Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2024

15.01.2022 | Original Article

Oxovanadium complexes catalyzed oxidation of lignin and lignin dimers in acetonitrile/water under O2

verfasst von: Chao Liu, Fei Lin, Xiangchen Kong, Yuyang Fan, Weicong Xu, Rui Xiao

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selective oxidation of lignin is increasingly investigated due to its advantage of retaining the aromatic rings to produce value-added platform chemicals. In this paper, oxovanadium complexes catalyzed oxidation of lignin and lignin dimers in acetonitrile/water system under O2 was reported. Under optimal conditions of VO(acac)2 catalyzed oxidation, 95 mol% of lignin dimer 2-phenoxy acetophenone was converted, producing 43 mol% of phenol and 83 mol% of benzoic acid. The catalytic ability of V(acac)3 was higher than that of VO(acac)2, but it caused heavier repolymerization and lower product yields. VO(acac)2 catalyzed oxidation system also cleaved various β-O-4 lignin dimers, achieving > 95 mol% conversion. Whereas, yields of phenols from these dimers were lower than 5 mol%. These phenolics were shown to polymerize under reaction conditions. Furthermore, this oxidation system depolymerized poplar organosolv lignin. After oxidation, aromatic and C-O aliphatic functionalities in the heavy fractionation largely disappeared, and the weight-average molecular weight decreased from 5720 to 1140 Da.

Graphical abstract

Oxovanadium complexes show the good ability for the catalytic oxidation of lignin and lignin dimers in MeCN/H2O co-solvent in the presence of O2, achieving higher than 95 mol% conversion of β-O-4 lignin dimers and lowering the molecular weight of poplar organosolv lignin from 5720 to 1140 Da.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699CrossRef Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699CrossRef
2.
Zurück zum Zitat Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRef Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRef
3.
Zurück zum Zitat Ma R, Guo M, Zhang X (2018) Recent advances in oxidative valorization of lignin. Catal Today 302:50–60CrossRef Ma R, Guo M, Zhang X (2018) Recent advances in oxidative valorization of lignin. Catal Today 302:50–60CrossRef
4.
Zurück zum Zitat Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRef Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRef
5.
Zurück zum Zitat Regalbuto JR (2009) Cellulosic biofuels–got gasoline? Science 325:822–824CrossRef Regalbuto JR (2009) Cellulosic biofuels–got gasoline? Science 325:822–824CrossRef
6.
Zurück zum Zitat Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843CrossRef Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843CrossRef
7.
Zurück zum Zitat Lei M, Wu S, Liang J, Liu C (2019) Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis. J Anal Appl Pyrol 138:249–260CrossRef Lei M, Wu S, Liang J, Liu C (2019) Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis. J Anal Appl Pyrol 138:249–260CrossRef
8.
Zurück zum Zitat Sun RC (2020) Lignin source and structural characterization. Chemsuschem 13:4385–4393CrossRef Sun RC (2020) Lignin source and structural characterization. Chemsuschem 13:4385–4393CrossRef
9.
Zurück zum Zitat Sudarsanam P, Duolikun T, Babu PS, Rokhum L, Johan MR (2020) Recent developments in selective catalytic conversion of lignin into aromatics and their derivatives. Biomass Convers Bior 10:873–883CrossRef Sudarsanam P, Duolikun T, Babu PS, Rokhum L, Johan MR (2020) Recent developments in selective catalytic conversion of lignin into aromatics and their derivatives. Biomass Convers Bior 10:873–883CrossRef
11.
Zurück zum Zitat Lin F, Liu C, Wang X, Hu C, Wu S, Xiao R (2019) Catalytic oxidation of biorefinery corncob lignin via zirconium(IV) chloride and sodium hydroxide in acetonitrile/water: a functionality study. Sci Total Environ 675:203–212CrossRef Lin F, Liu C, Wang X, Hu C, Wu S, Xiao R (2019) Catalytic oxidation of biorefinery corncob lignin via zirconium(IV) chloride and sodium hydroxide in acetonitrile/water: a functionality study. Sci Total Environ 675:203–212CrossRef
12.
