxford, 2012), pp. 44–46 G. Catalan, J.F. Scott, Magnetoelectric Coupling and Multiferroic Materials. Multifunctional Oxide Heterostructures (Oxford University Press, Oxford, 2012), pp. 44–46
12.
Zurück zum Zitat A. Khalid, M. Ali, G.M. Mustafa, S. Atiq, S.M. Ramay, A. Mahmood, S. Naseem, Structural and dielectric properties of sol–gel synthesized (Mn, Cu) co-doped BiFeO3 ceramics. J. Sol-Gel Sci. Technol. 80, 814–820 (2016)CrossRef A. Khalid, M. Ali, G.M. Mustafa, S. Atiq, S.M. Ramay, A. Mahmood, S. Naseem, Structural and dielectric properties of sol–gel synthesized (Mn, Cu) co-doped BiFeO3 ceramics. J. Sol-Gel Sci. Technol. 80, 814–820 (2016)CrossRef
13.
Zurück zum Zitat M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005)CrossRef M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005)CrossRef
14.
Zurück zum Zitat Y. Liu, J. Wei, Y. Liu, X. Bai, P. Shi, S. Mao, X. Zhang, C. Li, B. Dkhil, Phase transition, leakage conduction mechanism evolution and enhanced ferroelectric properties in multiferroic Mn-doped BiFeO3 thin films. J. Mater. Sci. Mater. Electron. 27, 3095–3102 (2016)CrossRef Y. Liu, J. Wei, Y. Liu, X. Bai, P. Shi, S. Mao, X. Zhang, C. Li, B. Dkhil, Phase transition, leakage conduction mechanism evolution and enhanced ferroelectric properties in multiferroic Mn-doped BiFeO3 thin films. J. Mater. Sci. Mater. Electron. 27, 3095–3102 (2016)CrossRef
15.
Zurück zum Zitat M. Bibes, A. Barthelemy, Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)CrossRef M. Bibes, A. Barthelemy, Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)CrossRef
16.
Zurück zum Zitat U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92, 242106 (2008)CrossRef U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92, 242106 (2008)CrossRef
17.
Zurück zum Zitat Q. Li, J. Wei, J. Cheng, J. Chen, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics. J. Mater. Sci. 52, 229–237 (2017)CrossRef Q. Li, J. Wei, J. Cheng, J. Chen, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics. J. Mater. Sci. 52, 229–237 (2017)CrossRef
18.
Zurück zum Zitat Y. Guo, Y. Pu, Y. Cui, C. Hui, J. Wan, C. Cui, A simple method using citric acid as the template agent to improve photocatalytic performance of BiFeO3 nanoparticles. Mater. Lett. 196, 57–60 (2017)CrossRef Y. Guo, Y. Pu, Y. Cui, C. Hui, J. Wan, C. Cui, A simple method using citric acid as the template agent to improve photocatalytic performance of BiFeO3 nanoparticles. Mater. Lett. 196, 57–60 (2017)CrossRef
19.
Zurück zum Zitat L.J. Zhai, H.Y. Wang, The magnetic and multiferroic properties in BiMnO3. J. Magn. Magn. Mater. 426, 188–194 (2017)CrossRef L.J. Zhai, H.Y. Wang, The magnetic and multiferroic properties in BiMnO3. J. Magn. Magn. Mater. 426, 188–194 (2017)CrossRef
20.
Zurück zum Zitat E. Montanari, G. Calestani, A. Migliori, M. Dapiaggi, F. Bolzoni, R. Cabassi, E. Gilioli, High-temperature polymorphism in metastable BiMnO3. Chem. Mater. 17, 6457–6467 (2005)CrossRef E. Montanari, G. Calestani, A. Migliori, M. Dapiaggi, F. Bolzoni, R. Cabassi, E. Gilioli, High-temperature polymorphism in metastable BiMnO3. Chem. Mater. 17, 6457–6467 (2005)CrossRef
21.
