Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-6/2021

03.01.2021 | ORIGINAL ARTICLE

Parameterized multipoint-line analytical modeling of a mobile heat source for thermal field prediction in laser beam welding

verfasst von: Fabio Giudice, Severino Missori, Andrea Sili

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermal effects of the “keyhole” full penetration welding mode, which is characteristic of high-power CO2 laser, are simulated introducing a multipoint-line thermal source model based on heat conduction, parameterized by the distribution of the laser beam power, and the setting of the source system layout, and to be fitted on experimentally detected cross sections of the heat-affected or fusion zones of the weld. The proposed model allows to express the thermal field according to the moving reference system fixed on the overall heat source, and to analyze the temperature profiles that develop in some detection points fixed on the workpiece, as time varies during the welding process. By this way, it can be useful in evaluating the thermal effects that result from the variation of the main welding parameters (beam power, welding speed, plate thickness), with the aim of simplifying the selection of the optimal process conditions. As an application, reference is made to a cross section of a joint between plates of AISI 304 L austenitic steel. The fitting procedure allows to set the power distribution and layout parameters of the most suitable source combination (obtained by superposition of a line and two point sources). The value of the absorption coefficient also is assumed as fitting variable, so to overcome the complex problem of evaluating the beam power actually absorbed by the material on keyhole mode welding. Finally, the fitted model is applied to carry out a detailed thermal field analysis in the welded plates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Islam M, Buijk A, Rais-Rohani M, Motoyama K (2014) Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures. Finite Elem Anal Des 84:54–64CrossRef Islam M, Buijk A, Rais-Rohani M, Motoyama K (2014) Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures. Finite Elem Anal Des 84:54–64CrossRef
3.
Zurück zum Zitat Sajek A (2019) Application of FEM simulation method in area of the dynamics of cooling AHSS steel with a complex hybrid welding process. Weld World 63:1065–1073CrossRef Sajek A (2019) Application of FEM simulation method in area of the dynamics of cooling AHSS steel with a complex hybrid welding process. Weld World 63:1065–1073CrossRef
4.
Zurück zum Zitat Nezamdost MR, Nekouie Esfahani MR, Hashemi SH, Mirbozorgi SA (2016) Investigation of temperature and residual stresses field of submerged arc welding by finite element method and experiments. Int J Adv Manuf Technol 87:615–624CrossRef Nezamdost MR, Nekouie Esfahani MR, Hashemi SH, Mirbozorgi SA (2016) Investigation of temperature and residual stresses field of submerged arc welding by finite element method and experiments. Int J Adv Manuf Technol 87:615–624CrossRef
6.
Zurück zum Zitat Lankalapalli KN, Tu JF, Leong KH, Gartner M (1999) Laser weld penetration estimation using temperature measurements. ASME J Manuf Sci Eng 121:179–188CrossRef Lankalapalli KN, Tu JF, Leong KH, Gartner M (1999) Laser weld penetration estimation using temperature measurements. ASME J Manuf Sci Eng 121:179–188CrossRef
7.
Zurück zum Zitat Anca A, Cardona A, Risso J, Fachinotti VD (2011) Finite element modeling of welding processes. Appl Math Model 35:688–707MathSciNetCrossRef Anca A, Cardona A, Risso J, Fachinotti VD (2011) Finite element modeling of welding processes. Appl Math Model 35:688–707MathSciNetCrossRef
8.
Zurück zum Zitat Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans ASME 68:849–866 Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans ASME 68:849–866
9.
Zurück zum Zitat Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, LondonMATH Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, LondonMATH