Zurück zum Zitat X. Dou, X. Jiang, W. Li, C. Zhu, Q. Liu, Q. Lu, X. Zheng, H.M. Chang, H. Jameel, Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst, Appl. Catal. B: Environ. 268 (2020) 118429. X. Dou, X. Jiang, W. Li, C. Zhu, Q. Liu, Q. Lu, X. Zheng, H.M. Chang, H. Jameel, Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst, Appl. Catal. B: Environ. 268 (2020) 118429.
13.
Zurück zum Zitat Kong X, Liu C, Han Y, Lei M, Fan Y, Li M, Xiao R (2021) Cu/CuMgAlOx-catalyzed guaiacol hydrodeoxygenation in supercritical methanol: a modeling mechanistic insight for lignin-derivatives upgrading, Energ. Fuel 35:1511–1522CrossRef Kong X, Liu C, Han Y, Lei M, Fan Y, Li M, Xiao R (2021) Cu/CuMgAlOx-catalyzed guaiacol hydrodeoxygenation in supercritical methanol: a modeling mechanistic insight for lignin-derivatives upgrading, Energ. Fuel 35:1511–1522CrossRef
14.
Zurück zum Zitat Asmadi M, Kawamoto H, Saka S (2011) Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins. J Anal Appl Pyrol 92:417–425CrossRef Asmadi M, Kawamoto H, Saka S (2011) Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins. J Anal Appl Pyrol 92:417–425CrossRef
15.
Zurück zum Zitat Zhou S, Xue Y, Sharma A, Bai X (2016) Lignin valorization through thermochemical conversion: comparison of hardwood, softwood and herbaceous lignin. ACS Sustain Chem Eng 4:6608–6617CrossRef Zhou S, Xue Y, Sharma A, Bai X (2016) Lignin valorization through thermochemical conversion: comparison of hardwood, softwood and herbaceous lignin. ACS Sustain Chem Eng 4:6608–6617CrossRef
16.
Zurück zum Zitat Zhang H, Wang Y, Shao S, Xiao R (2016) Catalytic conversion of lignin pyrolysis model compound-guaiacol and its kinetic model including coke formation. Sci Rep 6:37513CrossRef Zhang H, Wang Y, Shao S, Xiao R (2016) Catalytic conversion of lignin pyrolysis model compound-guaiacol and its kinetic model including coke formation. Sci Rep 6:37513CrossRef
17.
Zurück zum Zitat He J, Zhao C, Lercher JA (2012) Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J Am Chem Soc 134:20768–20775CrossRef He J, Zhao C, Lercher JA (2012) Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J Am Chem Soc 134:20768–20775CrossRef
18.
Zurück zum Zitat Zhang J, Asakura H, van Rijn J, Yang J, Duchesne P, Zhang B, Chen X, Zhang P, Saeys M, Yan N (2014) Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem 16:2432–2437CrossRef Zhang J, Asakura H, van Rijn J, Yang J, Duchesne P, Zhang B, Chen X, Zhang P, Saeys M, Yan N (2014) Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem 16:2432–2437CrossRef
19.
Zurück zum Zitat Wang X, Rinaldi R (2012) Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin. Chemsuschem 5:1455–1466CrossRef Wang X, Rinaldi R (2012) Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin. Chemsuschem 5:1455–1466CrossRef
20.
Zurück zum Zitat Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. Chemsuschem 8:24–51CrossRef Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. Chemsuschem 8:24–51CrossRef
21.
Zurück zum Zitat Liu C, Wu S, Zhang H, Xiao R (2019) Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Technol 191:181–201CrossRef Liu C, Wu S, Zhang H, Xiao R (2019) Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Technol 191:181–201CrossRef
22.
Zurück zum Zitat Biannic B, Bozell JJ, Elder T (2014) Steric effects in the design of Co-Schiff base complexes for the catalytic oxidation of lignin models to para-benzoquinones. Green Chem 16:3635–3642CrossRef Biannic B, Bozell JJ, Elder T (2014) Steric effects in the design of Co-Schiff base complexes for the catalytic oxidation of lignin models to para-benzoquinones. Green Chem 16:3635–3642CrossRef
23.
Zurück zum Zitat Mate VR, Jha A, Joshi UD, Patil KR, Shirai M, Rode CV (2014) Effect of preparation parameters on characterization and activity of Co3O4 catalyst in liquid phase oxidation of lignin model substrates. Appl Catal A: Gen 487:130–138CrossRef Mate VR, Jha A, Joshi UD, Patil KR, Shirai M, Rode CV (2014) Effect of preparation parameters on characterization and activity of Co3O4 catalyst in liquid phase oxidation of lignin model substrates. Appl Catal A: Gen 487:130–138CrossRef
24.