Zurück zum Zitat L. Chen, L. Zheng, Y. He, J. Zhang, Z. Mao, X. Chen, The local distortion and electronic behavior in Mn doped BiFeO3. J. Alloys Compd. 633, 216–219 (2015)CrossRef L. Chen, L. Zheng, Y. He, J. Zhang, Z. Mao, X. Chen, The local distortion and electronic behavior in Mn doped BiFeO3. J. Alloys Compd. 633, 216–219 (2015)CrossRef
22.
Zurück zum Zitat B. Dhanalakshmi, P. Kollu, B.C. Sekhar, B.P. Rao, P.S. Rao, Enhanced magnetic and magnetoelectric properties of Mn doped multiferroic ceramics. Ceram. Int. 43, 9272–9275 (2017)CrossRef B. Dhanalakshmi, P. Kollu, B.C. Sekhar, B.P. Rao, P.S. Rao, Enhanced magnetic and magnetoelectric properties of Mn doped multiferroic ceramics. Ceram. Int. 43, 9272–9275 (2017)CrossRef
23.
Zurück zum Zitat R. Barman, S.K. Singh, D. Kaur, Structural phase transition and enhanced ferroelectricity in Bi(Fe1–xMnx)O3 thin films deposited by pulsed laser deposition. Thin Solid Films 594, 80–87 (2015)CrossRef R. Barman, S.K. Singh, D. Kaur, Structural phase transition and enhanced ferroelectricity in Bi(Fe1–xMnx)O3 thin films deposited by pulsed laser deposition. Thin Solid Films 594, 80–87 (2015)CrossRef
24.
Zurück zum Zitat B. Dhanalakshmi, K. Pratap, B.P. Rao, P.S. Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics. J. Alloys Compd. 676, 193–201 (2016)CrossRef B. Dhanalakshmi, K. Pratap, B.P. Rao, P.S. Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics. J. Alloys Compd. 676, 193–201 (2016)CrossRef
26.
Zurück zum Zitat Z.H. Chi, H. Yang, S.M. Feng, F.Y. Li, R.C. Yu, C.Q. Jin, Room-temperature ferroelectric polarization in multiferroic BiMnO3. J. Magn. Magn. Mater. 310, 358–360 (2007)CrossRef Z.H. Chi, H. Yang, S.M. Feng, F.Y. Li, R.C. Yu, C.Q. Jin, Room-temperature ferroelectric polarization in multiferroic BiMnO3. J. Magn. Magn. Mater. 310, 358–360 (2007)CrossRef
27.
Zurück zum Zitat R.Q. Yin, B.W. Dai, P. Zheng, J.J. Zhou, W.F. Bai, F. Wen, J.X. Deng, L. Zheng, J. Du, H.B. Qin, Pure-phase BiFeO3 ceramics with enhanced electrical properties prepared by two-step sintering. Ceram. Int. 43, 6467–6471 (2017)CrossRef R.Q. Yin, B.W. Dai, P. Zheng, J.J. Zhou, W.F. Bai, F. Wen, J.X. Deng, L. Zheng, J. Du, H.B. Qin, Pure-phase BiFeO3 ceramics with enhanced electrical properties prepared by two-step sintering. Ceram. Int. 43, 6467–6471 (2017)CrossRef
28.
Zurück zum Zitat S. Chandel, P. Thakur, M. Tomar, V. Gupta, A. Thakur, Investigation of structural, optical, dielectric and magnetic studies of Mn substituted BiFeO3 multiferroics. Ceram. Int. 43, 13750–13758 (2017)CrossRef S. Chandel, P. Thakur, M. Tomar, V. Gupta, A. Thakur, Investigation of structural, optical, dielectric and magnetic studies of Mn substituted BiFeO3 multiferroics. Ceram. Int. 43, 13750–13758 (2017)CrossRef
29.
Zurück zum Zitat S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, S. Maensiri, Effects of Mn doping on the dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics. J. Supercond. Novel Magn. 25, 1619–1622 (2012)CrossRef S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, S. Maensiri, Effects of Mn doping on the dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics. J. Supercond. Novel Magn. 25, 1619–1622 (2012)CrossRef
30.