10.
Zurück zum Zitat Ashby MF, Easterling KE (1984) The transformation hardening of steel surfaces by laser beam. Acta Metall 32:1935–1948CrossRef Ashby MF, Easterling KE (1984) The transformation hardening of steel surfaces by laser beam. Acta Metall 32:1935–1948CrossRef
11.
Zurück zum Zitat Mackwood AP, Crafer RC (2005) Thermal modelling of laser welding and related processes: a literature review. Opt Laser Technol 37:99–115CrossRef Mackwood AP, Crafer RC (2005) Thermal modelling of laser welding and related processes: a literature review. Opt Laser Technol 37:99–115CrossRef
12.
Zurück zum Zitat Missori S, Costanza G, Sili A, Tata ME (2015) Metallurgical modifications and residual stress in welded steel with average carbon content. Weld Int 29(2):124–130CrossRef Missori S, Costanza G, Sili A, Tata ME (2015) Metallurgical modifications and residual stress in welded steel with average carbon content. Weld Int 29(2):124–130CrossRef
13.
Zurück zum Zitat Missori S, Sili A (2018) Prediction of weld metal microstructure in laser beam weld metal clad steel. Metallurgist 62:84–92CrossRef Missori S, Sili A (2018) Prediction of weld metal microstructure in laser beam weld metal clad steel. Metallurgist 62:84–92CrossRef
14.
Zurück zum Zitat Svenungsson J, Choquet I, Kaplan AFH (2015) Laser welding process: a review of keyhole welding modelling. Phys Procedia 78:182–191CrossRef Svenungsson J, Choquet I, Kaplan AFH (2015) Laser welding process: a review of keyhole welding modelling. Phys Procedia 78:182–191CrossRef
15.
Zurück zum Zitat Volpp J, Vollertsen F (2016) Keyhole stability during laser welding-part I: modeling and evaluation. Prod Eng Res Dev 10:443–457CrossRef Volpp J, Vollertsen F (2016) Keyhole stability during laser welding-part I: modeling and evaluation. Prod Eng Res Dev 10:443–457CrossRef
16.
Zurück zum Zitat Steen WM, Dowden J, Davis M, Kapadia P (1988) A point and line source model of laser keyhole welding. J Phys D Appl Phys 21:1255–1260CrossRef Steen WM, Dowden J, Davis M, Kapadia P (1988) A point and line source model of laser keyhole welding. J Phys D Appl Phys 21:1255–1260CrossRef
17.
Zurück zum Zitat Akhter R, Davis M, Dowden J, Kapadia P, Ley M, Steen WM (1989) A method for calculating the fused zone profile of laser keyhole welds. J Phys D Appl Phys 21:23–28CrossRef Akhter R, Davis M, Dowden J, Kapadia P, Ley M, Steen WM (1989) A method for calculating the fused zone profile of laser keyhole welds. J Phys D Appl Phys 21:23–28CrossRef
19.
Zurück zum Zitat Dowden JM (2001) The mathematics of thermal modelling: an introduction to the theory of laser material processing. Chapman & Hall/CRC, Boca RatonCrossRef Dowden JM (2001) The mathematics of thermal modelling: an introduction to the theory of laser material processing. Chapman & Hall/CRC, Boca RatonCrossRef
20.
Zurück zum Zitat Metzbower EA (1990) Laser beam welding: thermal profiles and HAZ hardness. Weld J 7:272 s–278 s Metzbower EA (1990) Laser beam welding: thermal profiles and HAZ hardness. Weld J 7:272 s–278 s
21.
Zurück zum Zitat Kaplan A (1994) A model of deep penetration laser welding based on calculation of the keyhole profile. J Phys D Appl Phys 27:1805–1814CrossRef Kaplan A (1994) A model of deep penetration laser welding based on calculation of the keyhole profile. J Phys D Appl Phys 27:1805–1814CrossRef
22.
Zurück zum Zitat Dowden JM, Ducharme R, Kapadia PD (1998) Time dependent line and point sources: a simple model for time-dependent welding processes. Lasers Eng 7:215–228 Dowden JM, Ducharme R, Kapadia PD (1998) Time dependent line and point sources: a simple model for time-dependent welding processes. Lasers Eng 7:215–228
23.
Zurück zum Zitat Postacioglu N, Kapadia P, Dowden J (1993) A mathematical model of heat conduction in a prolate spheroidal coordinate system with applications to the theory of welding. J Phys D Appl Phys 26:563–573CrossRef Postacioglu N, Kapadia P, Dowden J (1993) A mathematical model of heat conduction in a prolate spheroidal coordinate system with applications to the theory of welding. J Phys D Appl Phys 26:563–573CrossRef