Zurück zum Zitat Zhu C, Ding W, Shen T, Tang C, Sun C, Xu S, Chen Y, Wu J, Ying H (2015) Metallo-deuteroporphyrin as a biomimetic catalyst for the catalytic oxidation of lignin to aromatics. Chemsuschem 8:1768–1778CrossRef Zhu C, Ding W, Shen T, Tang C, Sun C, Xu S, Chen Y, Wu J, Ying H (2015) Metallo-deuteroporphyrin as a biomimetic catalyst for the catalytic oxidation of lignin to aromatics. Chemsuschem 8:1768–1778CrossRef
25.
Zurück zum Zitat Wang M, Li LH, Lu JM, Li HJ, Zhang XC, Liu HF, Luo NC, Wang F (2017) Acid promoted C-C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst. Green Chem 19:702–706CrossRef Wang M, Li LH, Lu JM, Li HJ, Zhang XC, Liu HF, Luo NC, Wang F (2017) Acid promoted C-C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst. Green Chem 19:702–706CrossRef
26.
Zurück zum Zitat Zhou ZZ, Liu M, Li CJ (2017) Selective copper–N-heterocyclic carbene (copper-NHC)-catalyzed aerobic cleavage of β-1 lignin models to aldehydes. ACS Catal 7:3344–3348CrossRef Zhou ZZ, Liu M, Li CJ (2017) Selective copper–N-heterocyclic carbene (copper-NHC)-catalyzed aerobic cleavage of β-1 lignin models to aldehydes. ACS Catal 7:3344–3348CrossRef
27.
Zurück zum Zitat Mottweiler J, Puche M, Rauber C, Schmidt T, Concepcion P, Corma A, Bolm C (2015) Copper- and vanadium-catalyzed oxidative cleavage of lignin using dioxygen. Chemsuschem 8:2106–2113CrossRef Mottweiler J, Puche M, Rauber C, Schmidt T, Concepcion P, Corma A, Bolm C (2015) Copper- and vanadium-catalyzed oxidative cleavage of lignin using dioxygen. Chemsuschem 8:2106–2113CrossRef
28.
Zurück zum Zitat Wang M, Lu J, Zhang X, Li L, Li H, Luo N, Wang F (2016) Two-step, catalytic C-C bond oxidative cleavage process converts lignin models and extracts to aromatic acids. ACS Catal 6:6086–6090CrossRef Wang M, Lu J, Zhang X, Li L, Li H, Luo N, Wang F (2016) Two-step, catalytic C-C bond oxidative cleavage process converts lignin models and extracts to aromatic acids. ACS Catal 6:6086–6090CrossRef
29.
Zurück zum Zitat Qu C, Ito K, Katsuyama I, Mitani T, Kashimura K, Watanabe T (2020) Directly microwave-accelerated cleavage of C-C and C-O bonds of lignin by copper oxide and H2O2. Chemsuschem 13:4510–4518CrossRef Qu C, Ito K, Katsuyama I, Mitani T, Kashimura K, Watanabe T (2020) Directly microwave-accelerated cleavage of C-C and C-O bonds of lignin by copper oxide and H2O2. Chemsuschem 13:4510–4518CrossRef
30.
Zurück zum Zitat Son S, Toste FD (2010) Non-oxidative vanadium-catalyzed C-O bond cleavage: application to degradation of lignin model compounds. Angew Chem Int Ed Engl 49:3791–3794CrossRef Son S, Toste FD (2010) Non-oxidative vanadium-catalyzed C-O bond cleavage: application to degradation of lignin model compounds. Angew Chem Int Ed Engl 49:3791–3794CrossRef
31.
Zurück zum Zitat Hanson SK, Wu R, Silks LA (2012) C-C or C-O bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew Chem Int Ed Engl 51:3410–3413CrossRef Hanson SK, Wu R, Silks LA (2012) C-C or C-O bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew Chem Int Ed Engl 51:3410–3413CrossRef
32.