Zurück zum Zitat M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, M. Saleem, S.K. Abbas, S. Atiq, Multiferroicity in sol–gel synthesized Sr/Mn co-doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 17234–17244 (2017)CrossRef M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, M. Saleem, S.K. Abbas, S. Atiq, Multiferroicity in sol–gel synthesized Sr/Mn co-doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 17234–17244 (2017)CrossRef
31.
Zurück zum Zitat V. Samuel, S.C. Navale, A.D. Jadhav, A.B. Gaikwad, V. Ravi, Synthesis of ultrafine BiMnO3 particles at 100 °C. Mater. Lett. 61, 1050–1051 (2006)CrossRef V. Samuel, S.C. Navale, A.D. Jadhav, A.B. Gaikwad, V. Ravi, Synthesis of ultrafine BiMnO3 particles at 100 °C. Mater. Lett. 61, 1050–1051 (2006)CrossRef
32.
Zurück zum Zitat M. Azuma, H. Kanda, A.A. Belik, Y. Shimakawa, M. Takano, Magnetic and structural properties of BiFe 1–xMnxO3. J. Magn. Magn. Mater. 310, 1177–1179 (2007)CrossRef M. Azuma, H. Kanda, A.A. Belik, Y. Shimakawa, M. Takano, Magnetic and structural properties of BiFe 1–xMnxO3. J. Magn. Magn. Mater. 310, 1177–1179 (2007)CrossRef
33.
Zurück zum Zitat C.M. Li, B. Sun, Light-controlled resistive switching memory of multiferroic BiMnO3 nanowire arrays. Phys. Chem. Chem. Phys. 17, 6718–6721 (2015)CrossRef C.M. Li, B. Sun, Light-controlled resistive switching memory of multiferroic BiMnO3 nanowire arrays. Phys. Chem. Chem. Phys. 17, 6718–6721 (2015)CrossRef
34.
Zurück zum Zitat Y. Han, W. Mao, C. Quan, X. Wang, J. Yang, T. Yang, W. Huang, Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping. Mater. Sci. Eng. B 188, 26–30 (2014)CrossRef Y. Han, W. Mao, C. Quan, X. Wang, J. Yang, T. Yang, W. Huang, Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping. Mater. Sci. Eng. B 188, 26–30 (2014)CrossRef
35.
Zurück zum Zitat A.G. Vassilikou-Dova, I.M. Kalogeras, in Thermal Analysis of Polymers: Fundamentals and Applications, ed. by J.D. Menczel, R.B. Prime (Wiley, Hoboken, 2009), pp. 497–613CrossRef A.G. Vassilikou-Dova, I.M. Kalogeras, in Thermal Analysis of Polymers: Fundamentals and Applications, ed. by J.D. Menczel, R.B. Prime (Wiley, Hoboken, 2009), pp. 497–613CrossRef
37.
Zurück zum Zitat S. Zaineb, S. Atiq, A. Mahmood, S.M. Ramay, S. Riaz, S. Naseem, Thermal tuning of electrical and dielectric characteristics of Mn-doped Zn0.95Fe0.05O dilute magnetic semiconductors. J. Mater. Sci. Mater. Electron. 29, 3943–3951 (2018)CrossRef S. Zaineb, S. Atiq, A. Mahmood, S.M. Ramay, S. Riaz, S. Naseem, Thermal tuning of electrical and dielectric characteristics of Mn-doped Zn0.95Fe0.05O dilute magnetic semiconductors. J. Mater. Sci. Mater. Electron. 29, 3943–3951 (2018)CrossRef
38.
Zurück zum Zitat C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)CrossRef C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)CrossRef
39.