24.
Zurück zum Zitat Van Elsen M, Baelmans M, Mercelis P, Kruth J-P (2007) Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing. Int J Heat Mass Transf 50:4872–4882CrossRef Van Elsen M, Baelmans M, Mercelis P, Kruth J-P (2007) Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing. Int J Heat Mass Transf 50:4872–4882CrossRef
25.
Zurück zum Zitat Franco A, Romoli L, Musacchio A (2014) Modelling for predicting seam geometry in laser beam welding of stainless steel International. J Therm Sci 79:194–205CrossRef Franco A, Romoli L, Musacchio A (2014) Modelling for predicting seam geometry in laser beam welding of stainless steel International. J Therm Sci 79:194–205CrossRef
26.
Zurück zum Zitat Mościcki T, Hoffman J, Szymański Z (2006) Modelling of plasma plume induced during laser welding. J Phys D Appl Phys 39:685–692CrossRef Mościcki T, Hoffman J, Szymański Z (2006) Modelling of plasma plume induced during laser welding. J Phys D Appl Phys 39:685–692CrossRef
27.
Zurück zum Zitat Zhou J, Tsai HL, Wang PC (2006) Transport phenomena and keyhole dynamics during pulsed laser welding. J Heat Transf 128:680–690CrossRef Zhou J, Tsai HL, Wang PC (2006) Transport phenomena and keyhole dynamics during pulsed laser welding. J Heat Transf 128:680–690CrossRef
28.
Zurück zum Zitat Missori S, Murdolo F, Sili A (2004) Single-pass laser beam welding of clad steel plate. Weld J 83:65 s–71 s Missori S, Murdolo F, Sili A (2004) Single-pass laser beam welding of clad steel plate. Weld J 83:65 s–71 s
29.
Zurück zum Zitat Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, CambridgeCrossRef Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, CambridgeCrossRef
30.
Zurück zum Zitat Hoffman J, Szymanski Z (2002) Absorption of the laser beam during welding with CO2 laser. Opt Appl 32:129–145 Hoffman J, Szymanski Z (2002) Absorption of the laser beam during welding with CO2 laser. Opt Appl 32:129–145
31.
Zurück zum Zitat Ricciardi G, Cantello M (1994) Laser material interaction: absorption coefficient in welding and surface treatment. Ann CIRP 43:171–175CrossRef Ricciardi G, Cantello M (1994) Laser material interaction: absorption coefficient in welding and surface treatment. Ann CIRP 43:171–175CrossRef
32.
Zurück zum Zitat Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4 V, 304 L stainless steel and vanadium. J Phys D Appl Phys 40:5753–5766CrossRef Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4 V, 304 L stainless steel and vanadium. J Phys D Appl Phys 40:5753–5766CrossRef
34.
Zurück zum Zitat Weman K (2003) Welding processes handbook, vol chap. 14. Woodhead Publishing Ltd, Cambridge, p 143CrossRef Weman K (2003) Welding processes handbook, vol chap. 14. Woodhead Publishing Ltd, Cambridge, p 143CrossRef
35.
Zurück zum Zitat Khan MMA, Romoli L, Ishak R, Fiaschi M, Dini G, De Sanctis M (2012) Experimental investigation on seam geometry, microstructure evolution and microhardness profile of laser welded martensitic stainless steel. Opt Laser Technol 44:1611–1619CrossRef Khan MMA, Romoli L, Ishak R, Fiaschi M, Dini G, De Sanctis M (2012) Experimental investigation on seam geometry, microstructure evolution and microhardness profile of laser welded martensitic stainless steel. Opt Laser Technol 44:1611–1619CrossRef
Metadaten
Titel
Parameterized multipoint-line analytical modeling of a mobile heat source for thermal field prediction in laser beam welding
verfasst von
Fabio Giudice
Severino Missori
Andrea Sili
Publikationsdatum
03.01.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-6/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-06479-0

Weitere Artikel der Ausgabe 5-6/2021

The International Journal of Advanced Manufacturing Technology 5-6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.