Zurück zum Zitat Ma Y, Du Z, Liu J, Xia F, Xu J (2015) Selective oxidative C-C bond cleavage of a lignin model compound in the presence of acetic acid with a vanadium catalyst. Green Chem 17:4968–4973CrossRef Ma Y, Du Z, Liu J, Xia F, Xu J (2015) Selective oxidative C-C bond cleavage of a lignin model compound in the presence of acetic acid with a vanadium catalyst. Green Chem 17:4968–4973CrossRef
33.
Zurück zum Zitat Mottweiler J, Rinesch T, Besson C, Buendia J, Bolm C (2015) Iron-catalysed oxidative cleavage of lignin and β-O-4 lignin model compounds with peroxides in DMSO. Green Chem 17:5001–5008CrossRef Mottweiler J, Rinesch T, Besson C, Buendia J, Bolm C (2015) Iron-catalysed oxidative cleavage of lignin and β-O-4 lignin model compounds with peroxides in DMSO. Green Chem 17:5001–5008CrossRef
34.
Zurück zum Zitat Pan J, Fu J, Lu X (2015) Microwave-assisted oxidative degradation of lignin model compounds with metal salts, Energ. Fuel 29:4503–4509CrossRef Pan J, Fu J, Lu X (2015) Microwave-assisted oxidative degradation of lignin model compounds with metal salts, Energ. Fuel 29:4503–4509CrossRef
35.
Zurück zum Zitat Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y (2015) Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem 17:5009–5018CrossRef Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y (2015) Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem 17:5009–5018CrossRef
36.
Zurück zum Zitat Jiang YY, Yan L, Yu HZ, Zhang Q, Fu Y (2016) Mechanism of vanadium-catalyzed selective C-O and C–C cleavage of lignin model compound. ACS Catal 6:4399–4410CrossRef Jiang YY, Yan L, Yu HZ, Zhang Q, Fu Y (2016) Mechanism of vanadium-catalyzed selective C-O and C–C cleavage of lignin model compound. ACS Catal 6:4399–4410CrossRef
37.
Zurück zum Zitat Zhang G, Scott BL, Wu R, Silks LA, Hanson SK (2012) Aerobic oxidation reactions catalyzed by vanadium complexes of bis(phenolate) ligands. Inorg Chem 51:7354–7361CrossRef Zhang G, Scott BL, Wu R, Silks LA, Hanson SK (2012) Aerobic oxidation reactions catalyzed by vanadium complexes of bis(phenolate) ligands. Inorg Chem 51:7354–7361CrossRef
38.
Zurück zum Zitat Sedai B, Díaz-Urrutia C, Baker RT, Wu R, Silks LAP, Hanson SK (2013) Aerobic oxidation of β-1 lignin model compounds with copper and oxovanadium catalysts. ACS Catal 3:3111–3122CrossRef Sedai B, Díaz-Urrutia C, Baker RT, Wu R, Silks LAP, Hanson SK (2013) Aerobic oxidation of β-1 lignin model compounds with copper and oxovanadium catalysts. ACS Catal 3:3111–3122CrossRef
39.
Zurück zum Zitat Parker HJ, Chuck CJ, Woodman T, Jones MD (2016) Degradation of β-O-4 model lignin species by vanadium Schiff-base catalysts: influence of catalyst structure and reaction conditions on activity and selectivity. Catal Today 269:40–47CrossRef Parker HJ, Chuck CJ, Woodman T, Jones MD (2016) Degradation of β-O-4 model lignin species by vanadium Schiff-base catalysts: influence of catalyst structure and reaction conditions on activity and selectivity. Catal Today 269:40–47CrossRef
40.
Zurück zum Zitat Hanson SK, Baker RT, Gordon JC, Scott BL, Silks LA, Thorn DL (2010) Mechanism of alcohol oxidation by dipicolinate vanadium(V): unexpected role of pyridine. J Am Chem Soc 132:17804–17816CrossRef Hanson SK, Baker RT, Gordon JC, Scott BL, Silks LA, Thorn DL (2010) Mechanism of alcohol oxidation by dipicolinate vanadium(V): unexpected role of pyridine. J Am Chem Soc 132:17804–17816CrossRef
41.