Zurück zum Zitat X.F. Han, H.F. Liu, S. Rizwan, D.L. Li, P. Guo, G.Q. Yu, D.P. Liu, Y.R. Chen, Nano multilayer film, field effect tube, sensor, random accessory memory and preparation method. U.S. Patent 9,559,295B2 (2017) X.F. Han, H.F. Liu, S. Rizwan, D.L. Li, P. Guo, G.Q. Yu, D.P. Liu, Y.R. Chen, Nano multilayer film, field effect tube, sensor, random accessory memory and preparation method. U.S. Patent 9,559,295B2 (2017)
40.
Zurück zum Zitat S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007)CrossRef S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007)CrossRef
41.
Zurück zum Zitat Q. Zhang, L. You, X. Shen, C. Wan, Z. Yuan, X. Zhang, L. Huang, W. Kong, H. Wu, R. Yu, J. Wang, X.F. Han, Polarization-mediated thermal stability of metal/oxide heterointerface. Adv. Mater. 27, 6934–6938 (2015)CrossRef Q. Zhang, L. You, X. Shen, C. Wan, Z. Yuan, X. Zhang, L. Huang, W. Kong, H. Wu, R. Yu, J. Wang, X.F. Han, Polarization-mediated thermal stability of metal/oxide heterointerface. Adv. Mater. 27, 6934–6938 (2015)CrossRef
42.
Zurück zum Zitat J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)CrossRef J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)CrossRef
43.
Zurück zum Zitat S.K. Abbas, M.A. Aslam, M. Amir, S. Atiq, Z. Ahmed, S.A. Siddiqi, S. Naseem, Electrical impedance functionality and spin orientation transformation of nanostructured Sr-substituted BaMnO3 hexagonal perovskites. J. Alloys Compd. 712, 720–731 (2017)CrossRef S.K. Abbas, M.A. Aslam, M. Amir, S. Atiq, Z. Ahmed, S.A. Siddiqi, S. Naseem, Electrical impedance functionality and spin orientation transformation of nanostructured Sr-substituted BaMnO3 hexagonal perovskites. J. Alloys Compd. 712, 720–731 (2017)CrossRef
44.
Zurück zum Zitat M.I. Miah, J. Kasperczyk, Cu-doping effects in CdI2 layered nanostructures: the role of photoinduced electron-phonon anharmonic interactions. Appl. Phys. Lett. 94, 053117 (2009)CrossRef M.I. Miah, J. Kasperczyk, Cu-doping effects in CdI2 layered nanostructures: the role of photoinduced electron-phonon anharmonic interactions. Appl. Phys. Lett. 94, 053117 (2009)CrossRef
45.
Zurück zum Zitat A. Mukherjee, S. Basu, L.A.W. Green, N.T.K. Thanh, M. Pal, Enhanced multiferroic properties of Y and Mn codoped multiferroic BiFeO3 nanoparticles. J. Mater. Sci. 50, 1891–1900 (2015)CrossRef A. Mukherjee, S. Basu, L.A.W. Green, N.T.K. Thanh, M. Pal, Enhanced multiferroic properties of Y and Mn codoped multiferroic BiFeO3 nanoparticles. J. Mater. Sci. 50, 1891–1900 (2015)CrossRef
46.
Zurück zum Zitat G.S. Lotey, N.K. Verma, Magnetodielectric properties of rare earth metal-doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electron. 24, 3723–3729 (2013)CrossRef G.S. Lotey, N.K. Verma, Magnetodielectric properties of rare earth metal-doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electron. 24, 3723–3729 (2013)CrossRef
47.
Zurück zum Zitat M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert, Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296 (2007)CrossRef M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert, Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296 (2007)CrossRef
Metadaten
Titel
Optimization of magnetodielectric coupling in Mn substituted BiFeO3 for potential memory devices
verfasst von
Ali Haider Khan
Shahid Atiq
M. Sabieh Anwar
Shahzad Naseem
Syed Kumail Abbas
Publikationsdatum
14.05.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 14/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9281-z

Weitere Artikel der Ausgabe 14/2018

Journal of Materials Science: Materials in Electronics 14/2018 Zur Ausgabe

Neuer Inhalt