Zurück zum Zitat Nichols JM, Bishop LM, Bergman RG, Ellman JA (2010) Catalytic C-O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J Am Chem Soc 132:12554–12555CrossRef Nichols JM, Bishop LM, Bergman RG, Ellman JA (2010) Catalytic C-O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J Am Chem Soc 132:12554–12555CrossRef
42.
Zurück zum Zitat Hu J, Wu S, Jiang X, Xiao R (2018) Structure-reactivity relationship in fast pyrolysis of lignin into monomeric phenolic compounds, Energ. Fuel 32:1843–1850CrossRef Hu J, Wu S, Jiang X, Xiao R (2018) Structure-reactivity relationship in fast pyrolysis of lignin into monomeric phenolic compounds, Energ. Fuel 32:1843–1850CrossRef
43.
Zurück zum Zitat Liu C, Wang X, Lin F, Zhang H, Xiao R (2018) Structural elucidation of industrial bioethanol residual lignin from corn stalk: a potential source of vinyl phenolics. Fuel Process Technol 169:50–57CrossRef Liu C, Wang X, Lin F, Zhang H, Xiao R (2018) Structural elucidation of industrial bioethanol residual lignin from corn stalk: a potential source of vinyl phenolics. Fuel Process Technol 169:50–57CrossRef
44.
Zurück zum Zitat An YX, Li N, Wu H, Lou WY, Zong MH (2015) Changes in the structure and the thermal properties of Kraft lignin during its dissolution in cholinium ionic liquids. ACS Sustain Chem Eng 3:2951–2958CrossRef An YX, Li N, Wu H, Lou WY, Zong MH (2015) Changes in the structure and the thermal properties of Kraft lignin during its dissolution in cholinium ionic liquids. ACS Sustain Chem Eng 3:2951–2958CrossRef
45.
Zurück zum Zitat Lan W, Amiri MT, Hunston CM, Luterbacher JS (2018) Protection group effects during α, γ-diol lignin stabilization promote high-selectivity monomer production. Angew Chem Int Ed Engl 57:1356–1360CrossRef Lan W, Amiri MT, Hunston CM, Luterbacher JS (2018) Protection group effects during α, γ-diol lignin stabilization promote high-selectivity monomer production. Angew Chem Int Ed Engl 57:1356–1360CrossRef
46.
Zurück zum Zitat Wehrli B, Stumm W (1989) Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochim Cosmochim Ac 53:69–77CrossRef Wehrli B, Stumm W (1989) Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochim Cosmochim Ac 53:69–77CrossRef
47.
48.
Zurück zum Zitat Amin SS, Cryer K, Zhang B, Dutta SK, Eaton SS, Anderson OP, Miller SM, Reul BA, Brichard SM, Crans DC (2000) Chemistry and insulin-mimetic properties of bis(acetylacetonate)oxovanadium(IV) and derivatives1. Inorg Chem 39:406–416CrossRef Amin SS, Cryer K, Zhang B, Dutta SK, Eaton SS, Anderson OP, Miller SM, Reul BA, Brichard SM, Crans DC (2000) Chemistry and insulin-mimetic properties of bis(acetylacetonate)oxovanadium(IV) and derivatives1. Inorg Chem 39:406–416CrossRef
49.
Zurück zum Zitat Nunes CD, Vaz PD, Felix V, Veiros LF, Moniz T, Rangel M, Realista S, Mourato AC, Calhorda MJ (2015) Vanadyl cationic complexes as catalysts in olefin oxidation. Dalton T 44:5125–5138CrossRef Nunes CD, Vaz PD, Felix V, Veiros LF, Moniz T, Rangel M, Realista S, Mourato AC, Calhorda MJ (2015) Vanadyl cationic complexes as catalysts in olefin oxidation. Dalton T 44:5125–5138CrossRef
50.
Zurück zum Zitat Westrup KC, Gregorio T, Stinghen D, Reis DM, Hitchcock PB, Ribeiro RR, Barison A, Back DF, de Sa EL, Nunes GG, Soares JF (2011) Non-oxo vanadium(IV) alkoxide chemistry: solid state structures, aggregation equilibria and thermochromic behaviour in solution. Dalton T 40:3198–3210CrossRef Westrup KC, Gregorio T, Stinghen D, Reis DM, Hitchcock PB, Ribeiro RR, Barison A, Back DF, de Sa EL, Nunes GG, Soares JF (2011) Non-oxo vanadium(IV) alkoxide chemistry: solid state structures, aggregation equilibria and thermochromic behaviour in solution. Dalton T 40:3198–3210CrossRef
51.
Zurück zum Zitat Mota A, Hallett JP, Kuznetsov ML, Correia I (2011) Structural characterization and DFT study of VIVO(acac)2 in imidazolium ionic liquids. Phys Chem Chem Phys 13:15094–15102CrossRef Mota A, Hallett JP, Kuznetsov ML, Correia I (2011) Structural characterization and DFT study of VIVO(acac)2 in imidazolium ionic liquids. Phys Chem Chem Phys 13:15094–15102CrossRef
52.
Zurück zum Zitat M.R. Maurya, B. Uprety, F. Avecilla, P. Adao, J. Costa Pessoa, Vanadium(V) complexes of a tripodal ligand, their characterisation and biological implications, Dalton T. 44 (2015) 17736–17755. M.R. Maurya, B. Uprety, F. Avecilla, P. Adao, J. Costa Pessoa, Vanadium(V) complexes of a tripodal ligand, their characterisation and biological implications, Dalton T. 44 (2015) 17736–17755.
53.
Zurück zum Zitat Maurya MR, Sarkar B, Avecilla F, Correia I (2016) Vanadium(IV and V) complexes of pyrazolone based ligands: synthesis, structural characterization and catalytic applications. Dalton T 45:17343–17364CrossRef Maurya MR, Sarkar B, Avecilla F, Correia I (2016) Vanadium(IV and V) complexes of pyrazolone based ligands: synthesis, structural characterization and catalytic applications. Dalton T 45:17343–17364CrossRef
54.
Zurück zum Zitat Maurya MR, Agarwal S, Abid M, Azam A, Bader C, Ebel M, Rehder D (2006) Synthesis, characterisation, reactivity and in vitro antiamoebic activity of hydrazone based oxovanadium(IV), oxovanadium(V) and μ-bis(oxo)bis{oxovanadium(V)} complexes. Dalton T 7:937–947CrossRef Maurya MR, Agarwal S, Abid M, Azam A, Bader C, Ebel M, Rehder D (2006) Synthesis, characterisation, reactivity and in vitro antiamoebic activity of hydrazone based oxovanadium(IV), oxovanadium(V) and μ-bis(oxo)bis{oxovanadium(V)} complexes. Dalton T 7:937–947CrossRef
55.
Zurück zum Zitat Guo H, Zhang B, Qi Z, Li C, Ji J, Dai T, Wang A, Zhang T (2017) Valorization of lignin to simple phenolic compounds over tungsten carbide: impact of lignin structure. Chemsuschem 10:523–532CrossRef Guo H, Zhang B, Qi Z, Li C, Ji J, Dai T, Wang A, Zhang T (2017) Valorization of lignin to simple phenolic compounds over tungsten carbide: impact of lignin structure. Chemsuschem 10:523–532CrossRef
56.
Zurück zum Zitat Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, Foust TD, Beckham GT (2013) A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain Chem Eng 2:472–485CrossRef Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, Foust TD, Beckham GT (2013) A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain Chem Eng 2:472–485CrossRef
57.
Zurück zum Zitat Britt PF, Kidder MK, Buchanan AC (2007) Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers, Energ. Fuel 21:3102–3108CrossRef Britt PF, Kidder MK, Buchanan AC (2007) Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers, Energ. Fuel 21:3102–3108CrossRef
58.
Zurück zum Zitat Younker JM, Beste A, Buchanan AC III (2011) Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds. ChemPhysChem 12:3556–3565CrossRef Younker JM, Beste A, Buchanan AC III (2011) Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds. ChemPhysChem 12:3556–3565CrossRef
59.
Zurück zum Zitat G. Lessene, K.S. Feldman, Oxidative aryl‐coupling reactions in synthesis, in: D. Astruc (Ed), Modern arene chemistry, Wiley-VCH, Weinheim, 2002. G. Lessene, K.S. Feldman, Oxidative aryl‐coupling reactions in synthesis, in: D. Astruc (Ed), Modern arene chemistry, Wiley-VCH, Weinheim, 2002.
60.
Zurück zum Zitat Wen JL, Sun SL, Xue BL, Sun RC (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391CrossRef Wen JL, Sun SL, Xue BL, Sun RC (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391CrossRef
61.
Zurück zum Zitat Liu C, Hu J, Zhang H, Xiao R (2016) Thermal conversion of lignin to phenols: relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–870CrossRef Liu C, Hu J, Zhang H, Xiao R (2016) Thermal conversion of lignin to phenols: relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–870CrossRef
62.
Zurück zum Zitat Z. Zhang, B, Du, H, Zhu, C. Chen. Y. Sun. X. Wang, J. Zhou, Facile adjusting the concentration of siliceous seed to obtain different HZSM-5 zeolite catalysts for effective catalytic depolymerization reaction of lignin, Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01352-w Z. Zhang, B, Du, H, Zhu, C. Chen. Y. Sun. X. Wang, J. Zhou, Facile adjusting the concentration of siliceous seed to obtain different HZSM-5 zeolite catalysts for effective catalytic depolymerization reaction of lignin, Biomass Conv. Bioref. (2021). https://​doi.​org/​10.​1007/​s13399-021-01352-w
63.
Zurück zum Zitat McClelland DJ, Motagamwala AH, Li Y, Rover MR, Wittrig AM, Wu C, Buchanan JS, Brown RC, Ralph J, Dumesic JA, Huber GW (2017) Functionality and molecular weight distribution of red oak lignin before and after pyrolysis and hydrogenation. Green Chem 19:1378–1389CrossRef McClelland DJ, Motagamwala AH, Li Y, Rover MR, Wittrig AM, Wu C, Buchanan JS, Brown RC, Ralph J, Dumesic JA, Huber GW (2017) Functionality and molecular weight distribution of red oak lignin before and after pyrolysis and hydrogenation. Green Chem 19:1378–1389CrossRef
64.
Zurück zum Zitat Wang X, Guo Y, Zhou J, Sun G (2017) Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol-water as co-solvents. RSC Adv 7:8314–8322CrossRef Wang X, Guo Y, Zhou J, Sun G (2017) Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol-water as co-solvents. RSC Adv 7:8314–8322CrossRef
65.
Zurück zum Zitat Lancefield CS, Ojo OS, Tran F, Westwood NJ (2015) Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the β-O-4 linkages in lignin. Angew Chem Int Ed Engl 54:258–262CrossRef Lancefield CS, Ojo OS, Tran F, Westwood NJ (2015) Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the β-O-4 linkages in lignin. Angew Chem Int Ed Engl 54:258–262CrossRef
66.
Zurück zum Zitat Z. Zeng, J. Xie, Y. Guo, R. Rao, B. Chen, L. Cheng, Y. Xie, X. Ouyang, Hydrogenolysis of lignin to produce aromatic monomers over Fe-Pd bimetallic catalyst supported on HZSM-5, Fuel Process. Technol. 213 (2021) 106713. Z. Zeng, J. Xie, Y. Guo, R. Rao, B. Chen, L. Cheng, Y. Xie, X. Ouyang, Hydrogenolysis of lignin to produce aromatic monomers over Fe-Pd bimetallic catalyst supported on HZSM-5, Fuel Process. Technol. 213 (2021) 106713.
67.
Zurück zum Zitat Wang B, Shen XJ, Wen JL, Sun RC (2016) A mild AlCl3-catalyzed ethanol pretreatment and its effects on the structural changes of Eucalyptus wood lignin and the saccharification efficiency. RSC Adv 6:57986–57995CrossRef Wang B, Shen XJ, Wen JL, Sun RC (2016) A mild AlCl3-catalyzed ethanol pretreatment and its effects on the structural changes of Eucalyptus wood lignin and the saccharification efficiency. RSC Adv 6:57986–57995CrossRef
Metadaten
Titel
Oxovanadium complexes catalyzed oxidation of lignin and lignin dimers in acetonitrile/water under O2
verfasst von
Chao Liu
Fei Lin
Xiangchen Kong
Yuyang Fan
Weicong Xu
Rui Xiao
Publikationsdatum
15.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-021-02175-5

Weitere Artikel der Ausgabe 1/2024

Biomass Conversion and Biorefinery 1/2024 Zur Ausgabe